Skip to main content

A Quantitative Genetic Perspective on Adaptive Evolution

  • Conference paper
Genetic Constraints on Adaptive Evolution

Abstract

In order to understand adaptive evolution, we need to determine the effects of factors which shape and limit the expression of the essentially infinite possibilities of the genetic system. These factors are environment, and history as expressed in the present structure of the genetic system. Thus the study of adaptive evolution is the concern of both ecology and genetics, and we stress here the intimate relationship between them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson WW (1971) Genetic equilibrium and population growth under density-regulated selection. Am Nat 105: 489–498

    Article  Google Scholar 

  • Anderson WW, King CE (1970) Age-specific selection. Proc Natl Acad Sci USA 66: 780–786

    Article  PubMed  CAS  Google Scholar 

  • Atkinson WD (1979) A field investigation of larval competition in domestic Drosophila. J Anim Ecol 48: 91–102

    Google Scholar 

  • Baldwin JD, Dingle H (1986) Geographic variation in the effects of temperature on life-history traits in the large milkweed bug Oncopeltis fasciatus. Oecologia (Berl) 69: 64–71

    Article  Google Scholar 

  • Barker JSF (1974) The state of information concerning deviations from additivity of gene effects. Proc 1st World Congr Genet Appl Livestock Prod 1: 373–383

    Google Scholar 

  • Barker JSF (1985) Potential contributions of genetics to animal production. Proc 3rd AAAP Anim Sci Congr 1: 22–32

    Google Scholar 

  • Barton NH (1986) The maintenance of polygenic variation through a balance between mutation and stabilizing selection. Genet Res 47: 209–216

    Article  PubMed  CAS  Google Scholar 

  • Bradshaw AD (1984) The importance of evolutionary ideas in ecology—and vice versa. In: Shorrocks B (ed) Evolutionary Ecology. Blackwell, Oxford, pp 1–25

    Google Scholar 

  • Cade WH (1984) Genetic variation underlying sexual behaviour and reproduction. Am Zoo124: 355–366

    Google Scholar 

  • Carson HL, Templeton AR (1984) Genetic revolutions in relation to speciation phenomena: the founding of new populations. Annu Rev Ecol Syst 15: 97–131

    Article  Google Scholar 

  • Caspari E (1950) On the selective value of the alleles Rt and rt in Ephestia kühniella. Am Nat 84: 367–380

    Article  Google Scholar 

  • Chakraborty R, Ryman N (1983) Relationship of mean and variance of genotypic values with heterozygosity per individual in a natural population. Genetics 103: 149–152

    PubMed  CAS  Google Scholar 

  • Charlesworth B (1970) Selection in populations with overlapping generations. I. The use of Malthusian parameters in population genetics. Theor Popul Biol 1: 352–370

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth B (1971) Selection in density-regulated populations. Ecology 52: 469–474

    Article  Google Scholar 

  • Charlesworth B (1980) Evolution in Age-Structured Populations. Cambridge Univ Press, Cambridge

    Google Scholar 

  • Charlesworth D, Charlesworth B (1975) Theoretical genetics of Batesian mimicry. II. Evolution of supergenes. J Theor Biol 55: 305–324

    Article  PubMed  CAS  Google Scholar 

  • Clare MJ, Luckinbill LS (1985) The effects of gene-environment interaction on the expression of longevity. Heredity 55: 19–29

    Article  PubMed  Google Scholar 

  • Clarke B (1972) Density-dependent selection. Am Nat 106: 1–13

    Article  Google Scholar 

  • Clarke B (1975) The contribution of ecological genetics to evolutionary theory: detecting the direct effects of natural selection on particular polymorphic loci. Genetics 79: 101–113

    PubMed  Google Scholar 

  • Clarke B, Whitehead DL (1984) Opportunities for natural selection on DNA and protein at the Adh locus in Drosophila melanogaster. Dev Genet 4: 425–438

    Article  CAS  Google Scholar 

  • Clegg MT, Epperson BK (1985) Recent developments in population genetics. Adv Genet 23: 235–269

    Article  Google Scholar 

  • Crow JF, Kimura M (1964) The theory of genetic loads. Proc XI Int Congr Genet, pp 495–505

    Google Scholar 

  • Crow JF, Kimura M (1970) An introduction to population genetics theory. Harper & Row, New York

    Google Scholar 

  • Darwin C (1859) On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. John Murray, London

    Google Scholar 

  • Dawson PS, Riddle RA (1983) Genetic variation, environmental heterogeneity, and evolutionary stability. In: King CE, Dawson PS (eds) Population biology. Retrospect and prospect. Columbia Univ Press, New York, pp 147–170

    Google Scholar 

  • Dingle H (1981) Geographic variation and behavioral flexibility in milkweed bug life histories. In: Denno RF, Dingle H (eds) Insects and life history patterns: geographic and habitat variation. Springer, Berlin Heidelberg New York, pp 57–73

    Chapter  Google Scholar 

  • Dingle H, Baldwin JD (1983) Geographic variation in life histories: a comparison of tropical and temperate milkweed bugs (Oncopeltis). In: Brown VK, Hodek J (eds) Diapause and life cycle strategies. Junk, The Hague, pp 143–166

    Google Scholar 

  • Dobzhansky Th (1973) Nothing in biology makes sense except in the light of evolution. Am Biol Teach, March 1973, pp 125–129

    Google Scholar 

  • Falconer DS (1952) The problem of environment and selection. Am Nat 86: 293–298

    Article  Google Scholar 

  • Falconer DS (1981) Introduction to quantitative genetics. Longman, London

    Google Scholar 

  • Felsenstein J (1986) Population differences in quantitative characters and gene frequencies: a comment on papers by Lewontin and Rogers. Am Nat 127: 731–732

    Article  Google Scholar 

  • Fisher RA (1930) The Genetical Theory of Natural Selection. Clarendon, Oxford

    Google Scholar 

  • Fleming WH (1979) Equilibrium distributions of continuous polygenic traits. SIAM J Appl Math 36: 148–168

    Article  Google Scholar 

  • Frankham R (1980) Origin of genetic variation in selection lines. In: Robertson A (ed) Selection experiments in laboratory and domestic animals. Commonwealth Agriculture Bureaux, Farnham Royal, UK, pp 56–68

    Google Scholar 

  • Franklin IR (1982) Population size and the genetic improvement of animals. In: Barker JSF, Hammond K, McClintock AE (eds) Future developments in the genetic improvement of animals. Academic Press Australia, Sydney, pp 181–196

    Google Scholar 

  • Gillespie JH (1984) Pleiotropic overdominance and the maintenance of genetic variation in poly-genic characters. Genetics 107: 321–330

    PubMed  CAS  Google Scholar 

  • Grant BR (1985) Selection on bill characters in a population of Darwin’s finches: Geospiza conirostris on Isla Genovesa, Galâpagos. Evolution 39: 523–532

    Article  Google Scholar 

  • Grant PR, Price TD (1981) Population variation in continuously varying traits as an ecological genetics problem. Am Zool 21: 795–811

    Google Scholar 

  • Gunawan B (1981) The relationship between quantitative and allozyme variation in Drosophila buzzatii. In: Gibson JB, Oakeshott JG (eds) Genetic studies of Drosophila populations. Proceedings of the Kioloa Conference. Australian National University, Canberra, pp 147–157

    Google Scholar 

  • Hammond K, James JW (1970) Genes of large effect and the shape of the distribution of a quantitative character. Aust J Biol Sci 23: 867–876

    PubMed  CAS  Google Scholar 

  • Hilbish TJ, Koehn RK (1985) Dominance in physiological phenotypes and fitness at an enzyme locus. Science 229: 52–54

    Article  PubMed  CAS  Google Scholar 

  • Hill WG (1982) Predictions of response to artificial selection from new mutations. Genet Res 40: 255–278

    Article  PubMed  Google Scholar 

  • Istock CA (1970) Natural selection in ecologically and genetically defined populations. Behav Sci 15: 101–115

    Article  PubMed  CAS  Google Scholar 

  • Istock C (1984) Boundaries to life history variation and evolution. In: Price PW, Slobodchikoff CN, Gaud WS (eds) A new ecology. Wiley, New York, pp 143–168

    Google Scholar 

  • Kimura M (1965) A stochastic model concerning the maintenance of genetic variability in quantitative characters. Proc Natl Acad Sci USA 54: 731–736

    Article  PubMed  CAS  Google Scholar 

  • King CE, Anderson WW (1971) Age-specific selection. II. The interaction between r and K during population growth. Am Nat 105: 137–156

    Article  Google Scholar 

  • Koehn RK (1978) Physiology and biochemistry of enzyme variation: the interface of ecology and population genetics. In: Brussard PF (ed) Ecological genetics: the interface. Springer, Berlin Heidelberg New York, pp 51–72

    Chapter  Google Scholar 

  • Krimbas CB (1984) On adaptation, Neo-Darwinian tautology and population fitness. Evol Biol 17: 1–57

    Google Scholar 

  • Lande R (1976) The maintenance of genetic variability by mutation in a polygenic character with linked loci. Genet Res 26: 221–235

    Article  Google Scholar 

  • Lande R (1979) Quantitative genetic analysis of multivariate evolution, applied to brain: body size allometry. Evolution 33: 402–416

    Article  Google Scholar 

  • Lande R (1980) The genetic covariance between characters maintained by pleiotropic mutations. Genetics 94: 203–215

    PubMed  CAS  Google Scholar 

  • Lande R (1981) The minimum number of genes contributing to quantitative variation between and within populations. Genetics 99: 541–553

    PubMed  CAS  Google Scholar 

  • Lande R (1982) A quantitative genetic theory of life history evolution. Ecology 63: 607–615

    Article  Google Scholar 

  • Lande R, Arnold SJ (1983) The measurement of selection on correlated characters. Evolution 37: 1210–1226

    Article  Google Scholar 

  • Lawrence MJ (1984) The genetical analysis of ecological traits. In: Shorrocks B (ed) Evolutionary ecology. Blackwell, Oxford, pp 27–63

    Google Scholar 

  • Lerner IM (1954) Genetic homeostasis. Oliver & Boyd, Edinburgh

    Google Scholar 

  • Lewontin RC (1974a) The genetic basis of evolutionary change. Columbia Univ Press, New York

    Google Scholar 

  • Lewontin RC (1974b) The analysis of variance and the analysis of causes. Am J Hum Genet 26: 400–411

    PubMed  CAS  Google Scholar 

  • Lewontin RC (1984) Detecting population differences in quantitative characters as opposed to gene frequencies. Am Nat 123: 115–124

    Article  Google Scholar 

  • Lewontin RC (1985) Population genetics. Annu Rev Genet 19: 81–102

    Article  PubMed  CAS  Google Scholar 

  • Lewontin RC (1986) A comment on the comments of Rogers and Felsenstein. Am Nat 127: 733–734

    Article  Google Scholar 

  • Lively CM (1986) Predator-induced shell dimorphism in the acorn barnacle Chthamalus anisopoma. Evolution 40: 232–242

    Article  Google Scholar 

  • Livshits G, Kobyliansky E (1985) Lerner’s concept of developmental homeostasis and the problem of heterozygosity level in natural populations. Heredity 55: 341–353

    Article  PubMed  Google Scholar 

  • Lloyd DG (1977) Genetic and phenotypic models of natural selection. J Theor Biol 69: 543–560

    Article  PubMed  CAS  Google Scholar 

  • Loveless MD, Hamrick JL (1984) Ecological determinants of genetic structure in plant populations. Annu Rev Ecol Syst 15: 65–95

    Article  Google Scholar 

  • Luckinbill LS, Clare MJ (1985) Selection for life span in Drosophila melanogaster. Heredity 55: 9–18

    Article  PubMed  Google Scholar 

  • Luckinbill LS, Arking R, Clare MJ, Cirocco WC, Buck SA (1984)Selection for delayed senescence in Drosophila melanogaster. Evolution 38:996–1003

    Article  Google Scholar 

  • Mackay TFC (1981) Genetic variation in varying environments. Genet Res 37: 79–93

    Article  Google Scholar 

  • Maynard Smith J (1975) The theory of Evolution. Penguin Books, Harmondsworth

    Google Scholar 

  • Maynard Smith J, Burian R, Kauffman S, Alberch P, Campbell J, Goodwin B, Lande R, Raup D, Wolpert L (1985) Developmental constraints and evolution. Q Rev Biol 60: 265–287

    Article  Google Scholar 

  • Michod RE (1984) Constraints on adaptation, with special reference to social behaviour. In: Price PW, Slobodchikoff CN, Gaud WS (eds) A new ecology. Wiley, New York, pp 253–278

    Google Scholar 

  • Milkman R (1982) Toward a unified selection theory. In: Milkman R (ed) Perspectives on evolution. Sinauer, Sunderland, Mass, pp 105–118

    Google Scholar 

  • Mitchell-Olds T, Rutledge JJ (1986) Quantitative genetics in natural plant populations: a review of the theory. Am Nat 127: 379–402

    Article  Google Scholar 

  • Mitton JB, Grant MC (1984) Associations among protein heterozygosity, growth rate, and developmental homeostasis. Annu Rev Ecol Syst 15: 479–499

    Article  Google Scholar 

  • Nei M, Graur D (1984) Extent of protein polymorphism and the neutral mutation theory. Evol Biol 17: 73–118

    Google Scholar 

  • Price TD, Grant PR (1984) Life history traits and natural selection for small body size in a population of Darwin’s finches. Evolution 38: 483–494

    Article  Google Scholar 

  • Prout T (1958) A possible difference in genetic variance between wild and laboratory populations. Drosophila Inf Sery 32: 148–149

    Google Scholar 

  • Rendel JM (1967) Canalisation and gene control. Logos, London

    Google Scholar 

  • Robertson A (1956) The effect of selection against extreme deviants based on deviation or on homozygosis. J Genet 54: 236–248

    Article  Google Scholar 

  • Robertson A (1959) The sampling variance of the genetic correlation coefficient. Biometrics 15: 469–485

    Article  Google Scholar 

  • Rogers AR (1986) Population differences in quantitative characters as opposed to gene frequencies. Am Nat 127: 729–730

    Article  Google Scholar 

  • Rose MR (1982) Antagonistic pleiotropy, dominance and genetic variation. Heredity 48: 63–78

    Article  Google Scholar 

  • Rose MR (1983) Further models of selection with antagonistic pleiotropy. In: Freedman HI, Strobeck C (eds) Population biology. Springer, Berlin Heidelberg New York, pp 47–53

    Google Scholar 

  • Rose MR (1984) Laboratory evolution of postponed senescence in Drosophila melanogaster. Evolution 38: 1004–1010

    Article  Google Scholar 

  • Rose MR (1985) Life history evolution with antagonistic pleiotropy and overlapping generations. Theor Popul Biol 28: 342–358

    Article  Google Scholar 

  • Rose MR, Charlesworth B (1980) A test of evolutionary theories of senescence. Nature 287: 141–142

    Article  PubMed  CAS  Google Scholar 

  • Rose MR, Charlesworth B (1981) Genetics of life history in Drosophila melanogaster. II. Exploratory selection experiments. Genetics 97: 187–196

    PubMed  CAS  Google Scholar 

  • Roughgarden J (1971) Density-dependent natural selection. Ecology 52: 453–468

    Article  Google Scholar 

  • Sammeta KPV, Levins R (1970) Genetics and ecology. Annu Rev Genet 4: 469–488

    Article  PubMed  CAS  Google Scholar 

  • Service PM, Rose MR (1985) Genetic covariation among life-history components: the effect of novel environments. Evolution 39: 943–945

    Article  Google Scholar 

  • Stearns SC (1984) How much of the phenotype is necessary to understand evolution at the level of the gene? In: Wöhrmann K, Loeschcke V (eds) Population Biology and Evolution. Springer, Berlin Heidelberg New York, pp 31–45

    Chapter  Google Scholar 

  • Tachida H, Mukai T (1985) The genetic structure of natural populations of Drosophila melanogaster. XIX. Genotype-environment interaction in viability. Genetics 111: 43–55

    PubMed  CAS  Google Scholar 

  • Templeton AR (1981) Mechanisms of speciation — a population genetic approach. Annu Rev Ecol Syst 12: 23–48

    Article  Google Scholar 

  • Templeton AR (1982) Adaptation and the integration of evolutionary forces. In: Milkman R (ed) Perspectives on evolution. Sinauer, Sunderland, Mass, pp 15–31

    Google Scholar 

  • Turelli M (1984) Heritable genetic variation via mutation-selection balance: Lerch’s zeta meets the abdominal bristle. Theor Popul Biol 25: 138–193

    Article  PubMed  CAS  Google Scholar 

  • Turelli M (1985) Effects of pleiotropy on predictions concerning mutation selection balance for polygenic traits. Genetics 111: 165–195

    PubMed  CAS  Google Scholar 

  • Turelli M (1986) Gaussian versus non-Gaussian genetic analyses of polygenic mutation-selection balance. In: Kerlin S, Nevo E (eds) Evolutionary processes and theory. Academic Press, New York, pp 607–628

    Google Scholar 

  • Van Delden W (1982) The alcohol dehydrogenase polymorphism in Drosophila melanogaster. Evol Biol 15: 187–222

    Google Scholar 

  • Via S (1984a) The quantitative genetics of polyphagy in an insect herbivore. I. Genotype-environment interaction in larval performance on different host plant species. Evolution 38: 881–895

    Article  Google Scholar 

  • Via S (1984b) The quantitative genetics of polyphagy in an insect herbivore. II. Genetic correlations in larval performance within and among host plants. Evolution 38: 896–905

    Article  Google Scholar 

  • Via S, Lande R (1985) Genotype-environment interaction and the evolution of phenotypic plasticity. Evolution 39: 505–522

    Article  Google Scholar 

  • Waddington CH (1953) Genetic assimilation of an acquired character. Evolution 7: 118–126

    Article  Google Scholar 

  • Waddington CH (1957) The strategy of the genes. Allen & Unwin, London

    Google Scholar 

  • Wallace B (1984) Adaptation, Neo-Darwinian tautology, and population fitness: a reply. Evol Biol 17: 59–71

    Google Scholar 

  • Watt WB, Carter PA, Blower SM (1985) Adaptation at specific loci. IV. Differential mating success among glycolytic allozyme genotypes of Colias butterflies. Genetics 109: 157–175

    PubMed  CAS  Google Scholar 

  • Wilson AC (1976) Gene regulation in evolution. In: Ayala FJ (ed) Molecular evolution. Sinauer, Sunderland, Mass, pp 225–236

    Google Scholar 

  • Wright S (1931) Evolution in Mendelian populations. Genetics 16: 97–159

    PubMed  CAS  Google Scholar 

  • Wright S (1932) The roles of mutation, inbreeding, crossbreeding and selection in evolution. Proc VI Int Congr Genet 1: 356–366

    Google Scholar 

  • Wright S (1969) Evolution and the genetics of populations, vol 2. The theory of gene frequencies. The University of Chicago Press, Chicago

    Google Scholar 

  • Yoo BH (1980a) Long-term selection for a quantitative character in large replicate populations of Drosophila melanogaster. I. Response to selection. Genet Res 35: 1–17

    Article  Google Scholar 

  • Yoo BH (1980b) Long-term selection for a quantitative character in large replicate populations of Drosophila melanogaster, part 3. The nature of residual genetic variability. Theor Appl Genet 57: 25–32

    Article  Google Scholar 

  • Zink RM, Smith MF, Patton JL (1985) Associations between heterozygosity and morphological variance. J Hered 76: 415–420

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Barker, J.S.F., Thomas, R.H. (1987). A Quantitative Genetic Perspective on Adaptive Evolution. In: Loeschcke, V. (eds) Genetic Constraints on Adaptive Evolution. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72770-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72770-2_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-72772-6

  • Online ISBN: 978-3-642-72770-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics