Skip to main content

Part of the book series: NATO ASI Series ((ASIH,volume 17))

Abstract

Molecular recognition and associated signalling mechanisms in plants are fundamental to a wide range of biological processes including fertilisation, cell division, ordered cell growth and development, host-pathogen interactions, symbiosis and stress response. The general presumption (borne out in some cases) is that such recognition events involve surface-localised molecules associating in some complementary fashion, and that the surface events are linked to a cellular response through some form of signalling mechanism involving transmission and transduction of the stimulus. In this presentation our current understanding of the nature of some molecular signals and their receptors involved in recognition of ‘self’ and ‘non-self’ will be considered in the context of recognition between higher plants and parasitic microorganisms. Particular attention will be devoted to the application of newer molecular technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Albersheim, P. Darvill, A.G., McNeil, M., Valent, B.S., Sharp, J.K., Nothnagel, E.A., Davis K.R., Yamazaki, N., Gollin, DJ., York, W.S., Dudman, W.F., Darvil, J.E., Dell, A. 1983. Oligosaccharid: naturally occurring carbohydrates with biological regulatory functions. In: Structure and Function of the Plant Genome, eds. O. Ciferri and L. Dure III, NATO ASI, pp 293–312

    Google Scholar 

  • Allen, P.J. 1976. Control of spore germination and infection structure formation in the fungi. In: Encyclopedia of Plant Physiology, N.S., Physiological Plant Pathology, eds. R. Heitefuss and P.H. Williams, pp 51–85, Springer-Verlag, Berlin, Heidelberg, New York.

    Google Scholar 

  • Ayers A.R., Goodell, J.J. & De Angelis, P. 1985 Plant detection by pathogens. In: Biochemical Interactions of Plants with Other Organisms, eds E.E. Conn, G. Cooper-Driver & T. Swain, Recent Advances in Phytochemistry. 19, 1–20.

    Google Scholar 

  • Bailey, J.A. 1987. Phytoalexins: a genetic view of their significance. In Genetics and Plant Pathogenesis. pp 233–244, eds P.R. Day and GJ. Jellis, Blackwells.

    Google Scholar 

  • Bailey, J.A. 1982 Physiological and biochemical events associated with the expression of resistance to disease. In., Active Defense Mechanisms in Plants, ed. R.K.S. Wood, pp 39–65. Plenum Pres, New York & London.

    Google Scholar 

  • Bartnicki-Garcia, S., and Wang, M.C. 1983. Biochemical aspects of morphogenesis in Phytophthora. In Phytophthora: Its Biology, Taxonomy, Ecology and Pathology. eds D.C. Erwin, S. Bartnicki-Garcia, and P.H. Tsao. pp 121–137, American Phytopathological Society, St. Paul, Minnesota.

    Google Scholar 

  • Barton-Willis, P.A., Wang, M.C., Staskawicz, B., & Keen, N.T. 1987 Structural studies on the O-chain polysaccharides of lipopolysaccharides from Pseudomonas syringae pv. glycinea. Physiological & Molecular Plant Pathology. 30, 187–197.

    Article  CAS  Google Scholar 

  • Bishop, P.D., Makus, D.J., Pearce, G., & Ryan, C.A. 1981 Proteinase inhibitor-inducing factor activity in tomato leaves resides in oligosaccharides enzymically released from cell walls. Proceedings of the National Academy of Sciences, USA, 78, 3536–3540.

    Article  CAS  Google Scholar 

  • Bushnell, W.R. and Rowell, J.B., 1981. Suppressors of defense reactions: a model for roles in specificity. Phytopathology, 71, 1012–1014.

    Article  Google Scholar 

  • Bruce, R.J., & West, C.A. 1982 Elicitation of casbene synthetase activity in castor bean. The role of pectic fragments of the plant cell wall in elicitation by a fungal polygalacturonase. Plant Physiology, 69, 1181–1188.

    Article  PubMed  CAS  Google Scholar 

  • Byrt P.N., Irving H.R. & Grant, B.R. 1982 The effect of organic compounds onm the encystment, viability and germination of zoospores of Phytophthora cinnamomi. Journal of General Microbiology. 128, 2343–2351.

    CAS  Google Scholar 

  • Callow J.A. 1984. Cellular and molecular recognition between higher plants and fungi. Encyclopedia of Plant Physiology N.S., 17, 212–237.

    CAS  Google Scholar 

  • Callow, J.A., 1987. Models for host-pathogen interaction. In Genetics and Plant Pathogenesis. pp 283–295, eds P.R. Day and G.J. Jellis, Blackwells.

    Google Scholar 

  • Callow, J.A., Estrada-Garcia, M.T. & Green, J.R. 1988. Recognition of non-self: the causation and avoidance of disease. In: New Perspectives in Plant Science, Annals of Botany Centenary Symposium (in press).

    Google Scholar 

  • Castle A.J. and Day A.W., 1984. Isolation and identification of α-tocopherol as an inducer of the parasitic phase of Ustilago violacea. Phytopathology, 74, 1194–1200.

    Article  CAS  Google Scholar 

  • Darvill A.G. & Albersheim P. 1984. Phytoalexins and their elicitors. A defense reaction against microbial infection in plants. Annual Review of Phytopathology 35, 243–275.

    CAS  Google Scholar 

  • Darvill, A.G., Albershiem, P., McNeil, M., Lau, J.M., York, W.S., Stevenson, T.T., Thomas, J., Doares, S., Gollin, DJ., Chelf, P., & Davis, K. 1985. Structure and function of plant cell wall polysaccharides. In, The Cell Surface in Plant Growth and Development, eds. K. Roberts, A.W.B. Johnston, C.W. Lloyd, P. Shaw & H.W. Woolhouse. Journal of Cell Science (Supplement), pp 203–217.

    Google Scholar 

  • Day P.R.1984. Genetics of recognition systems in host-parasite interaction. In: Cellular Interactions (Ed.by H.F. Linskens & J. Heslop-Harrison). Encyclopedia of Plant Physiology 17, 134–147

    Chapter  Google Scholar 

  • De Wit, P.J.G.M. 1986. Elicitation of active resistance mechanisms. In: In Biology and Molecular Biology of Plant-Pathogen Interactions. 149–170, ed. J.A. Bailey, Springer-Verlag.

    Google Scholar 

  • De Wit, P.J.G.M., Hofmann, J.E., Velthuis, G.C.M. & Kuc, J. 1985. Isolation and characterisation of an elicitor of necrosis isolated from intercellular fluids of compatible interactions of Cladosporium fulvum (syn,. Fulvia fulva) and tomato. Plant Physiology, 77, 642–647.

    Article  PubMed  Google Scholar 

  • De Wit P.J.G.M. & Spikman G. 1982., Evidence for the occurrence of race and cultivar-specific elicitors of necrosis in intracellular fluids of compatible interactions of Cladosporium fulvum and tomato. Physiological Plant Pathology 21, 1–11.

    Article  Google Scholar 

  • Dickinson, S. 1970. Studies in the physiology of obligate parasitism VII. The effect of a curved thigmotropic stimulus. Phytopathologische Zeitschrift. 69, 115–124.

    Article  CAS  Google Scholar 

  • Dixon R.A., Bolwell, G.P., Hamdan, M.A.M.S. and Robbins, M.P. 1987. In Genetics and Plant Pathogenesis, pp 245–259, eds P.R. Day and G.J. Jellis, Blackwells.

    Google Scholar 

  • Ellingboe, A.H. 1976. Genetics of host-parasite interactions. Encyclopedia of Plant Physiology, N.S., 4, 761–778.

    Google Scholar 

  • Ellingboe, A.H., 1982. Genetical aspecls of host defence. In: Active Defense Mechanisms in Plants, ed. R.K.S. Wood, pp 179–192. Plenum Press, New York.

    Google Scholar 

  • Epstein, L., Laccetti, L., Staples, R.C., Hoch, H.C. and Hoose, W.A., 1985. Extracellular proteins associated with induction of differentiation in bean rust uredospore germlings. Phytopathology, 75, 1073–1076.

    Article  CAS  Google Scholar 

  • Firmin, J.L., Wilson, K.E., Rossen, L., and Johnston, A.W.B., 1986. Flavonoid activation of nodulation genes in Rhizobium reversed by other compounds present in plants. Nature, 324, 90–92.

    Article  CAS  Google Scholar 

  • Gabriel, D.W., Burges, A., & Lazo, G.R. 1986. Gene-for-gene interactions of five cloned avirulence genes from Xanthomonas campestris pv. malvacearum with specific resistance genes in cotton. Proceedings of the National Academy of Science, USA, 83, 6415–6419.

    Article  CAS  Google Scholar 

  • Gollin, D.J., Darvill, A.G. & Albersheim, P. 1985. Plant cell walls inhibit flowering and promote vegetative growth in Lemna gibba. Biol. Cell, 51,

    Google Scholar 

  • Grove, S.N. and Bracker, C.E. 1978, Protoplasmic changes during zoospore encystment and cyst germination in Pythium aphanidermatum. Experimental Mycology, 2, 51–98.

    Article  Google Scholar 

  • Hadwiger, L.A., Daniels, C., Fristensky B.W., Kenfra D.F. and Wagoner, W. 1986. Pea genes associated with the non-host resistance to Fusarium solani are also induced by chitosan and in race-specific resistance by Pseudomonas syringae. In Biology and Molecular Biology of Plant-Pathogen Interactions. pp263–269, ed. J.A. Bailey, Springer-Verlag.

    Google Scholar 

  • Hahn M.G., Darvill, A.G. & Albersheim, P. 1981. Host-pathogen interactions XIX: The endogenous elicitor, a fragment of a plant cell wall polysaccharide that elicits phytoalexin accumulation in soybeans. Plant Physiology. 68, 1161–1169.

    Article  PubMed  CAS  Google Scholar 

  • Hardham, A.R. and Susaki, E. 1986. Encystment of zoospores of the fungus Phytophthora cinnamomi is induced by specific lectin and monoclonal antibody to the cell surface. Protoplasma. 133. 165–173.

    Article  CAS  Google Scholar 

  • Hardham, A.R., Susaki, E. and Perkin, J.L. 1985. The detection of monoclonal antibodies specific for the surface components on zoospores and cysts of Phytophthora cinnamomi. Experimental Mycology, 9, 264–268.

    Article  Google Scholar 

  • Hardham, A.R., Susaki, E. and Perkin, J.L. 1986. Monoclonal antibodies to isolate species-and genus-specific components on the surface of zoospores and cysts of the fungus, Phytophthora cinnamomi. Canadian Journal of Botany, 64, 311–312.

    Article  Google Scholar 

  • Hemmes D.E. & Hohl, H.R. 1971. Ultrastructural aspects of encystation and cyst germination in Phytophthora parasitica. Journal of Cell Science, 9, 175–191.

    PubMed  CAS  Google Scholar 

  • Hinch, J.M. & Clarke, A.E. 1980. Adhesion of fungal zoospores to root surfaces is mediated by carbohydrate determinants of the root slime. Physiological Plant Pathology, 16, 303–307.

    CAS  Google Scholar 

  • Irving. H.R. & Grant, B. 1984. The effects of pectin and plant root surface carbohydrates on encystment and development of Phytophthora cinnamomi zoospores. Journal of General Microbiology. 130, 1015–1018.

    CAS  Google Scholar 

  • Keen, N.T. 1982. Specific recognition in gene-for-gene host-parasite systems. Advances in Plant Pathology, 1, 35–81.

    Google Scholar 

  • Kondorosi, E., & Kondorosi, A. 1986. Nodule induction on plant roots by Rhizobium. Trends in Biochemical Science, 11, 296–299.

    Article  CAS  Google Scholar 

  • Kota, D.A. & Stelzig, D.A. 1977. Electrophysiology as a means of studying the role of elicitors in plant disease reactions. Proceedings of the American Phytopathological Society, 4, 216–217.

    Google Scholar 

  • Larkin P.J. 1977. Plant protoplast agglutination and membrane-bound ß-lectins. Journal of Cell Science 26, 31–46.

    PubMed  CAS  Google Scholar 

  • Longman D. and Callow, J.A. 1987. Specific saccharide residues are involved in the recognition of plant root surfaces by zoospores of Pythium aphanidermatum. Physiological and Molecular Plant Pathology. 30, 139–150.

    Article  CAS  Google Scholar 

  • Mendgen, K., Lange, M., & Bretschneider, K. 1985. Qualitative estimation of the surface carbohydrates on the infection structures of rust fungi with enzymes and lectins. Archives of Microbiology, 140, 307–311.

    Article  CAS  Google Scholar 

  • Mitchell, J.E. 1976. The effects of roots on the activity of soil-borne plant pathogens. In: Encyclopedia of Plant Physiology, N.S., Physiological Plant Pathology, eds. R. Heitefuss and P.H. Williams, pp 94–128, Springer-Verlag, Berlin, Heidelberg, New York.

    Google Scholar 

  • Mulligan J.T. and Long, S. 1985. Induction of Rhizobiwn meliloti nodC expression by plant exudate requires nodD. Proceedings of the National Academy of Sciences, U.S. A., 82, 6609–6613.

    Article  CAS  Google Scholar 

  • Nothnagel, E.A., McNeil, M., Albersheim, P., and Dell, A. 1983. Host-pathogen interactions XXII. A galacturonic acid oligosaccharide from plant cell walls elicits phytoalexins. Plant Physiology, 71, 916–926.

    Article  PubMed  CAS  Google Scholar 

  • Ossowski P., Pilotti A., Garegg P.J. & Lindberg B. 1983. Synthesis of a branched hepta- and octasaccharide with phytoalexin-elicitor activity. Angewandte Chemie 22, 793–795.

    Article  Google Scholar 

  • Peters B.M., Cribbs D.H. & Stelzig D.A. 1978. Agglutination of plant protoplasts by fungal cell wall glucans. Science 201, 364–365.

    Article  PubMed  CAS  Google Scholar 

  • Pillai, C.G.P., & Weet, J.D. 1975. Sterol-binding polysaccharides of Rhizopus arrhizus, Penicillium roquefortii, and Saccharomyces carlsbergensis. Phytochemistry, 14, 2347–2351.

    Article  CAS  Google Scholar 

  • Rossen, L., Johnston, A.W.B., Firmin, J.L., Shearman, C.A., Evans, I.J. and Downie, J.A. 1986. Structure, function and regulation of nodulation genes of Rhizobium. Oxford Surveys of Plant Molecular and Cell Biology. 3, 441–447.

    CAS  Google Scholar 

  • Ryder, T.B., Bell, J.N., Cramer, C.L., Dildine, S.L., Grand, C, Hedrick, S.A., Lawton, M.A., and Lamb, C.J. 1986. Organization, structure and activation of plant defence genes. In Biology and Molecular Biology of Plant-Pathogen Interactions. 207–219, ed. J.A. Bailey, Springer-Verlag.

    Google Scholar 

  • Schell, J. 1988. The New Chimeras. In: New Perspectives in Plant Science, Annals of Botany Centenary Symposium (in press).

    Google Scholar 

  • Sharp J.K., McNeil M. & Albersheim P. 1984a. The primary structures of one elicitor-active and seven elicitor-inactive hexa(ß-D-glucopyranosyl)-D-glucitols isolated from the mycelial walls of Phytophthora megasperma f.sp. glycinea. Journal of Biological Chemistry 259, 11321–11336.

    PubMed  CAS  Google Scholar 

  • Sharp J.K., Valent B. & Albersheim P. 1984b. Purification and partial characterisation of a ß-glucan fragment that elicits phytoalexin accumulation in soyabean. Journal of Biological Chemistry 259, 11312–11320.

    PubMed  CAS  Google Scholar 

  • Sing, V.O. and Bartnicki-Garcia S. 1975. Adhesion of Phytophthora palmivora zoospores. Electron microscopy of cell attachment and cyst wall fibril formation. Journal of Cell Science, 18, 123–132.

    PubMed  CAS  Google Scholar 

  • Stachel, S.E., Messens, E., Van Montague, H., and Zambryski, P. 1985. Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature, 318, 624–629.

    Article  Google Scholar 

  • Staples, R.C., Yoder O.C., Hoch, H.C., Epstein, L., and Bhairi, S., 1986.Gene expression during infection structure development by germlings of the rust fungi. In Biology and Molecular Biology of Plant-Pathogen Interactions, pp 331–341, ed. J.A. Bailey, Springer-Verlag.

    Google Scholar 

  • Staskawicz, B.J., Dahlbeck, D. & Keen, N.T. 1984. Cloned avirulence gene Pseudomonas syringae pv. glycinea determines race-specific incompatibility on Glycine max. Proceedings of the National Academy of Science, USA, 81, 6024–6028.

    Article  CAS  Google Scholar 

  • Tran Thanh Van, K., Toubart, P., Cousson, A., Darvill, A.G., Gollin, D.J., Chelf, P. & Albersheim, P. 1985. Manipulation of the morphogenetic pathways of tobacco expiants by oligosaccharins. Nature, 314, 615–617.

    Article  Google Scholar 

  • Ward, E.W.B. 1983, Effects of mixed or consecutive inoculations on the interaction of soyabeans with races of Phytophthora megasperma f.sp. glycinea. Physiological Plant Pathology, 23, 281–294.

    Article  Google Scholar 

  • Ward, E.W.B. 1986. Biochemical mechanisms involved in resistance of plants to fungi. In Biology and Molecular Biology of Plant-Pathogen Interactions, pp 107–131, ed. J.A. Bailey, Springer-Verlag.

    Google Scholar 

  • West, C.A. 1981. Fungal elicitors of the phytoalexin response in higher plants. Naturwissenschaften, 68, 447–457.

    Article  CAS  Google Scholar 

  • Wingate V.P.M., Norman P.M., Keen N.T., Staskawicz B.J. & Lamb C.J. 1984. Monoclonal antibodies to surface epitopes of Pseudomonas syringae pv. glycinea (PSG). Abstracts of the 6th John Innes Symposium, The Plant Cell Surface in Growth and Development, p 57.

    Google Scholar 

  • Yamazaki, N., Fry, S.C., Darvill, A.G. & Albersheim, P. 1983. Host-pathogen interactions XXIV. Fragments isolated from suspension-cultured sycamore cell walls inhibit the ability of the cells to incorporate [14C] leucine into proteins. Plant Physiology, 75, 295–297.

    Google Scholar 

  • York, W.S., Darvill, A.G., & Albersheim, P. 1984. Inhibition of 2,4-dichlorophenoxyacetic acid-stimulated elongation of pea stem segments by a xyloglucan oligosaccharide. Plant Physiology. 75, 295–297.

    Article  PubMed  CAS  Google Scholar 

  • Yoshikawa M., Keen N.T. & Wang M.C. 1983. A receptor on soybean membranes for a fungal elicitor of phytoalexin accumulation. Plant Physiology 73, 497–506.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Callow, J.A., Ray, T., Estrada-Garcia, T.M., Green, J.R. (1988). Molecular Signals in Plant Cell Recognition. In: Scannerini, S., Smith, D., Bonfante-Fasolo, P., Gianinazzi-Pearson, V. (eds) Cell to Cell Signals in Plant, Animal and Microbial Symbiosis. NATO ASI Series, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73154-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73154-9_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73156-3

  • Online ISBN: 978-3-642-73154-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics