Skip to main content

Summary

Several unusual features distinguish snRNA genes and make snRNA synthesis an important and interesting subject for study. Although the snRNA genes are very efficiently and accurately transcribed by transcription complexes which use RNA polymerase II (or III, in the case of U6 genes), these genes contain transcription signals that differ from those normally recognized by RNA polymerase II.

The genes for the major snRNAs constitute a collection of multigene families, each of which, in mammals, has 5–30 members (fewer in chickens or insects) (Table 1). Each member of an snRNA gene family contains a significant amount of DNA that is dispensable for gene expression, but which is nonetheless conserved between members of the same family. Apparently, each of these gene families arose by amplification of an ancient progenitor DNA sequence containing only one or a few snRNA genes. The amounts of genomic DNA that were co-amplified varies considerably from gene to gene and species to species.

Amplification of relatively short DNA segments have yielded snRNA genes arranged in short, perfect tandemly repeated units (e.g., human U2 genes) whereas duplication of large segments has resulted in snRNA genes that are loosely clustered but appear to be independent units with considerable flanking region homology (e.g., human U1 genes). In certain species (e.g., Xenopus) the numbers of particular types of snRNA genes have been expanded to more than 500 per haploid equivalent, thereby allowing extremely high rates of snRNA synthesis at specific stages of early development.

In addition to the multiple true genes, many genomes, the mammalian ones in particular, contain a large number of untranscribed snRNA pseudogenes (Table 2). The presence of a high level of retroposon-like pseudogenes, which evidently arose by RNA-mediated events, indicates that within the germline cells enzymes such as reverse transcriptase have access to snRNAs. In contrast, the lack of pseudogenes in genomes of such species as Xenopus and Drosophila may be due to differences between oogenesis in these organisms and the mammals (as discussed by Weiner et al. 1986). The other class of pseudogenes, which is generated entirely by DNA-mediated events and which bears strong resemblance to snRNA true genes, apparently arose as a result of the continued evolution of snRNA gene families via mutation and alternating cycles of transposition and amplification.

Several characteristics set transcription of snRNA genes apart from that of other genes. First, the major snRNA transcription signals are unique to snRNA genes (Table 3). For example, snRNA enhancers apparently are unable to activate mRNA promoters, and conversely, although mRNA enhancers can activate snRNA transcription, they do so nonspecifically. Moreover, formation of the 3’ ends of snRNAs is coupled to transcription from snRNA promoters. Secondly, the snRNA promoters are among the most powerful in the cell, being capable of initiating transcription precisely at position +1 once every 2–4 s. Thus, in spite of the relatively small number of snRNA transcription units (totalling perhaps 200–300 per HeLa cell), the number of initiation events at snRNA promoters needed to synthesize ∼ 2-3 x 106 snRNA transcripts per cell per generation must account for a substantial fraction of all the initiations performed by RNA polymerase II. Presumably, this efficiency and accuracy of snRNA gene expression is due to unique properties of the snRNA-specific transcription complexes.

One of the most striking features of this system is the immediate export of the newly synthesized snRNAs to the cytoplasm. Once in the cytoplasm the snRNAs undergo maturation and assembly into snRNPs prior to their reentry in-to the nucleus. This series of events, is the opposite of that of other RNA polymerase II (and III) transcripts, which remain in the nucleus until they are fully processed. In all cases, however, a common feature is the sequestration of the precursor RNAs in cell compartments that are different from the ones where the RNAs ultimately function; transport into the latter compartments (the nucleus for snRNAs and the cytoplasm for both mRNAs and tRNAs) occurs once the RNAs are mature. Presumably the rapid export of newly synthesized snRNA precursors is required to prevent their inactivation by polyadenylation or other nuclear processing events, or by association with hnRNP binding proteins.

Perhaps the unusual structure of snRNA promoters and 3’ end signals are responsible for the coupling of snRNA synthesis to the immediate export of the RNA product. In this regard it is interesting that the 5’ flanking regions of both U1–U5 genes (transcribed by RNA polymerase II) and U6 genes (transcribed by RNA polymerase III) contain a similar sequence (snRNA-TATA-box, Table 5) which is essential for transcription. That sequence may target both types of snRNA genes to a nuclear compartment at or close to the inner nuclear membrane from which the snRNAs could be rapidly exported.

SnRNA gene transcription in invertebrates probably obeys many of the same general rules as those described for the vertebrate genes; however, the snRNA- specific transcription signals differ in sequence from those of vertebrate genes and their functions have yet to be tested experimentally. Thus, short sequences shared between the 5’ flanking regions of Drosophila U1-U5 and U6 genes (Table 4) may have functions comparable to those of similarly located sequences shared between vertebrate U1-U5 and U6 genes.

It is unclear why attempts to make in vitro transcription systems for vertebrate U1–U5 genes have been unsuccessful. Perhaps the coupling of synthesis and immediate export of snRNA from the nucleus makes such systems sensitive to the disruption or loss of a nuclear structure during extract preparation. Moreover, the standard RNA polymerase II in vitro systems may lack other factors which directly or indirectly activate transcription of snRNA genes.

In recent years our knowledge of snRNA gene structure and transcription has increased greatly. However, as we discuss throughout this chapter, many important questions remain to be answered. We expect that an even better understanding of the mechanisms and control of snRNA gene expression will emerge in coming years, fostered (hopefully) by the development of an accurate and efficient system for transcription of vertebrate snRNA genes in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ach RA, Weiner AM (1987) The highly conversed U small nuclear RNA 3’-end formation signal is quite tolerant to mutation. Mol Cell Biol 7:2070–2079

    PubMed  CAS  Google Scholar 

  • Akao M, Reddy R, Busch H (1986) Multiple sequences in tehDrosophila melanogaster U3 RNA gene are homologous to vertebrate U3 RNA. Biochem Biophys Res Commun 138:512–518

    PubMed  CAS  Google Scholar 

  • Alonso A, Jorcano JL, Beck E, Spiess E (1983) Isolation and characterization of Drosophila melanogaster U2 small nuclear RNA genes. J Mol Biol 169:691–705

    PubMed  CAS  Google Scholar 

  • Alonso A, Beck E, Jorcano JL, Hovemann B (1984a) Divergence of U2 snRNA sequences in the genome ofD. melanogaster. Nucl Acids Res 12:9543–9550

    PubMed  CAS  Google Scholar 

  • Alonso A, Jorcano JL, Beck E, Hovemann B, Schmidt T (1984b) Drosophila melanogaster U1 snRNA genes. J Mol Biol 180:825–836

    PubMed  CAS  Google Scholar 

  • Ares M, Jr (1986) U2 RNA from yeast is unexpectedly large and contains homology to vertebrate U4, U5, and U6 small nuclear RNAs. Cell 47:49–59

    PubMed  CAS  Google Scholar 

  • Ares M, Jr, Mangin M, Weiner AM (1985) Orientation-dependent transcriptional activator upstream of a human U2 snRNA gene. Mol Cell Biol 5:1560–1570

    PubMed  CAS  Google Scholar 

  • Ares M, Jr, Chung J-S, Giglio L, Weiner AM (1987) Distinct factors with Spl and NF-A specificities bind to adjacent functional elements of the human U2 snRNA gene enhancer. Genes and Dev 1:808–817

    PubMed  CAS  Google Scholar 

  • Bark C, Hammarström K, Westin G, Pettersson U (1985) Nonrandom integration of human U4 RNA pseudogenes. Mol Cell Biol 5:943–948

    PubMed  CAS  Google Scholar 

  • Bark C, Weller P, Zabielski J, Pettersson U (1986) Genes for human U4 small nuclear RNA. Gene 50:333–344

    PubMed  CAS  Google Scholar 

  • Bark C, Weller P, Zabielski J, Janson L, Pettersson U (1987) A distant enhancer element is required for polymerase III transcription of a U6 RNA gene. Nature 328:356–359

    PubMed  CAS  Google Scholar 

  • Beck E, Jorcano JL, Alonso A (1984) Drosophila melanogaster U1 and U2 small nuclear RNA genes contain common flanking sequences. J Mol Biol 173:539–542

    PubMed  CAS  Google Scholar 

  • Bernstein LB, Mount SM, Weiner AM (1983) Pseudogenes for human small nuclear RNA U3 appear to arise by integration of self-primed reverse transcripts of the RNA into new chromosomal sites. Cell 32:461–472

    PubMed  CAS  Google Scholar 

  • Bernstein LB, Manser T, Weiner AM (1985) Human U1 small nuclear RNA genes: extensive conservation of flanking sequences suggests cycles of gene amplification and transposition. Mol Cell Biol 5:2159–2171

    PubMed  CAS  Google Scholar 

  • Blatt C, Saxe D, Marzluff WF, Lobo S, Nesbitt M, Simon MI (1988) Mapping and gene order of U1 small nuclear RNA, endogenous viral env sequence, amylase and alcohol dehydrogenase-3 on mouse chromosome 3. Somatic Cell and Mol. Genet (in press)

    Google Scholar 

  • Bohmann D, Keller W, Dale T, Scholer HR, Tebb G, Mattaj IW (1987) A transcription factor which binds to the enhancers of SV40, immunoglobulin heavy chain and U2 snRNA genes. Nature 325:268–272

    PubMed  CAS  Google Scholar 

  • Brown DD, Schlissel MS (1985) A positive transcription factor controls the differential expression of two 5S RNA genes. Cell 42:759–767

    PubMed  CAS  Google Scholar 

  • Brown DT, Morris GF, Chodchoy N, Sprecher C, Marzluff WF (1985) Structure of the sea urchin U1 RNA repeat. Nucl Acids Res 13:537–556

    PubMed  CAS  Google Scholar 

  • Buckland RA, Cooke HJ, Roy KL, Dahlberg JE, Lund E (1983) Isolation and characterization of three cloned fragments of human DNA coding for tRNAs and small nuclear RNA Ul. Gene 22:211–217

    PubMed  CAS  Google Scholar 

  • Carbon P, Murgo S, Ebel J-P, Krol A, Tebb G, Mattaj IW (1987) A common octamer motif binding protein is involved in the transcription of U6 snRNA by RNA polymerase III and U2 snRNA by RNA polymerase II. Cell 51:71–79

    PubMed  CAS  Google Scholar 

  • Card CO, Morris GF, Brown DT, Marzluff WF (1982) Sea urchin small nuclear RNA genes are organized in distinct tandemly repeating units. Nucl Acids Res 10:7677–7688

    PubMed  CAS  Google Scholar 

  • Ciliberto G, Raugei G, Costanzo F, Denti L, Cortese R (1983) Common and interchangeable elements in the promoter of genes transcribed by RNA polymerase III: Cell 32:725–733

    PubMed  CAS  Google Scholar 

  • Ciliberto G, Buckland R, Cortese R, Philipson L (1985) Transcription signals in embryonic Xenopus laevis Ul RNA genes. EMBO J 4:1537–1543

    PubMed  CAS  Google Scholar 

  • Ciliberto G, Dathan N, Frank R, Philipson L, Mattaj IW (1986) Formation of the 3’ end of U snRNAs requires at least three sequence elements. EMBO J 5:2931–2937

    PubMed  CAS  Google Scholar 

  • Ciliberto G, Palla F, Tebb G, Mattaj IW, Philipson L (1987) Properties of a U1 RNA enhancer-like sequence. Nucl Acids Res 15:2403–2416

    PubMed  CAS  Google Scholar 

  • Das G, Henning D, Busch H, Reddy R (1987) Stucture, organization and transcription of Drosophila U6 small nuclear RNA genes. J Biol Chem 262:1187–1193

    PubMed  CAS  Google Scholar 

  • Denison RA, Weiner AM (1982) Human U1 RNA pseudogenes may be generated by both DNA- and RNA-mediated mechnisms. Mol Cell Biol 2:815–828

    PubMed  CAS  Google Scholar 

  • Denison RA, Van Arsdell SW, Bernstein LB, Weiner AM (1981) Abundant pseudogenes for small nuclear RNAs are dispersed in the human genome. Proc Natl Acad Sci USA 78:810–814

    PubMed  CAS  Google Scholar 

  • Dignam JD, Lebowitz RM, Roeder RG (1983) Accurate transcription by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucl Acids Res 11:1475–1489

    PubMed  CAS  Google Scholar 

  • Earley JM III, Roebuck KA, Stumph WE (1984) Three linked chicken U1 RNA genes have limited flanking DNA sequence homologies that reveal potential regulatory signals. Nucl Acids Res 12:7411–7421

    PubMed  CAS  Google Scholar 

  • Eliceiri GL (1974) Short-lived, small RNAs in the cytoplasm of HeLa cells. Cell 3:11–14

    PubMed  CAS  Google Scholar 

  • Eliceiri GL (1979) Sensitivity of low molecular weight RNA synthesis to UV radiation. Nature 279:80–81

    PubMed  CAS  Google Scholar 

  • Eliceiri GL (1980) Formation of low molecular weight RNA species in HeLa cells. J Cell Physiol 102:199–207

    PubMed  CAS  Google Scholar 

  • Eliceiri GL, Gurney T, Jr (1978) Subcellular location of precursors to small nuclear RNA species C and D and of newly synthesized 5S RNA in HeLa cells. Biochem Biophys Res Commun 81:915–919

    PubMed  CAS  Google Scholar 

  • Eliceiri GL, Sayavedra MS (1976) Small RNAs in the nucleus and cytoplasm of HeLa cells. Biochem Biophys Res Commun 72:507–512

    PubMed  CAS  Google Scholar 

  • Eliceiri GL, Smith JH (1983) Sensitivity to ultraviolet radiation of small nuclear RNA synthesis in mammalian cells. Mol Cell Biol 3:2151–2155

    PubMed  CAS  Google Scholar 

  • Fisher DE, Conner GE, Reeves WH, Wisniewolski R, Blobel G (1985) Small nuclear ribonucleopro- tein particle assembly in vivo: demonstration of 6S RNA-free core precursor and post-translational modification. Cell 42:751–758

    PubMed  CAS  Google Scholar 

  • Forbes DJ, Kornberg TB, Kirschner MW (1983) Small nuclear RNA transcription and ribonucleopro-tein assembly in early Xenopus development. J Cell Biol 97:62–72

    PubMed  CAS  Google Scholar 

  • Forbes DJ, Kirschner MW, Caput D, Dahlberg JE, Lund E (1984) Differential expression of multiple U1 small nuclear RNAs in oocytes and embryos ofXenopus laevis. Cell 38:681–689

    PubMed  CAS  Google Scholar 

  • Frederiksen S, Hellung-Larsen P (1979) Low molecular weight RNA components: occurrence, metabolism and genes. In: Specific Eukaryotic Genes, Alfred Benzon Symp. 13, Munksgaard, pp 457–471

    Google Scholar 

  • Frederiksen S, Hellung-Larsen P, Gram-Jensen E (1978) The differential inhibitory effect of a- amanitin on the synthesis of low molecular weight RNA components in BHK cells. FEBS Lett. 87:227–231

    PubMed  CAS  Google Scholar 

  • Fritz A, Parisot RF, Newmeyer D, De Robertis EM (1984) Small nuclear U-RNPs in Xenopus laevis development: uncoupled accumulation of the protein and RNA components. J Mol Biol 178:273–285

    PubMed  CAS  Google Scholar 

  • Gram-Jensen E, Hellung-Larsen P, Frederiksen S (1979) Synthesis of low molecular weight RNA components A, C and D by polymerase II in a-amanitin-resistant hamster cells. Nucl Acid Res 6:321–330

    Google Scholar 

  • Guinta DR, Korn LJ (1986) Differential order of replication of Xenopus laevis 5S RNA genes. Mol Cell Biol 6:2536–2542

    PubMed  CAS  Google Scholar 

  • Hammarström K, Westin G, Pettersson U (1982) A pseudogene for human U4 RNA with a remarkable structure. EMBO J 1:737–739

    PubMed  Google Scholar 

  • Hammarström K, Westin G, Bark C, Zabielski J, Pettersson U (1984) Genes and pseudogenes for human U2 RNA: implications for the mechanism of pseudogene formation. J Mol Biol 179:157–169

    PubMed  Google Scholar 

  • Hayashi K (1981) Organization of sequences related to U6 RNA in the human genome. Nucl Acids Res 9:3379–3388

    PubMed  CAS  Google Scholar 

  • Hellung-Larsen P, Frederiksen S (1977) Occurrence and properties of low molecular weight RNA components from cells at different taxonomic levels. Comp Biochem Physiol 58B:273–281

    Google Scholar 

  • Hellung-Larsen P, Kulamowicz I, Frederiksen S (1980) Synthesis of low molecular weight RNA components in cells with a temperature-sensitive polymerase II. Biochim Biophys Acta 609:201–204

    PubMed  CAS  Google Scholar 

  • Hellung-Larsen P, Gram-Jensen E, Frederiksen S (1981) Effect of 5,6-Dichloro-1 -β-D-ribofuranosyl- benzimidazole on the synthesis of low molecular weight RNA components. Biochem Biophys Res Commun 99:1303–1310

    PubMed  CAS  Google Scholar 

  • Hernandez N (1985) Formation of the 3’ end of U1 snRNA is directed by a conserved sequence located downstream of the coding region. EMBO J 4:1827–1837

    PubMed  CAS  Google Scholar 

  • Hernandez N, Weiner AM (1986) Formation of the 3’ end of U1 snRNA requires compatible snRNA promoter elements. Cell 47:249–258

    PubMed  CAS  Google Scholar 

  • Hoffman ML, Korf GM, McNamara KJ, Stumph WE (1986) Stuctural and functional analysis of chicken U4 small nuclear RNA genes. Mol Cell Biol 6:3910–3919

    PubMed  CAS  Google Scholar 

  • Howard EF, Michael SK, Dahlberg JE, Lund E (1986) Functional developmentally expressed genes for mouse Ula and Ulb snRNAs contain both conserved and non-conserved transcription signals. Nucl Acids Res 14:9811–9825

    PubMed  CAS  Google Scholar 

  • Htun H, Lund E, Dahlberg JE (1984) Human U1 RNA genes contain an unusually sensitive nuclease SI cleavage site within the conserved 3’ flanking region. Proc Natl Acad Sci USA 81:7288–7292

    PubMed  CAS  Google Scholar 

  • Htun H, Lund E, Westin G, Pettersson U, Dahlberg JE (1985) Nuclease SI-sensitive sites in multigene families: Human U2 small nuclear RNA genes. EMBO J 4:1839–1845

    PubMed  CAS  Google Scholar 

  • Kato N, Harada F (1985) New U1 RNA species found in friend SFFV (Spleen Focus Forming Virus)-transformed Mouse Cells. J Biol Chem 260:7775–7782

    PubMed  CAS  Google Scholar 

  • Kazmaier M, Tebb G, Mattaj IW (1987) Functional characterization of X. laevis U5 snRNA genes. EMBO J 6:3071–3078

    PubMed  CAS  Google Scholar 

  • Kejzlarovä-Lepesant J, Brock HW, Moreau J, Dubertret M-L, Billault A, Lepesant JA (1984) A complete and a truncated U1 snRNA gene ofDrosophila melanogaster are found as inverted repeats at region 82E of the polytene chromosomes. Nucl Acids Res 12:8835–8846

    PubMed  Google Scholar 

  • Korf GM, Stumph WE (1986) Chicken U2 and U1 RNA genes are found in very different genomic environments but have similar structures. Biochemistry 25:2041–2047

    PubMed  CAS  Google Scholar 

  • Kristo P, Tsai M-J, O’Malley BW (1984) Characterization of three chicken pseudogenes for U1 RNA. DNA 3:281–286

    PubMed  CAS  Google Scholar 

  • Krol A, Lund E, Dahlberg JE (1985) The two embryonic U1 RNA genes of Xenopus laevis have both common and gene-specific transcription signals. EMBO J 4:1529–1535

    PubMed  CAS  Google Scholar 

  • Krol A, Carbon P, Ebel J-P, Appel B (1987) Xenopus tropicalis U6 snRNA genes transcribed by Pol III contain the upstream promoter elements used by Pol II dependent U-snRNA genes. Nucl Acid Res 15:2463–2478

    CAS  Google Scholar 

  • Kunkel GR, Pederson T (1985) Transcription boundaries of U1 small nuclear RNA. Mol Cell Biol 5:2332–2340

    PubMed  CAS  Google Scholar 

  • Kunkel GR, Maser RL, Calvet JP, Pederson T (1986) U6 small nuclear RNA is transcribed by RNA polymerase III. Proc Natl Acad Sci USA 83:8575–8579

    PubMed  CAS  Google Scholar 

  • Lerner MR, Boyle JA, Mount SM, Wollin SL, Steitz JA (1980) Are snRNPs involved in splicing? Nature 283:220–224

    PubMed  CAS  Google Scholar 

  • Lindgren V, Ares M Jr, Weiner AM, Francke U (1985 a) Human genes for U2 small nuclear RNA map to a major adenovirus 12 modification site on chromosome 17. Nature (Lond) 314:115–116

    CAS  Google Scholar 

  • Lindgren V, Bernstein LB, Weiner AM, Francke U (1985 b) Human U1 small nuclear RNA pseudogenes do not map to the site of the U1 genes in lp36 but are clustered in Iql2-q22. Mol Cell Biol 5:2172–2180

    PubMed  CAS  Google Scholar 

  • Lund E, Dahlberg JE (1984) True genes for human U1 small nuclear RNA: copy number, polymorphism and methylation. J Biol Chem 259:2013–2021

    PubMed  CAS  Google Scholar 

  • Lund E, Dahlberg JE (submitted) Control of transcription during the midblastula transition in early Xenopus laevis embryos

    Google Scholar 

  • Lund E, Dahlberg JE (1987) Differential accumulation of U1 and U4 small nuclear RNAs during Xenopus development. Genes and Dev 1:39–46

    PubMed  CAS  Google Scholar 

  • Lund E, Nesbitt MN (1988) Embryonic and adult mouse U1 snRNA genes map to different chromosomal loci. Somatic Cell and Mol. Genet (in press)

    Google Scholar 

  • Lund E, Bostock C, Robertson M, Christie S, Mitchen JL, Dahlberg JE (1983) U1 small nuclear RNA genes are located on human chromosome 1 and are expressed in mouse-human hybrid cells. Mol Cell Biol 3:2211–2220

    PubMed  CAS  Google Scholar 

  • Lund E, Dahlberg JE, Forbes DJ (1984) The two embryonic U1 small nuclear RNAs of Xenopus laevis are encoded by a major family of tandemly repeated genes. Mol Cell Biol 4:2580–2586

    PubMed  CAS  Google Scholar 

  • Lund E, Kahan B, Dahlberg JE (1985) Differential control of U1 small nuclear RNA expression during mouse development. Science 229:1271–1274

    PubMed  CAS  Google Scholar 

  • Lund E, Bostock CJ, Dahlberg JE (1987) The transcription of Xenopus laevis embryonic U1 snRNA genes changes when oocytes mature into eggs. Genes and Dev 1:47–56

    PubMed  CAS  Google Scholar 

  • Madore SJ, Wieben ED, Pederson T (1984 a) Intracellular site of U1 small nuclear RNA processing and ribonucleoprotein assembly. J Cell Biol 98:188–192

    PubMed  CAS  Google Scholar 

  • Madore SJ, Wieben ED, Kunkel GR, Pederson T (1984b). Precursors of U4 small nuclear RNA. J Cell Biol 99:1140–1144

    PubMed  CAS  Google Scholar 

  • Mangin M, Ares M Jr, Weiner AM (1985) U1 small nuclear RNA genes are subject to dosage compensation in mouse cells. Science 229:272–275

    PubMed  CAS  Google Scholar 

  • Mangin M, Ares M Jr, Weiner AM (1986) Human U2 small nuclear RNA genes contain an upstream enhancer. EMBO J 5:987–995

    PubMed  CAS  Google Scholar 

  • Manley JL, Sharp PA, Gefter ML (1979) RNA synthesis in isolated nuclei: in vitro initiation of adenovirus 2 major late mRNA precursor. Proc Natl Acad Sci USA 76:160–164

    PubMed  CAS  Google Scholar 

  • Manser T, Gesteland RF (1981) Characterization of small nuclear RNA U1 gene candidates and pseudogenes from the human genome. J Mol Appl Genet 1:117–125

    PubMed  CAS  Google Scholar 

  • Manser T, Gesteland RF (1982) Human U1 loci: genes for human U1 RNA have dramatically similar genomic environments. Cell 29:257–26

    PubMed  CAS  Google Scholar 

  • Marzluff WF, Brown DT, Lobo S, Wang S-S (1983) Isolation and characterization of two linked mouse Ulb small nuclear RNA genes. Nucl Acids Res 11:6255–6270

    PubMed  CAS  Google Scholar 

  • Mattaj IW (1986) Cap trimethylation of U-snRNA is cytoplasmic and dependent on U-snRNP protein binding. Cell 46:905–911

    PubMed  CAS  Google Scholar 

  • Mattaj IW, Zeller R (1983) Xenopus laevis U2 snRNA genes: tandemly repeated transcription units sharing 5’ and 3’ flanking homology with other RNA polymerase II transcribed genes. EMBO J 2:1883–1891

    PubMed  CAS  Google Scholar 

  • Mattaj IW, Lienhard S, Hiricny J, De Robertis EM (1985 a) An enhancer-like sequence within the Xenopus U2 gene promoter facilitates the formation of stable transcription complexes. Nature 316:163–167

    PubMed  CAS  Google Scholar 

  • Mattaj IW, Zeller R, Carrasco AE, Jamrich M, Lienhard S, De Robertis EM (1985 b). U-snRNA gene families in Xenopus laevis. Oxf Surv Eucaryotic Genes 2:121–140

    CAS  Google Scholar 

  • Michael SK, Hilgers J, Kozak C, Whitney JB, III, Howard EF (1986) Characterization and mapping of DNA sequence homologous to mouse Ulal snRNA: localization on chromosome 11 near the Dlb-1 and Re loci. Somatic Cell Mol Genet 12:215–223

    CAS  Google Scholar 

  • Monstein H-J, Westin G, Philipson L, Pettersson U (1982) A candidate gene for human U1 RNA, EMBO J 1:133–137

    PubMed  CAS  Google Scholar 

  • Monstein H-J, Hammarström K, Westin G, Zabielski J, Philipson L, Pettersson U (1983) Loci for human U1 RNA: structural and evolutionary implications. J Mol Biol 167: 245–257

    CAS  Google Scholar 

  • Morra DS, Eliceiri BP, Eliceiri GL (1986a) Effect of UV light on small nuclear RNA synthesis: increased inhibition during postirradiation cell incubation. Mol Cell Biol 5:745–750

    Google Scholar 

  • Morra DS, Lawler SH, Eliceiri BP, Eliceiri GL (1986 b) Inhibition of small nuclear RNA synthesis by ultraviolet radiation. J Biol Chem 261:3142–3146

    PubMed  CAS  Google Scholar 

  • Morris GF, Marzluff WF (1985) Synthesis of U1 RNA in isolated nuclei from sea urchin embryos: U1 RNA is initiated at the first nucleotide of the RNA. Mol Cell Biol 5:1143–1150

    PubMed  CAS  Google Scholar 

  • Morris GF, Price DH, Marzluff WF (1986) Synthesis of U1 RNA in a DNA-dependent system from sea urchin embryos. Proc Natl Acad Sei USA 83:3674–3678

    CAS  Google Scholar 

  • Mount SM, Steitz JA (1981) Sequence of U1 RNA from Drosophila melanogaster: implications for U1 secondary structure and possible involvement in splicing. Nucl Acids Res 9:6351–6368

    PubMed  CAS  Google Scholar 

  • Moussa NM, Lobo SM, Marzluff WF (1985) Expression of a mouse Ulb gene in mouse L cells. Gene 36:311–319

    PubMed  CAS  Google Scholar 

  • Murphy JT, Burgess RR, Dahlberg JE, Lund E (1982) Transcription of a gene for human U1 small nuclear RNA. Cell 29:265–274

    PubMed  CAS  Google Scholar 

  • Murphy JT, Skuzeski JM, Lund E, Steinberg TH, Burgess RR, Dahlberg JE (1987) Functional elements of the human U1 promoter. III. Identification of five separate regions required for efficient transcription and template competition. J Biol Chem 262:1795–1803

    PubMed  CAS  Google Scholar 

  • Murphy JT, Steinberg TH, Knuth M, Gunderson S, Dahlberg JE, Burgess RR (1988) Functional elements of the human U1 promoter IV: Binding sites for transcription factors (submitted for publication)

    Google Scholar 

  • Naylor SL, Zabel BU, Manser T, Gesteland R, Sakaguehi AY (1984) Localization of human U1 small nuclear RNA genes to band p36.3 of chromosome 1 by in situ hybridization. Somatic Cell Mol Genet 10:307–313

    CAS  Google Scholar 

  • Neuman de Vegvar HE, Lund E, Dahlberg JE (1986) 3’ end formation of U1 snRNA precursors is coupled to transcription from snRNA promoters. Cell 47:259–266

    Google Scholar 

  • Newport J, Kirschner M (1982) A major developmental transition in early Xenopus embryos: I. Characterization and timing of cellular changes at the midblastula stage. Cell 30:675–686

    PubMed  CAS  Google Scholar 

  • Nojima H, Kornberg RD (1983) Genes and pseudogenes for mouse U1 and U2 small nuclear RNAs. J Biol Chem 258:8151–8155

    PubMed  CAS  Google Scholar 

  • Oshima Y, Okada N, Tani T, Itoh Y, Itoh M (1981) Nucleotide sequences of mouse genomic loci including a gene or pseudogene for U6 (4.8s) nuclear RNA. Nucl Acids Res 9:5145–5158

    Google Scholar 

  • Patton JG, Wieben ED (1987) U1 precursors: Variant 3’ flanking sequences are transcribed in human cells. J Cell Biol 104:175–182

    PubMed  CAS  Google Scholar 

  • Piechaczyk M, Lelay-Taha MN, Sri-Widada J, Brunei C, Liautard J-P, Jeanteur P (1982) Mouse DNA sequences complementary to small nuclear RNA Ul. Nucl Acids Res 10:4627–4640

    PubMed  CAS  Google Scholar 

  • Reddy R, Henning D, Chirala S, Rothblum L, Wright D, Busch H (1985) Isolation and characterization of three rat U3 RNA pseudogenes colinear with U3 RNA. J Biol Chem 260:5715–5719

    PubMed  CAS  Google Scholar 

  • Reddy R, Henning D, Das G, Harless MH, Wright D (1987) The capped U6 small nuclear RNA is transcribed by RNA polymerase III. J Biol Chem 262:75–81

    PubMed  CAS  Google Scholar 

  • Riedel N, Wise JA, Swerdlow H, Mak A, Guthrie C (1986) Small nuclear RNAs from Saccharomyces cerevisiae: unexpected diversity in abundance, size, and molecular complexity. Proc Natl Acad Sei USA 83:8097–8101

    CAS  Google Scholar 

  • Riedel N, Wolin S, Guthrie C (1987) A subset of yeast snRNAs contains functional binding sites for the highly conserved Sm antigen: Science 235:328–331

    PubMed  CAS  Google Scholar 

  • Rinke J, Steitz JA (1985) Association of the lupus antigen La with subset of U6 snRNA molecules. Nucl Acids Res 13:2617–2629

    PubMed  CAS  Google Scholar 

  • Ro-Choi TS, Raj BK, Pike LM, Busch H (1976) Effects of a-amanitin, cyeloheximide, and thioacetamide on low molecular weight nuclear RNA. Biochemistry 15:3823–3828

    PubMed  CAS  Google Scholar 

  • Roop DR, Kristo P, Stumph WE, Tsai MJ, O’Malley BW (1981) Structure and expression of a chicken gene coding for Ul RNA. Cell 23:671–680

    PubMed  CAS  Google Scholar 

  • Saba JA, Busch H, Reddy R (1985) U4 small nuclear RNA pseudogenes from rat genome have common truncated 3’-ends. Biochem Biophys Res Commun 130:828–834

    PubMed  CAS  Google Scholar 

  • Saba JA, Busch H, Wright D, Reddy R (1986) Isolation and characterization of two putative full-length Drosophila U4 small nuclear RNA genes. J Biol Chem 261:8750–8753

    PubMed  CAS  Google Scholar 

  • Saluz H (1984) Charakterisierung von vier ’small nuclear” RNA’s vonDrosophila melanogaster, Lokalisation und Anzahl der Gene. Ph D. Thesis Zürich

    Google Scholar 

  • Saluz HP, Schmidt T, Dudler R, Altwegg M, Stumm-Zollinger E, Kubli E, Chen PS (1983) The genes coding for 4 snRNAs of Drosophila melanogaster: localization and determination of gene numbers. Nucl Acids Res 11:77–90

    PubMed  CAS  Google Scholar 

  • Schenborn ET, Dahlberg JE (to be published) Gene-specific functions of an snRNA promoter and enhancer

    Google Scholar 

  • Schenborn ET, Lund E, Mitchen JL, Dahlberg JE (1985) Expression of a human Ul RNA gene introduced into mouse cells via bovine papillomavirus DNA vectors. Mol Cell Biol 5:1318–1326

    PubMed  CAS  Google Scholar 

  • Sive HL, Roeder RG (1986) Interaction of a common factor with conserved promoter and enhancer sequences in histone H2B, immunoglobulin, and U2 small nuclear RNA (snRNA) genes. Proc Natl Acad Sci USA 83:6382–6386

    PubMed  CAS  Google Scholar 

  • Skuzeski JM, Lund E, Murphy JT, Steinberg TH, Burgess RR, Dahlberg JE (1984) Synthesis of human Ul RNA II. Identification of two regions of the promoter essential for transcription initiation at position +1. J Biol Chem 259:8345–8352

    PubMed  CAS  Google Scholar 

  • Stroke IL, Weiner AM (1985) Genes and pseudogenes for rat U3A and U3B small nuclear RNA. J Mol Biol 184:183–193

    PubMed  CAS  Google Scholar 

  • Suh D, Busch H, Reddy R (1986) Isolation and characterization of a human U3 small nucleolar RNA gene. Biochem Biophys Res Commun 137:1133–1140

    PubMed  CAS  Google Scholar 

  • Tani T, Watanabe-Nagasu N, Okada N, Oshima Y (1983) Molecular cloning and characterization of a gene for rat U2 small nuclear RNA. J Mol Biol 168:579–594

    PubMed  CAS  Google Scholar 

  • Tebb G, Mattaj IW, Keller W, Bohmann D (1986) Characterisation of an enhancer-binding protein. In RNA Polymerase and the Control of Transcription, Steenbock Symposium 16:421–426

    Google Scholar 

  • Tebb G, Bohmann D, Mattaj IW (1987) Only two of the four sites of interaction with nuclear factors within the Xenopus U2 gene promotor are necessary for efficient transcription. Nucl Acids Res 15:6437–6453

    PubMed  CAS  Google Scholar 

  • Theissen H, Rinke J, Traver CN, Lührman, Appel B (1985) Novel structure of a human U6 snRNA pseudogene. Gene 36:195–199

    PubMed  CAS  Google Scholar 

  • Van Arsdell SW, Weiner AM (1984a) Human genes for U2 small nuclear RNA are tandemly repeated. Mol Cell Biol 4:492–499

    PubMed  Google Scholar 

  • Van Arsdell SW, Weiner AM (1984b) Pseudogenes for human U2 small nuclear RNA do not have a fixed site of 3’ truncation. Nucl Acids Res 12:1463–1471

    PubMed  Google Scholar 

  • Van Arsdell SW, Denison RA, Bernstein LB, Weiner AM, Manser T, Gesteland RF (1981) Direct repeats flank three small nuclear RNA pseudogenes in the human genome. Cell 26:11–17

    PubMed  Google Scholar 

  • Van Santen VL, Spritz RA (1987) Nucleotide sequence of a bean (Phaseolus vulgaris) U1 snRNA gene: implications for plant pre-mRNA splicing. Proc Natl Acad Sci USA 84 (in press)

    Google Scholar 

  • Watanabe-Nagasu N, Itoh Y, Tani T, Okano K, Koga N, Okada N, Oshima Y (1983) Structural analysis of gene loci for rat U1 small nuclear RNA. Nucl Acids Res 11:1791–1801

    PubMed  CAS  Google Scholar 

  • Weiner AM, Denison RA (1983) Either gene amplification or gene conversion may maintain the homogeneity of the multigene family encoding human U1 small nuclear RNA. Cold Spring Harbor Symp. Quant. Biol 47:1141–1149

    Google Scholar 

  • Weiner AM, Deininger PL, Efstratiadis A (1986) Nonviral retroposons: genes, pseudogenes, and transposable elements generated by the reverse flow of genetic information. Annu Rev Biochem 55:631–661

    PubMed  CAS  Google Scholar 

  • Westin G, Monstein H-J, Zabielski J, Philipson L, Pettersson U (1981) Human DNA sequences complementary to the small nuclear RNA U2. Nucl Acids Res 9:6323–6338

    PubMed  CAS  Google Scholar 

  • Westin G, Lund E, Murphy J, Pettersson U, Dahlberg J (1984a) Human U1 and U2 gene use similar transcription signals. EMBO J 3:3295–3301

    PubMed  CAS  Google Scholar 

  • Westin G, Zabielski J, Hammarström K, Monstein H-J, Bark C, Pettersson U (1984b) Clustered genes for human U2 RNA. Proc Natl Acad Sei USA 81:3811–3815

    CAS  Google Scholar 

  • Wieben ED, Nenninger JM, Pederson T (1985) Ribonueleoprotein organization of eukaryotic RNA, XXXII. U2 small nuclear RNA precursors and their accurate 3’ processing in vitro as ribonueleoprotein particles. J Mol Biol 183:69–78

    PubMed  CAS  Google Scholar 

  • Wise JA, Weiner AM (1980) Dictyostelium small nuclear RNA D2 is homologous to rat nucleolar RNA U3 and is encoded by a dispersed multigene family. Cell 22:109–118

    PubMed  CAS  Google Scholar 

  • Wise JA, Tollervey D, Maloney D, Swerdlow H, Dunn EJ, Guthrie C (1983) Yeast contains small nuclear RNAs encoded by single copy genes. Cell 35:743–751

    PubMed  CAS  Google Scholar 

  • Yu J-C, Nash MA, Santiago C, Marzluff WF (1986) Structure and expression of a second sea urchin U1 RNA gene repeat. Nucl Acids Res 14:9977–9988

    PubMed  CAS  Google Scholar 

  • Yuo C, Ares M Jr, Weiner AM (1985) Sequences required for 3’ end formation of human U2 small nuclear RNA. Cell 42:193–202

    PubMed  CAS  Google Scholar 

  • Zeller R, Nyffenegger T, De Robertis EM (1983) Nucleoeytoplasmic distribution of snRNPs and stockpiled snRNA-binding proteins during oogenesis and early development in Xenopus laevis. Cell 32:425–434

    PubMed  CAS  Google Scholar 

  • Zeller R, Carri M-T, Mattaj IW, De Robertis EM (1984) Xenopus laevis U1 snRNA genes: characterization of transcriptionally active genes reveals major and minor repeated gene families. EMBO J 3:1075–1081

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dahlberg, J.E., Lund, E. (1988). The Genes and Transcription of the Major Small Nuclear RNAs. In: Birnstiel, M.L. (eds) Structure and Function of Major and Minor Small Nuclear Ribonucleoprotein Particles. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73020-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73020-7_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73022-1

  • Online ISBN: 978-3-642-73020-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics