Skip to main content

Photochemical Holeburning and Stark Spectroscopy of Photosynthetic Reaction Centers

  • Conference paper
Primary Processes in Photobiology

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 20))

Abstract

The initial step in photosynthesis involves photoexcitation of a primary electron donor and electron transfer to a primary electron acceptor. These processes take place in a membrane-protein complex called the photosynthetic reaction center (RC). The best characterized RCs have been isolated from the photosynthetic bacteria R. spheroides (R-26 mutant) and R. viridis. In both species, the complexes consist of three proteins each of approximate molecular weight 25–30kDa, four bacteriochlorophylls (BChls), two bacteriopheophytins (BPheo, BChl in which two H atoms replace the central Mg atom), two quinones and one non-heme iron [1]. In R. spheroides the pigments are a-type BChl, whereas in R. viridis the pigments are b-type. The prosthetic groups are embedded in the RC protein in vectorial fashion across the membrane, as shown by x-ray crystallography (Fig. 1) [2–4]. Combined with extensive earlier spectroscopic studies, the x-ray structure identifies the functional components with specific structural elements: the primary electron donor, often called P or the special pair, is identified as the strongly-coupled BChl dimer; the intermediate acceptor, often called I, is identified as the BPheo on the L-side; and the primary quinone (0A, ubiquinone in R. Spheroides, menaquinone in R. Viridis) is the quinone on the L-side. The function of the BChl situated between the dimeric electron donor and the BPheo acceptor is uncertain, though it is certainly involved in mediating electron transfer from the excited state of P to I. The role of the chromophores on the M-side of the RC, which are related to those on the functional L-side by a C2 axis running vertically through the Fe, is unknown. Recent structural work on the R. spheroides RC suggests that the gross features of its structure are very similar to those of R. viridis [5,6].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. S.G. Boxer: Biochim. Biophys. Acta 726, 2625–292 (1983).

    Google Scholar 

  2. J. Deisenhofer, O. Epp, K. Miki, R. Huber & H. Michel: J. Mol. Biol. 180, 385–398 (1984).

    Article  Google Scholar 

  3. J. Deisenhofer, O. Epp, K. Miki, R. Huber & H. Michel, H. Nature 318, 618–624 (1985).

    Article  ADS  Google Scholar 

  4. H. Michel, O. Epp & J. Deisenhofer: The EMB0 Journal 5, 2445–2451 (1986).

    Google Scholar 

  5. C.H. Chang, D. Tiede, J. Tang, U. Smith, J. Norris, & M. Schiffer: FEBS Lett. 205, 82–86 (1986).

    Article  Google Scholar 

  6. J.P. Allen, G. Feher, T.O. Yeates, D.C. Rees, J. Deisenhofer, H. Michel, & R. Huber: Proc. Natl. Acad. Sci., U.S.A. 83, 8589–8593 (1986).

    Article  ADS  Google Scholar 

  7. Parson, W.W., A. Scherz, & A. Warshel: Springer Ser, in Chem. Phys. 42, 122–130 (1985).

    Article  Google Scholar 

  8. S.G. Boxer & G.L. Closs: Journal Amer.Chem. Soc. 97, 3268 (1975).

    Article  Google Scholar 

  9. N.W. Woodbury, M. Becker, D. Middendorf & W.W. Parson: Biochem. 24, 7516–7521 (1985).

    Article  Google Scholar 

  10. J.L. Martin, J. Breton, A.J. Hoff, A. Migus & A. Antonetti: Proc. Natl. Acad. Sci. USA 83, 957–961 (1986).

    Article  ADS  Google Scholar 

  11. J. Breton, J.-L. Martin, A. Migus, A. Antonetti & A. Orszag: Proc. Natl. Acad. Sci. USA 83, 5121–5125 (1986).

    Article  ADS  Google Scholar 

  12. M.R. Wasielewski & D.M. Tiede: FEBS Lett. 204, 368–372 (1986).

    Article  Google Scholar 

  13. K.L. Zankel, D. W. Reed & R.K. Clayton: Proc. Natl. Acad. Sci. U.S.A. 61, 1243–1249 (1968).

    Article  ADS  Google Scholar 

  14. R.A. Marcus: Chem. Phys. Letts., in press.

    Google Scholar 

  15. S.G. Boxer: Biochem. Biophys. Acta 726, 265 (1983).

    Article  Google Scholar 

  16. S.G. Boxer, D.S. Gottfried, T.R. Middendorf & D.J. Lockhart: J. ulChem. Phys., 86, 2439 (1987).

    Article  ADS  Google Scholar 

  17. S.G. Boxer, D.J. Lockhart & T.R. Middendorf: Chem. Phys. Lett. 123, 476–482 (1986).

    Article  ADS  Google Scholar 

  18. S.G. Boxer, T.R. Middendorf & D.J. Lockhart: FEBS Lett. 200, 237–241 (1986).

    Article  Google Scholar 

  19. S.L. Ditson, R.C. Davis & R.M. Pearlstein: Biochem. Biophys. Acta 766, 623–629 (1984).

    Article  Google Scholar 

  20. D.J. Lockhart & S.G. Boxer: Biochemistry 26, 664–668 (1987).

    Article  Google Scholar 

  21. S. G. Boxer: Proceedings of the Vth International Congress on Energy Transfer (August 1985), J. Pantoflicek and P. Pancoska, eds, 108–115.

    Google Scholar 

  22. S.R. Meech, A.J. Hoff & D.A. Wiersma: Chem. Phys. Lett. 121, 287–292 (1985).

    Article  ADS  Google Scholar 

  23. D. Haarer: J. Chem. Phys. 67, 4076–4085 (1977)

    Article  ADS  Google Scholar 

  24. P.O.J. Scherer, S.F. Fischer, J.K.H. Hörber & M.E. Michel-Beyerle: Springer Ser in Chem. Phys. 42, 131 (1985).

    Article  Google Scholar 

  25. C. Kirmaier, D. Holten & W.W. Parson: Biochim. Biophys. Acta 810, 49–61 (1985).

    Article  Google Scholar 

  26. J.M. Hayes & G.J. Small: J. Phys. Chem. 90, 4928–4931 (1986).

    Article  Google Scholar 

  27. Y. Won & R.A. Friesner: Proc. Natl. Acad. Sci. USA, in press.

    Google Scholar 

  28. R. Mathies, & L. Stryer: Proc. Natl. Acad. Sci. U.S.A. 73, 2169–2173 (1976).

    Article  ADS  Google Scholar 

  29. D. DeLeeuv, M. Malley, G. Butterman, M.Y. Okamura and G. Feher: Biophys. Soc. Abstr. 37, 111a (1982).

    Google Scholar 

  30. W. Zinth, M. Sanders, J. Dobler, W. Kaiser & H. Michel: Springer Ser. in Chem.Phys., 42, 97 (1985).

    Article  Google Scholar 

  31. W.W. Parson, paper in this volume; W. W. Parson and A. Warshel, J. Am. Chem. Soc., in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Boxer, S.G., Lockhart, D.J., Middendorf, T.R. (1987). Photochemical Holeburning and Stark Spectroscopy of Photosynthetic Reaction Centers. In: Kobayashi, T. (eds) Primary Processes in Photobiology. Springer Proceedings in Physics, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72835-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72835-8_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-72837-2

  • Online ISBN: 978-3-642-72835-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics