Skip to main content

Geochemistry of Priority Pollutants in Anoxic Sludges: Cadmium, Arsenic, Methyl Mercury, and Chlorinated Organics

  • Chapter
Chemistry and Biology of Solid Waste

Abstract

It has been stressed in the preceding chapter on the “Assessment of metal mobility in dredged material and mine waste by pore water chemistry and solid speciation” that redox change of the sludges is one of the most important factors controlling pollutant mobility. Thus, particular attention will be given to the question whether anoxic conditions alone are suitable for long-term retention of pollutants. However, such an evaluation even on the limited number of priority pollutants will be beyond the scope of this book. Thus, it has been decided to present case studies on some of the most important pollutants covering a broad range of characteristics, pathways and fates within natural environments: the trace metal cadmium, the trace metalloids arsenic and mercury with the latter in its methylated form, and the group of xenobiotic organic chemicals such as PCBs have been selected to be treated within this review. This is due to (1) their highest pollution potentials in terms of accumulation, toxicity and ecological risk index (Håkanson 1980) among all pollutants discovered to date; (2) their quite different, but well-investigated properties and behaviour as to sediment-water systems; and last not least (3) their citation in every priority pollutant list known to the author. Thus, as to the four different groups of pollutants and the wide variety of other pollutants for which they stand, this brief review will be well suited for an evaluation of the secondary pollution impact of typical anoxic dredged sludges and mine tailings introduced into aquatic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aggett J, Roberts LS(1986) Insight into the mechanism of accumulation of arsenate and phosphate in Hydro Lake sediments by measuring the rate of dissolution with ethylendiaminetetra-acetic acid. Environ Sci Technol 20:182–186

    Google Scholar 

  • Alexander M (1979) In: Bourquin AW, Pritchard PH (eds) Microbial degradation of pollutants in marine environments. EPA, Gulf Breeze, pp 67–75

    Google Scholar 

  • Andreae MO (1979) Arsenic speciation in seawater and interstitial waters: the influence of biological-chemical interactions on the chemistry of a trace element. Limnol Oceanogr 24:440–452

    CAS  Google Scholar 

  • Andreae MO, Byrd JT, Froelich PN, Jr (1983) Arsenic, antimony, germanium and tin in the Tejo Estuary, Portugal: Modelling a polluted estuary. Environ Sci Technol 17:731–737

    CAS  Google Scholar 

  • Andrews RI (1977) Tailings: Environmental consequences and controls Proc Int Conf Heavy metals in the environment, Toronto 1975, vol 2, pp 645–675

    Google Scholar 

  • Baker MD, Inniss WE, Mayfield CI (1983) Effect of pH on the methylation of mercury and arsenic by sediment microorganisms. Environ Technol Lett 4:89–100

    CAS  Google Scholar 

  • Beland FA, Farwell SO, Robocker AE, Geer RD (1976) Electrochemical reduction and anaerobic degradation of lindane. J Agric Food Chem 24:753–756

    CAS  Google Scholar 

  • Belzile N, Lebel J (1986) Capture of arsenic by pyrite in near-shore marine sediments. Chem Geol 54:279–281

    CAS  Google Scholar 

  • Berman M, Bartha R ( 1986) Control of the methylation process in a mercury-polluted aquatic sediment. Environ Pollut Ser B 11:41–53

    CAS  Google Scholar 

  • Berner RA (1980) Early Diagenesis. A theoretical approach. Univ Press, Princeton NJ, 241 pp

    Google Scholar 

  • Berner RA (1981) A new classification of sedimentary environment. J Sediment Petrol 51:359–365

    CAS  Google Scholar 

  • Blum JM, Bartha R (1980) Effect of salinity on methylation of mercury. Bull Environ Contam Toxicol 25:404–408

    CAS  Google Scholar 

  • Bothner MH, Carpenter R (1973) Proc 1st Annu NSF Contaminants Conf, August 1973, Oak Ridge Natl Lab, p 198

    Google Scholar 

  • Brannon JM (1984) Transformation, fixation, and mobilization of arsenic and antimony in contaminated sediments. Tech Rep D-84-1, US Army Eng Waterways Exp Stn, Vicksburg, MS

    Google Scholar 

  • Brannon JM, Engler RM, Rose, JR, Hunt PG, Smith I (1976) Distribution of toxic heavy metals in marine and freshwater sediments. In: Krenkel PA, Harrison J, Burdick III JC (eds) Proc Spec Conf Dredging and its environmental effects. ASCE, New York, pp 455–495

    Google Scholar 

  • Brannon JM, Plumb RH Jr, Smith I (1980) Long-term release of heavy metals from sediments. In: Baker RA (ed) Contaminants and sediments, vol 2. Ann Arbor Science, Ann Arbor, MI, pp 221–266

    Google Scholar 

  • Brannon JM, Hoeppel RE, Gunnison D (1984) Efficiency of capping contaminated dredged material. In: Montgomery RL, Leach JW (eds) Dredging and dredged material disposal, vol 2. Proc Conf Dredging ’84, 14–16 November 1984, Clearwater Beach, ASCE, New York, pp 664–673

    Google Scholar 

  • Briggs GG (1981) Theoretical and experimental relationships between soil adsorption, octanol-water partition coefficients, water solubilities, bioconcentration factors, and the parachor. J Agric Food Chem 29:1050–1059

    CAS  Google Scholar 

  • Brookins DG (1986) Geochemical behaviour of antimony, arsenic, cadmium and thallium: Eh-pH diagrams for 25°C, 1-bar pressure. Chem Geol 54:271–278

    CAS  Google Scholar 

  • Brooks RR, Fergusson JE, Holzbecher J, Ryan DE, Zhang HF, Dale JM, Freedman B (1982) Pollution by arsenic in a gold-mining district in Nova Scotia. Environ Pollut Ser B 4:109–117

    CAS  Google Scholar 

  • Brown JF, Wagner RE, Bedard DL, Brennan MJ, Carnahan JC, May RJ, Tofflemire TJ (1984) PCB transformations in the upper Hudson sediments. Northeast Environ Sci 3:167–179

    CAS  Google Scholar 

  • Brownawell BJ, Farrington JW ( 1986) Biogeochemistry of PCBs in interstitial waters of a coastal marine sediment. Geochim Cosmochim Acta 50:157–169

    CAS  Google Scholar 

  • Bulte W, Denker J, Kirsch M, Höpner Th ( 1985) Pentachlorophenol and tetrachlorophenols in wadden sediment and clams Mya arenaria of the Jadebusen after a 14-year period of waste water discharge containing pentachlorophenol. Environ Pollut B 9:29–39

    Google Scholar 

  • Callender E, Bowser CJ, Rossmann R (1974) Geochemistry of ferro-manganese and manganese carbonate crusts from Green Bay, Lake Michigan. Trans Am Geophys Un 54:340

    Google Scholar 

  • Calmano W, Ahlf A, Förstner U (1983) Heavy metal removal from contaminated sludges with dissolved sulfur dioxide in combination with bacterial leaching. Proc Int Conf Heavy metals in the environment, September 1983, Heidelberg, CEP Consultants, Edinburgh (GB), pp 952–955

    Google Scholar 

  • Calmano W, Förstner U, Kersten M, Krause D (1986) Behaviour of dredged mud after stabilization with different additives. In: Assink JW, Brink WJ van den (eds) Contaminated soil, 1st Int TNO Conf Contaminated soil, Utrecht, 11–15 Nov 1985. Nijhoff, Dordrecht, pp 737–741

    Google Scholar 

  • Carter CW, Suffet IH (1983) Interactions between dissolved humic and fulvic acids and pollutants in aquatic environments. In: Swann R, Eschenroeder A (eds) Fate of chemicals in the environment. ASC Symp Ser 225

    Google Scholar 

  • Chapman RA, Cole CM (1982) Observations on the influence of water and soil pH on the persistence of insecticides. J Environ Sci Health B 17:487–504

    CAS  Google Scholar 

  • Chau YK, Wong PTS ( 1978) Occurrence of biological methylation of elements in the environment. ACS Symp Ser 92:39–53

    Google Scholar 

  • Cheng CN, Focht DD ( 1979) Production of arsine and methylarsine in soil and in culture. Appl Environ Microbiol 38:494–498

    CAS  Google Scholar 

  • Compeau GC, Bartha R (1983) Effects of sea salt anions on the formation and stability of methyl mercury. Bull Environ Contamin Toxicol 31:486–493

    CAS  Google Scholar 

  • Compeau GC, Bartha R (1984) Methylation and demethylation of mercury under controlled redox, pH, and saUnity conditions. Appl Environ Microbiol 48:1203–1207

    CAS  Google Scholar 

  • Compeau GC, Bartha R (1986) Sulfate-reducing bacteria: principal mechylators of mercury in anoxic estuarine sediment. Appl Environ Microbiol 50:498–502

    Google Scholar 

  • Craig PJ, Moreton PA (1984) The role of sulphide in the formation of dimethyl mercury in river and estuary sediments. Mar Pollut Bull 15:406–408

    CAS  Google Scholar 

  • Craig PJ, Moreton PA (1985) The role of speciation in mercury methylation in sediments and water. Environ Pollut B 10:141–158

    CAS  Google Scholar 

  • Crecelius EA, Bothner MH, Carpenter R (1975) Geochemistries of arsenic, antimony, mercury, and related elements in sediments of Puget Sound. Environ Sci Technol 9:325–333

    CAS  Google Scholar 

  • Dickson AG, Riley JP (1976) The distribution of short chain halogenated aliphatic hydrocarbons in some marine organisms. Mar Pollut Bull 7:167–169

    CAS  Google Scholar 

  • Dolphin D (1982) B12, chemistry, biochemistry and medicine, vol 2. John Wiley, New York

    Google Scholar 

  • Dymond J, Lyle M, Finney B, Piper DZ, Murphy K, Conrad R, Pisias N (1984) Ferromanganese nodules from MANOP sites H, S, and R — control of mineralogical and chemical composition by multiple accretionary processes. Geochim Cosmochim Acta 48:931–949

    CAS  Google Scholar 

  • Eganhouse RP, Young DR, Johnson JN (1978) Geochemistry of mercury in Palos Verdes sediments. Environ Sci Technol 12:1151–1157

    CAS  Google Scholar 

  • Emerson S, Jahnke R, Heggie D ( 1984) Sediment-water exchange in shallow water estuarine sediments. J Mar Res 42:709–730

    CAS  Google Scholar 

  • Fagerström T, Jernelöv A (1971) Formation of methyl mercury from pure mercuric sulfide in aerobic organic sediment. Water Res 5:121–122

    Google Scholar 

  • Farmer JG, Lovell MA (1986) Natural enrichment of arsenic in Loch Lemond sediments. Geochim Cosmochim Acta 50:2059–2067

    CAS  Google Scholar 

  • Farrington JW, Westall J (1986) Organic chemical pollutants in the oceans and groundwater: a review of fundamental chemical properties and biochemistry. In: Kullenberg G (ed) The role of the oceans as a waste disposal option. Reidel, Dortrecht, pp 361–425

    Google Scholar 

  • Farwell SO, Beland FA, Geer RD (1973) Voltametric identification of organochlorine insecticides, polychlorinated biphenyls, polychlorinated naphtalenes and polychlorinated benzenes. Bull Environ Contamin Toxicol 10:157–165

    CAS  Google Scholar 

  • Feick G, Johanson EE, Yeaple DS (1972) Control of mercury contamination in freshwater sediments. Tech Rep R2-72-077, US Environ Protect Ag, Washington, DC

    Google Scholar 

  • Ferguson JF, Gavis J (1972) A review of the arsenic cycle in natural waters. Water Res 6:1259–1274

    CAS  Google Scholar 

  • Förstner U (1987) An overview of scientific basis for developing remedial options. In: Thomas RL(ed) The ecological effects of in-situ sediment contaminants. Hydrobiologia 149:221–246

    Google Scholar 

  • Freeman MC, Aggett J, O‘Brien G (1986) Microbial transformation of arsenic in lake Ohakuri, New Zealand. Water Res 20:283–294

    CAS  Google Scholar 

  • Freitag D, Ballhorm L, Geyer H, Korte F (1985) Environmental hazard profile of organic chemicals. Chemosphere 14:1589–1616

    CAS  Google Scholar 

  • Froelich PN, Wlinkhammer GP, Bender ML, Luedtke NA, Hartmann B, Maynard V (1979) Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: Suboxic diagenesis. Geochim Cosmochim Acta 43:1075–1090

    CAS  Google Scholar 

  • Froelich PN, Kaul LW, Byrd JT, Andreae MO, Roe KK (1985) Arsenic, barium, germanium, tin, dimethylsulfide and nutrient biogeochemistry in Charlotte Harbor, Florida, a phosphorous-enriched estuary. Estuar Coastal Shelf Sci 20:239–264

    CAS  Google Scholar 

  • Fujiki M, Hirota R Yamaguchi S (1977) The mechanism of methyl mercury accumulation in fish. In: Peterson SA, Randolph KK (eds) Management of bottom sediments containing toxic substances. Tech Rep 600/3-77-083, US Environ Protect Ag, Corvallis, Or, pp 89–95

    Google Scholar 

  • Gambrell RP, Khalid RA, Verloo MG, Patrick WH, Jr (1977) Transformations of heavy metals and plant nutrients in dredged sediments as affected by oxidation-reduction potential and pH, vol 2: materials and methods/results and discussion. Tech Rep D-77-4, US Army Eng Waterways Exp Stn, CE, Vicksburg, MI

    Google Scholar 

  • Gambrell RP, Khalid RA, Patrick WH Jr (1978) Disposal alternatives for contaminated dredged material as a management tool to minimize adverse environmental effects. Tech Rep DS-78-8, US Army Eng Waterways Exp Stn, Vicksburg, MS

    Google Scholar 

  • Gambrell RP, Khalid RA, Patrick WH, Jr (1980) Chemical availability of mercury, lead, and zinc in mobile bay sediment suspensions as affected by pH and oxidation-reduction conditions. Environ Sci Technol 14:431–436

    CAS  Google Scholar 

  • Gendron A, Silverberg N, Sundby B, Lebel J (1986) Early diagenesis of cadmium and cobalt in sediments of the Laurentian Trough. Geochim Cosmochim Acta 50:741–747

    CAS  Google Scholar 

  • Glass BL (1972) Relation between the degradation of DDT and the iron redox system in soils. J Agric Food Chem 20:324–327

    CAS  Google Scholar 

  • Goldman P (1972) Enzymology of carbon-hydrated bonds. In: Natl Acad Sci (ed) Degradation of synthetic organic molecules in the biosphere. Washington DC, pp 147–161

    Google Scholar 

  • Gordon AS, Millero FJ (1985) Adsorption mediated decrease in the biodegradation rate of organic compounds. Microb Ecol 11:289–298

    CAS  Google Scholar 

  • Grossmann D, Kersten M, Niecke M, Puskeppel A, Voigt R (1985) Determination of trace elements in membrane filter samples of suspended matter by the Hamburg proton microprobe. In: Degens ET, Kempe S, Herrera R (eds) Transport of carbon and minerals in major world rivers, pt 3. Mitt Geol Paläontol Inst Univ Hamburg, SCOPE/UNEP Sonderbd 58:619–630

    Google Scholar 

  • Hakanson L ( 1980) An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res 14:975–1001

    Google Scholar 

  • Hearn PP, Parkhurst DL, Callender E (1983) Authigenic vivianite in Potomac river sediments: control by ferric oxy-hydroxides. J Sediment Petrol 53:165–177

    CAS  Google Scholar 

  • Herms U, Brümmer G ( 1979) Einflup der Redoxbedingungen auf die Löslichkeit von Schwermetallen in Böden und Sedimenten. Mitt Dtsch Bodenkundl Ges 27:533–544

    Google Scholar 

  • Higgins TJ, Gilbert PD (1978) The biodegradation of hydrocarbons. In: Chater KWA, Somervill HJ (eds) The oil industry and microbial ecosystems. Academic Press, London, New York, pp 80–114;

    Google Scholar 

  • Hines ME, Berry-Lyons WM, Armstrong PB, Orem WH, Spencer MJ, Gaudette HE (1984) Seasonal metal remobilization in the sediments of Great Bay, New Hampshire. Mar Chem 15:173–187

    CAS  Google Scholar 

  • Hoeppel RE, Meyers TE, Engler RM ( 1978) Physical and chemical characterization of dredged material influents and effluents in confined land disposal areas. Tech Rep D-78-24, US Army Eng Waterways Exp Stn, CE, Vicksburg, MI

    Google Scholar 

  • Hoff JT, Thompson JAJ, Wong CS (1982) Heavy metal release from mine tailings into sea water—a laboratory study. Mar Pollut Bull 13:283–286

    CAS  Google Scholar 

  • Holdren GR, Bricher OP, Matisoff G (1975) A model for the control of dissolved manganese in the interstitial waters of Chesapeake Bay. In: Church TM (ed) Marine chemistry in the coastal environment. Am Chem Soc Symp Ser 18:364–381

    CAS  Google Scholar 

  • Holm TR, Anderson MA, Stanforth RR, Iverson DG (1980) The influence of adsorption on the rates of microbial degradation of arsenic species in sediments. Limnol Oceanogr 25:23–30

    CAS  Google Scholar 

  • Holmes CW, Slade EA, McLerran CJ (1974) Migration and redistribution of zinc and cadmium in marine estuarine systems. Environ Sci Technol 8:255–259

    CAS  Google Scholar 

  • Horowitz A, Suflita JM, Tiedje JM (1983) Reductive dehalogenations of halobenzoates by anaerobic lake sediment microorganisms. Appl Environ Microbiol 45:1459–1465

    CAS  Google Scholar 

  • Horzema LM, Ditoro DM (1983) The extent of reversibility of poly-chlorinated biphenyl adsorption. Water Res 17:851–859

    Google Scholar 

  • Huang PM, Liaw WK (1979) Adsorption of arsenite by lake sediments. Int Revue ges Hydrobiol 64:263–271

    CAS  Google Scholar 

  • Huang PM, Oscarson DW, Liaw WK, Hammer UT (1982) Dynamics and mechanisms of arsenite oxidation by freshwater lake sediments. Hydrobiologia 91:315–322

    Google Scholar 

  • Hunt CD, Smith DL (1983) Remobilization of metals from polluted marine sediments. Can J Fish Aquat Sci 40(2): 132–142

    Google Scholar 

  • Hutzinger O, Veerkamp W (1981) Xenobiotic chemicals with pollution potential. In: Leisinger T, Hutter R, Cook AM, Nuesch J (eds) Microbial degradation of xenobiotics and recalcitrant compounds. Academic Press, London New York, pp 3–45

    Google Scholar 

  • Jeffries TW (1982) The microbiology of mercury. Progr Ind Microbiol 16:23–75

    Google Scholar 

  • Jenne EA (1977) Trace element sorption by sediments and soils—sites and processes. In: Chappel W, Petersen (eds) Symp Molybdenum. Dekker, New York, pp 425–553

    Google Scholar 

  • Jenne EA, Luoma SN (1977) Forms of trace elements in soils, sediments, and associated waters: an overview of their determination and biological availability. In: Wildung R, Drucker H (eds) Biological Implications of metals in the environment. ERDA Symp Ser 42, Oak Ridge, pp 110–143

    Google Scholar 

  • Jensen S, Jernelöv A (1969) Biological methylation in aquatic organisms. Nature (London) 223–753–754

    Google Scholar 

  • Jones BF, Bowser CJ (1978) The mineralogy and related chemistry of lake sediments. In: Lerman A (ed) Lakes—chemistry, geology, physics. Springer, Berlin, Heidelberg, New York pp 179—235

    Google Scholar 

  • Jörgensen BB (1977) The sulfur cycle of a coastal marine sediment (Limfjorden, Denmark). Limnol Oceanogr 22:814–832

    Google Scholar 

  • Karickhoff SW, Morris KR (1986) Impact of tubificid oligochaetes on pollutant transport in bottom sediments. Environ Sci Technol 19:51–56

    Google Scholar 

  • Karickhoff SW, Brown DS, Scott TA (1979) Sorption of hydrophobic pollutants on natural sediments. Water Res 13:241–248

    CAS  Google Scholar 

  • Kersten M (1988) Geobiological effects on the mobility of contaminants in marine sediments. In: Salomons W, Bayne B, Duursma E, Förstner U (eds) Pollution of the North Sea: an assessment. Springer, Berlin Heidelberg New York Tokyo (in press)

    Google Scholar 

  • Kersten M, Förstner U (1985) Trace metal partitioning in suspended matter with special reference to pollution in the southeastern North Sea. In: Degens ET, Kempe S, Herrera R (eds) Transport of carbon and minerals in major world rivers, vol 3. Mitt Geol Paläontol Inst Univ Hamburg, SCOPE/UNEP Sonderbd 58, pp 631–645

    Google Scholar 

  • Kersten M, Förstner U (1986) Chemical fractionation of heavy metals in anoxic estuarine and coastal sediments. Wat Sci Technol 18:121–130

    CAS  Google Scholar 

  • Kester DR, Ketchum BH, Duedall IW, Park PK (1983) Have the questions concerning dredged-material disposal been answered? In: Kester DR (ed) Wastes in the ocean, vol 2. John Wiley, New York, pp 275–287

    Google Scholar 

  • Khalid RA (1980) Chemical mobility of cadmium in sediment-water systems. In: Nriagu JO (ed) Cadmium in the environment, pt 1: ecological cycling. AEST Ser. John Wiley, New York, pp 257–304

    Google Scholar 

  • Khan SU (1980) Role of humic substances in predicting fate and transfer of pollutants in the environment. In: Haque R (ed) Dynamics, exposure, and hazard assessment of toxic chemicals. Ann Arbor, Mich, pp 215–230

    Google Scholar 

  • Kilbane JJ (1986) Genetic aspects of toxic chemical degradation. Microb Ecol 12:135–145

    CAS  Google Scholar 

  • Kloepfer RD (1985) Anaerobic degradation of trichloroethylene in soil. Environ Sci Technol 19:277

    Google Scholar 

  • Kobayashi H, Rittmann BE (1982) Microbial removal of hazardous organic compounds. Environ Sci Technol 16:170A–183A

    CAS  Google Scholar 

  • Krom MD, Sholkovitz ER (1977) Nature and reactions of dissolved organic matter in the interstitial waters of marine sediments. Geochim Cosmochim Acta 41:1565–1573

    CAS  Google Scholar 

  • Larsson P (1983) Transport of C-14 labelled PCB compounds from sediment to water and from water to air in laboratory model systems. Water Res 17:1317–1326

    CAS  Google Scholar 

  • Lee FY, Kittrick JA (1984) Elements associated with the cadmium phase in a harbor sediment as determined with the electron beam microprobe. J Environ Qual 13:337–340

    CAS  Google Scholar 

  • Lindberg SE, Harriss RC (1974) Mercury-organic matter associations in estuarine sediments and interstitial water. Environ Sci Technol 8:459–462

    CAS  Google Scholar 

  • Lindsay WL (1979) chemical equilibria in soils. John Wiley, New York

    Google Scholar 

  • Liu Ching-I, Tan Hongxiao (1985) Chemical studies of aquatic pollution by heavy metals in China. In: Irgolic KJ, Marteli AE (eds) Proc Worksh Environmental inorganic chemistry, 2–7 June 1983, San Miniato. VCH, Deerfield Beach, Fl, pp 359–371

    Google Scholar 

  • Lockwood RA, Chen KY (1973) Adsorption of Hg(II) by hydrous manganese oxides. Environ Sci Technol 7:1028–1034

    CAS  Google Scholar 

  • Lovell MA, Farmer JG (1983) The geochemistry of arsenic in the freshwater sediments of Loch Lomond. Proc Int Conf Heavy metals in the environment, vol 2, September 1983, Heidelberg. CEP Consultants, Edinburgh, pp 776–779

    Google Scholar 

  • Lovley DR, Klug MJ (1986) Model for the distribution of sulfate reduction and methanogenesis in freshwater sediments. Geochim Cosmochim Acta 50:11–18

    CAS  Google Scholar 

  • Lu CSJ, Chen KY (1977) Migration of trace metals in interface of sea water and polluted surficial sediments. Environ Sci Technol 11:174–182

    CAS  Google Scholar 

  • Lynn DC, Bonatti E (1965) Mobility of manganese in diagenesis of deep-sea sediments. Mar Geol 3:457–474

    Google Scholar 

  • Mabey WM, Mill T (1978) Critical review of hydrolysis of organic compounds in water under environmental conditions. J Phys Chem Ref Data 7:383–415

    CAS  Google Scholar 

  • Macalady DL, Wolfe NL (1985) Effects of sediment sorption and abiotic hydrolysis 1. organophos- phorothioate Esters. J Agric Food Chem 33:167–178

    CAS  Google Scholar 

  • Matsumura F (1974) Microbial degradation of pesticides with particular reference to the formation of terminal residues. In: Coulston, Korte F (eds) Proc 3rd Int Symp Chemical and toxicological aspects of environmental quality, Tokyo, November 19–22, 1973. EQS, vol 4, pp 160–174

    Google Scholar 

  • Matsumura F, Esaac EG (1979) Degradation of pesticides by algae and microorganisms. In: Khan NAQ, Lech JJ, Menn JJ (eds) Pesticides and xenobiotic metabolism in aquatic organisms. Am Chem Soc, Washington DC, pp 371–387

    Google Scholar 

  • McBride BC, Merilees H, Cullen WR, Pickett W (1978) Anaerobic and aerobic alkylation of arsenic. In: Brinckman FE, Bellama JM (eds) Organometals and organometalloids, occurrence and fate in the environment. ACS Symp Ser 82:94–115

    CAS  Google Scholar 

  • Means JC, Wijayaratne R (1982) Role of natural colloids in the transport of hydrophobic pollutants. Science 215:968–970

    CAS  Google Scholar 

  • Mill T (1980) Chemical and photo oxidation. In: Hutzinger O (ed) the handbook of environmental chemistry, vol 2A. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Moore JW, Ramamoorthy S (1984) Heavy metals in natural waters. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Neff JW, Foster RS, Slowey JF ( 1978) Availability of sediment-adsorbed heavy metals to benthos with particular emphasis on deposit-feeding in fauna. DMRP Tech Rep D-78-42, US Army Eng Waterways Exp Stn, CE, Vicksburg, MI

    Google Scholar 

  • Nelson LA (1981) Mercury in the Thames estuary. Environ Technol Lett 2:225–232

    CAS  Google Scholar 

  • Nriagu JD (ed) ( 1980) Cadmium in the aquatic environment, pt 1: ecological cycling. John Wiley, New York

    Google Scholar 

  • Nriagu JD (ed) (1987) Cadmium in the aquatic environment, pt 2.7 John Wiley, New York (in press)

    Google Scholar 

  • Omenn GS (1986) Genetic control on environmental pollutants: a conference review. Microb Ecol 12:129–134

    Google Scholar 

  • Oscarson DW, Huang PM, Defosse C, Herbillon A (1981) Oxidative power of Mn(IV) and Fe(III) oxides with respect to As(III) in terrestrial and aquatic environments. Nature London 291:50–51

    CAS  Google Scholar 

  • Pavlon SP, Dexter RN (1980) Thermodynamic aspects of equilibrium sorption of persistent organic molecules at the sediment-sea-water interface: a framework for predicting distribution in the aquatic environment. In: Baker RA (ed) Contaminants and sediments, vol 2. Ann Arbor Sci Publ, Mich, pp 323–329

    Google Scholar 

  • Peng An, Wang Zijian ( 1985) Mercury in river sediments. In: Irgolic JK, Marteli AE (eds) Proc Worksh Environmental inorganic chemistry, 2–7 June 1983, San Miniato. VCH, Deerfield Beach, Fl, pp 393–400

    Google Scholar 

  • Peterson ML, Carpenter R (1983) Biogeochemical processes affecting total arsenic and arsenic species distributions in an intermittently anoxic fjord. Mar Chem 12:295–321

    CAS  Google Scholar 

  • Peterson ML, Carpenter R (1986) Arsenic distributions in pore waters and sediments of Puget Sound, Lake Washington, the Washington coast and Seanich Inlet, B.C. Geochim Cosmochim Acta 50:353–369

    CAS  Google Scholar 

  • Pierce ML, Moore CB ( 1982) Adsorption of arsenite and arsenate on amorphous iron hydroxide. Water Res 16:1247–1253

    CAS  Google Scholar 

  • Prause B, Rehm E, Schulz-Baldes M ( 1985) The remobilization of Pb and Cd from contaminated dredge spoil after dumping in the marine environment. Environ Technol Letts 6:261–266

    CAS  Google Scholar 

  • Questel JH, Scholefield PG (1953) Arsenite oxidation in soil. Soil Sci 75:279–285

    Google Scholar 

  • Ramamoorthy S, Rust BR (1976) Mercury sorption and desorption characteristics of some Ottawa river sediments. Can J Earth Sci 13:530–536

    CAS  Google Scholar 

  • Reimers RS, Krenkel PA (1974) Kinetics of mercury adsorption and desorption in sediments. J Water P C 46:352–365

    CAS  Google Scholar 

  • Reimers RS, Krenkel PA, Eagle M, Tragift G (1975) Sorption phenomenon in the organics of bottom sediments. In: Krenkel PA (ed) Heavy metals in the aquatic environment. Pergamon, Oxford, pp 117–136

    Google Scholar 

  • Rontani JF, Rambelaorisoa E, Bertrand JC, Giusti G (1985) Favourable interaction between pho-tooxidation and bacterial degradation of anthracene in sea water. Chemosphere 14:1909–1912.

    CAS  Google Scholar 

  • Sahm H, Branner M, Schoberth SM (1986) Anaerobic degradation of halogenated aromatic compounds, Microb Ecol 12:147–153

    CAS  Google Scholar 

  • Salomons W ( 1980) Adsorption processes and hydrodynamic conditions in estuaries. Environ Technol Letts 1:356–365

    CAS  Google Scholar 

  • Salomons W (1985) Sediments and water quality. Environ Technol Lett 6:315–326

    CAS  Google Scholar 

  • Salomons W, Förstner U (1984) Metals in the hydrocycle. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Salomons W, Geritse RG (1981) Some observations on the occurrence of phosphorus in recent sediments from western Europe. Sci Total Environ 17:37–49

    CAS  Google Scholar 

  • Salomons W, Kerdijk H (1983) Trace metal cycling in lakes (Ijsselmeer, The Netherlands). Proc Int Conf Heavy metals in the environment, vol 2, September 1983, Heidelberg. CEP Consultants, Edinburgh, pp 880–883

    Google Scholar 

  • Schwarzenbach RP, Giger W, Schaffner C, Wanner O (1986) Groundwater contamination by volatile halogenated alkanes: abiotic formation of volatile sulfur compounds under anaerobic conditions. Environ Sci Technol 19:322–327

    Google Scholar 

  • Scudlark JR, Johnson DL (1982) Biological oxidation of arsenite in sea water. Estuar Coastal Shelf Sci 14:693–706

    CAS  Google Scholar 

  • Serne RJ, Mercer BW (1975) Dredge disposal study, San Francisco Bay and Estuary. Appendix F: crystalline matrix study. US Army Waterways Eng Distr, San Francisco, Cal

    Google Scholar 

  • Singer PC, Stumm W (1970) Acidic mine drainage: the rate determining step. Science 167:1121–1123

    CAS  Google Scholar 

  • Street JJ, Sabey BR, Lindsey WL (1978) Influence of pH, phosphorus, cadmium sewage sludge, and incubation time on the solubility and plant uptake of cadmium. J Environ Qual 7:286–290

    CAS  Google Scholar 

  • Stumm W, Baccini P (1978) Man-made perturbation of lakes. In: Lerman A (ed) Lakes — chemistry, geology, physics. Springer, Berlin, Heidelberg, New York, pp 91–126

    Google Scholar 

  • Stumm W, Morgan JJ (1981) Aquatic chemistry. John Wiley, New York, 780 pp

    Google Scholar 

  • Suflita JM, Horowitz A, Shelton DR, Tiedje JM (1982) Dehalogenation: a novel pathway for the anaerobic biodegradation of haloaromatic compounds. Science 218:1115–1117

    CAS  Google Scholar 

  • Vidal FV, Vidal VMV (1980) Arsenic metabolism in marine bacteria and yeast. Mar Biol 60:1–7

    CAS  Google Scholar 

  • Vogel TM, McCarty PL ( 1985) Biotransformation of tetrachloro ethylene to trichloro ethylene, dichloro ethylene, vinyl chloride, and carbon dioxide under methanogenic conditions. Appl Environ Microbiol 49:1080–1089

    CAS  Google Scholar 

  • Wagemann R (1978) Some theoretical aspects of stability and solubility of inorganic arsenic in the freshwater environment. Water Res 12:139–145

    CAS  Google Scholar 

  • Wauchope RD, McDowell LL (1984) Adsorption of phosphate, arsenate, methanoarsenate, and cacodylate by lake and stream sediments: comparison with soils. J Environ Qual 13:499–504

    CAS  Google Scholar 

  • Wienberg R, Heinze E, Förstner U (1986) Experiments on specific retardation of some organic contaminants by slurry trench materials. In: Assink JW, Brink WJ van den (eds) Contaminated soil. Nijhoff, Dordrecht, pp 849–857

    Google Scholar 

  • Williams RR, Bidleman TF (1978)Toxaphene degradation in estuarine sediments. J Agric Food Chem 26:280–282

    CAS  Google Scholar 

  • Williamson KJ, Bella DA (1980) Estuarine sediments: successional model. J Environ Eng, ASCE 106(EE4), Proc Pap 15595, August 1980, pp 695–709

    Google Scholar 

  • Wilson JT, Wilson BH (1985) Biotransformation of trichloro-ethylene in soil. Appl Environ Microbiol 49:242–243

    CAS  Google Scholar 

  • Windom HL, Gardner WS, Dusnten WM, Pfaffenhofer GA (1976) Cadmium and mercury transfer in a coastal marine ecosystem. In: Windom HL, Duce RA (eds) Marine pollutant transfer. Heath, Lexington, pp 135–157

    Google Scholar 

  • Wollast R, Billen G, Mackenzie FT (1975) Behavior of mercury in natural systems and its global cycle. In: McIntyre AD, Mills CF (eds) Ecological toxicological research. Plenum, New York, pp 97–107

    Google Scholar 

  • Wright DR, Hamilton RD (1982) Release of methyl mercury from sediments: effects of mercury concentration, low temperature, and nutrient addition. Can J Fish Aquat Sci 39:1459–1466

    CAS  Google Scholar 

  • Yoshida I, Kobayashi H, Ueno K (1976) Selective adsorption of arsenic ions on silica gel impregnated with ferric hydroxide. Anal Lett 9:1125–1133

    CAS  Google Scholar 

  • Yoshida I, Ueno K, Kobayashi H (1978) Selective separation of arsenic (III) and (V) ions with ferric complex of chelating ion-exchange resin. Sep Sci 13:173–184

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kersten, M. (1988). Geochemistry of Priority Pollutants in Anoxic Sludges: Cadmium, Arsenic, Methyl Mercury, and Chlorinated Organics. In: Salomons, W., Förstner, U. (eds) Chemistry and Biology of Solid Waste. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72924-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72924-9_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-72926-3

  • Online ISBN: 978-3-642-72924-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics