Skip to main content

Past and Future Developments in Geopotential Modeling

  • Conference paper
Geodesy on the Move

Part of the book series: International Association of Geodesy Symposia ((IAG SYMPOSIA,volume 119))

Abstract

This paper reviews the development and estimation of geopotential models over the past 96 years, starting from simple ellipsoidal normal gravity models to complex high degree (360/500) spherical harmonic expansions. The paper is written to show the evolutionary changes that have taken place in the mathematical models and data used. The discussion considers geopotential models from surface gravity data, satellite tracking data, and combination solutions that incorporate numerous data types including satellite altimeter data. A number of questions are posed that relate to future modeling efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albertella A and F Sacerdote, Spectral analyses of block averaged data in geopotential global model determination, J Geodesy, 70:166–175, 1995.

    Article  Google Scholar 

  • Anderle R, Geodetic parameter set NWL-5E-6 based on Doppler satellite observations, in Proc. of 2nd Int Sym Geodetic Use of Satellites, G. Veis (ed), 179–220, Athens, Greece, 1966.

    Google Scholar 

  • Anderle R and S Smith, NWL-8 Geodetic parameters based on Doppler satellite observations, NWL Technical Report No. 2106, Dahlgren, Virginia, July 1967.

    Google Scholar 

  • Balmino G, C Reigber, B Maynot, Le modèle de potential gravitationel terrestre GRIM2: Determination, evaluation, Ann Geophys 34:55–78, 1978.

    Google Scholar 

  • Basic T et al, A new geopotential model tailored to gravity data in Europe, in Gravity, Gradiometry, and Gravimetry (eds. Rummel and Hipkin), I AG Sym 103, Springer, Berlin, 1989.

    Google Scholar 

  • Basic T and R Rapp, Oceanwide prediction of gravity anomalies and sea surface heights using Geos-3, Seasat, and Geosat altimeter data and ETOPO5U bathymetric data, Rpt 416, Dept of Geodetic Science and Surveying, Ohio State University, Columbus, OH, 94p, 1992.

    Google Scholar 

  • Bosch W, High degree spherical harmonic analyses by least squares, in Proc. of IAG Sym XIX IUGG General Assembly, 194–205, 1987.

    Google Scholar 

  • Bosch W, A rigorous least squares combination of low and high degree spherical harmonics, presented at IAG General Meeting, Session 11, Part D, Beijing, China, 1993.

    Google Scholar 

  • Bouman J, A survey of global gravity models, Delft Institute for Earth-Oriented Space Research, Report No. 97.1, Delft University of Technology, Netherlands, July 1997.

    Google Scholar 

  • Brovar V, V Magnitsky, and B Shimbirer, The Theory of the Figure of the Earth, Moscow 1961, translation, Foreign Technology Div., Air Force Systems Command, Wright-Patterson AFB, Ohio, FTD-TT-64–930, 1964.

    Google Scholar 

  • Cazenave AA, P Gegout, G Ferhat and R Biancale, Temporal variations of the gravity field from Lageos 1 and Lageos 2 Observations, in Proc. Global Gravity Field and Its Temporal Variations, Rapp, Cazenave, Nerem (eds), IAG Symposium 16, Springer Berlin 1996.

    Google Scholar 

  • Chovitz B and K-R Koch, Combination solution for gravity field including altimetry, J Geophys Res, 84(B8), 4041–4044, 1979.

    Article  Google Scholar 

  • Colombo O, Numerical methods for harmonic analysis on the sphere, Rpt 310, Dept of Geodetic Science and Surveying, Ohio State University, Columbus, OH, 140pp, 1981.

    Google Scholar 

  • Cruz JY, Ellipsoidal corrections to potential coefficients obtained from gravity anomaly data on the ellipsoid, Rpt 367, Dept of Geodetic Science and Surveying, Ohio State University, Columbus, OH, 38pp, 1986.

    Google Scholar 

  • DMA, Supplement to the Department of Defense World Geodetic System 1984, Tech Rpt Part I, Methods, Techniques and Data Used in WGS84 Development, DMA TR 8350, 2-A, 412p, Washington, DC, 1987.

    Google Scholar 

  • Eanes RJ and SV Bettadpur, Temporal variations of Earth’s gravitational field from satellite laser ranging, in Proc. Global Gravity Field and Its Temporal Variations, Rapp, Cazenave, Nerem (eds), IAG Symposium 16, Springer Berlin 1996.

    Google Scholar 

  • Freeden W and F Schneider, An integrated wavelet concept of physical geodesy, No. 173, Univ of Kaiserslautern, Kaiserslautern, Germany, 27p, 1997.

    Google Scholar 

  • Freeden W, U Windheuser Combined spherical harmonic and wavelet expansion-a future concept in Earth’s gravitational determination, Applied and Computational Harmonic Analysis 4, 1–37, 1997.

    Article  Google Scholar 

  • Gaposchkin EM and K Lambeck, 1969 Smithsonian Standard Earth (II), Smithsonian Astrophys Obs, Spec Rep 315, 93 pp, 1970.

    Google Scholar 

  • Gaposchkin EM(ed), 1973 Smithsonian Standard Earth (III), Smithsonian Astrophys Obs, Spec Rep 353, 388 pp, 1973.

    Google Scholar 

  • Gaposchkin M, Earth’s gravity field to the eighteenth degree and geocentric coordinates for 104 stations from satellite and terrestrial data, J Geophys Res, 79, 5377–5411, 1974.

    Article  Google Scholar 

  • Gleason D, Comparing ellipsoidal corrections to the transformation between the geopotential’s spherical and ellipsoidal spectrum, manuscripta geod 13, 114–129, 1988.

    Google Scholar 

  • Gruber T and W Bosch, A new 360 gravity field model, presented at the European Geophysical Soc meeting, Edinburgh, 1992a.

    Google Scholar 

  • Gruber T and W Bosch, OGE12, A new 360 gravity field model, in Proc. (Montag and Reigber (eds)) of IAG Sym 112, Geodesy and Physics of the Earth, Springer, Berlin, 1992b.

    Google Scholar 

  • Gruber T and M Anzenhofer, The GFZ 360 gravity field model, in Proc. (Forsberg and Denker (eds)), The European Geoid Determination, European Geophysical Soc XVIII General Assembly, Wiesbaden, Germany, published by Geodetic Div, Kort-og Matrikelstyrelsen, Copenhagen, 13–18, 1993.

    Google Scholar 

  • Gruber T, M Anzenhofer and M Rentsch, The 1995 GFZ high resolution gravity model, in (Rapp, Cazenave, Nerem, eds), Global Gravity Field and Its Temporal Variations, IAG Sym 116, 61–70, Springer, Berlin, 1996.

    Google Scholar 

  • Gruber T et al, Improvements in high resolution gravity field modeling at GFZ, in (Segawa, J, Fujimato, H, Okubo, S, eds) Proc. Gravity, Geoid, Marine Geodesy, Springer, Berlin, 1997.

    Google Scholar 

  • Guier WH and RR Newton, The Earth’s gravity field deduced from the Doppler tracking of five satellites, J. Geophys. Res, 70, 4613–4626, 1965.

    Article  Google Scholar 

  • Hwang C, High precision gravity anomaly and sea surface height estimation from GEOS-3/Seasat satellite altimeter data, Rpt 399, Dept of Geodetic Science and Surveying, Ohio State University, Columbus, OH, 155p, 1989.

    Google Scholar 

  • Jeffreys H, The determination of the Earth’s gravitational field, Mon. Not. R. Astron. Soc, Geophys. Suppl., 5, 1, 1–22, 1941.

    Google Scholar 

  • Jeffreys H, The determination of the Earth’s gravitational field, Mon. Not. R. Astron. Soc, Geophys. Suppl., 5, 3, 55–66, 1943.

    Google Scholar 

  • Jeffreys H, The figures of the Earth and moon, Mon. Not. R. Astron. Soc, Geophys. Suppl., 5, 7, 219–247, 1948.

    Google Scholar 

  • Jekeli C, The exact transformation between ellipsoidal and spherical harmonic expansion, manuscript geod 13, 106–113, 1988.

    Google Scholar 

  • Jekeli C, Methods to reduce aliasing in spherical harmonic analyses, in (Rapp, Nerem, Cazenave, eds) Global Gravity Field and Temporal Variations IAG Sym 115, Springer, Berlin, 121–130, 1996.

    Google Scholar 

  • Kaula WM, Statistical and harmonic analyses of gravity, J Geophys Res, 64(12), 2401–2421, 1959.

    Article  Google Scholar 

  • Kaula WM, Tests and combinations of satellite determinations of the gravity field with gravimetry, J Geophys Res, 71, 5303–5314, 1966.

    Google Scholar 

  • Kearsley WH and R Forsberg, Tailored geopotential models-applications, and short comings, manuscripta geod, 15, 151–158, 1990.

    Google Scholar 

  • Koch K-R, Surface density values for the Earth from satellite and gravity observations, Geophys. J.R. Astr. Soc, 21, 1–15, 1970.

    Google Scholar 

  • Koch K-R, Earth’s gravity field and station coordinates from Doppler data, satellite triangulation, and gravity anomalies, NOAA Technical Report NOS 62, 1974.

    Google Scholar 

  • Koch K-R and B Witte, Earth’s gravity field represented by a simple-layer potential from Doppler tracking of satellites, J. Geophys. Res., 76(35), 8471–8479, 1971.

    Article  Google Scholar 

  • Köhnlein W, The Earth’s gravitational field as derived from a combination of satellite data with gravity data, presented at 14th General Assembly, IUGG, Lucerne, Switzerland, 1967.

    Google Scholar 

  • Lelgemann D, Spherical approximation and the combination of gravimetric and satellite data, Bulletino di Geodesia e Scienze Affini, XXXII, M4, 1973.

    Google Scholar 

  • Lerch FJ et al, Gravitational field models for the Earth (GEM 1&2), NASA/Goddard Space Flight Center Report X-553–72–146, May 1972.

    Google Scholar 

  • Lerch FJ et al, Gravity model improvement using Geos 3 (GEM9 and 10), J Geophys Res, 84(B8), 3897–3916, 1979.

    Article  Google Scholar 

  • Lerch FJ et al, Goddard Earth models for oceanographic applications (GEM 10B and 10C), Marine Geodesy, Vol. 5(2), 145–187, 1981.

    Article  Google Scholar 

  • Lerch FJ et al., Gravity model improvement for SEASAT, J Geophys Res, 87(C5), 3281–3296, 1982.

    Article  Google Scholar 

  • Lerch FJ, S Klosko, G Patel, A refined gravity model from Lageos (GEM-L2), Geophys Res, Letrs 9(11), 1263–1266, 1982.

    Article  Google Scholar 

  • Lerch FJ et al, Geopotential models of the Earth from satellite tracking, altimeter and surface gravity observations, GEM-T3 and GEM-T3S, NASA Tech Mem 104555, Jan 1992.

    Google Scholar 

  • Li Y and M Sideris, Minimization and estimation of geoid undulation errors, Bulletin Geod, 68, 201–219, 1994.

    Article  Google Scholar 

  • Lundquist CA and G Veis (eds), Geodetic Parameters for a 1966 Smithsonian Institution Standard Earth, 3 vols., Smithsonian Astrophys Obs, Spec Rep 200, 1966.

    Google Scholar 

  • Marsh JG et al, A new gravitational model for the Earth from satellite tracking data: GEM-T1, J Geophys Res, 93(B6), 6169–6215, 1988.

    Article  Google Scholar 

  • Marsh J, et al, The GEM-T2 gravitational model, NASA Tech Memo, TM 100746, 52pp, 1989.

    Google Scholar 

  • Motao H et al, On the improvement of geopotential model using gravity data in China, in (Rapp, Cazenave, Nerem, eds), Global Gravity Field and Its Temporal Variation, IAG Sym 116, 180–197, Springer, Berlin, 1996.

    Google Scholar 

  • Molodensky, MS, VF Eremeev and MI Yurkina, Methods for the Study of the External Gravitational Field and Figure of the Earth, translated from Russian Israel Program for Scientific Translation, (OTS61–31207), 1962.

    Google Scholar 

  • NRC, Satellite gravity and the geosphere, National Academy Press, Washington DC, 1997.

    Google Scholar 

  • Nerem RS et al, Gravity model development for TOPEX/POSEIDON: Joint Gravity Models 1 and 2, J Geophys Res, 99(C12), 1994a.

    Google Scholar 

  • Nerem RS et al, Ocean dynamic topography from satellite altimetry based on the GEM-T3 geopotential model, manuscripta geod 19, 346–366, 1994b.

    Google Scholar 

  • Nerem RS and SM Klosko, Secular variations of the zonal harmonies and polar motion as geophysical constraints, in Proc. Global Gravity Field and Its Temporal Variations, Rapp A, Cazenave A, Nerem A (eds), IAG Symposium 16, Springer Berlin 1996.

    Google Scholar 

  • Pavlis N, Modeling and estimation of a low degree geopotential model from terrestrial gravity data, Rpt 386, Dept of Geodetic Science and Surveying, Ohio State University, Columbus, OH, 478p, 1988.

    Google Scholar 

  • Pavlis NK and RH Rapp, The development of an isostatic gravitational model to degree 360 and its use in global gravity modeling, Geophys J Int, 100, 369–378, 1990.

    Article  Google Scholar 

  • Pavlis NK, JC Chan, and F Lerch, Altemative estimation techniques for global high-degree modeling, in (Rapp, Nerem, Cazenave, eds) Global Gravity Field and Temporal Variations IAG Sym 115, Springer, Berlin, 111–120, 1996.

    Chapter  Google Scholar 

  • Pellinen L, A method for expanding the gravity potential of the Earth in spherical functions, Trans, of the Central Scientific Res Inst of Geodesy, Aerial Survey and Cartography, Issue 171, 92 p, Nedra, Moscow, 1966 (translation ACIC-TC-1282).

    Google Scholar 

  • Perasanz F, JC Marty, G Balmino, Dynamic orbit determination and gravity field model improvement from GPS, DORIS and laser measurements on TOPEX/POSEIDON satellite, J. Geodesy, 71:160–170, 1997.

    Article  Google Scholar 

  • Rapp RH, Gravitational potential coefficients from gravity data alone, Allgemeine Vermessungs-Nachrichten, 76, 228–233, 1969a.

    Google Scholar 

  • Rapp RH, The geopotential to (14, 14) from a combination of satellite and gravimetric data, Bulletin Geodesique, No. 91, 47–80, 1969b.

    Google Scholar 

  • Rapp RH, Analytical and numerical differences between two methods for the combination of gravimetric and satellite data, Bolletino di Geofísica Theorica ed Applicata, 11(41), 108–118, 1969c.

    Google Scholar 

  • Rapp RH, Procedures and results related to the determination of gravity anomalies from satellite and terrestrial gravity data, Rept 211 Dept of Geod Sci and Surv, Ohio State University, Columbus, OH, 1974.

    Google Scholar 

  • Rapp RH, Determination of potential coefficients to degree 52 from 5° mean gravity anomalies, Bulletin Geodesique, 51, 301–323, 1977.

    Article  Google Scholar 

  • Rapp RH, Geos 3 processing for the recovery of geoid undulations and gravity anomalies, J Geophys Res, 84(B8), 3784–3792, 1979a.

    Article  Google Scholar 

  • Rapp RH, A review of anomaly and undulations determination from Geos-3 altimeter data, presentation, 1979 Spring Mt, American Geophysical Union, Washington, May 1979b.

    Google Scholar 

  • Rapp RH, The Earth’s gravity field to degree and order 180 using Seasat altimeter data, terrestrial gravity data, and other data, Rpt 322, Dept of Geodetic Science and Surveying, Ohio State University, Columbus, OH, 58pp, 1981.

    Google Scholar 

  • Rapp RH, The determination of geoid undulation and gravity anomalies from Seasat altimeter data, J Geophys Res, 88, 1552–1562, 1983a.

    Article  Google Scholar 

  • Rapp RH, The development of the January 1983 1° × 1° mean free-air anomaly data tape, internal report, Dept of Geod Sci and Surv, Ohio State University, Columbus, OH, 1983b.

    Google Scholar 

  • Rapp RH Global geopotential solutions, in Mathematical and Numerical Techniques in Physical Geodesy, Lecture Notes in Earth Sciences, Vol. 7, 365–415, Springer, Berlin, 1986.

    Google Scholar 

  • Rapp RH and J Cruz, The representation of the Earth’s gravitational potential in a spherical harmonic expansion to degree 250, Rpt 372, Dept of Geodetic Science and Surveying, Ohio State University, Columbus, OH, 70pp, 1986a.

    Google Scholar 

  • Rapp RH and J Cruz, Spherical harmonic expansions of the Earth’s gravitational potential to degree 360 using 30′ means anomalies, Rpt 376, Dept of Geodetic Science and Surveying, Ohio State University, Columbus, OH, 27pp, 1986b.

    Google Scholar 

  • Rapp RH and NK Pavlis, The development and analysis of geopotential models to spherical harmonic degree 360, J Geophys Res, 95(B13), 21, 885–21, 911, 1990.

    Google Scholar 

  • Reigber C, A Balmino, B Moynot, and H Miiler, The GRIM3 Earth gravity field model, manuscripta geod, 8(2), 93–138, 1983.

    Google Scholar 

  • Reigber C et al., GRIM Gravity model improvement using LAGEOS (GRIM3-L1), J Geophys Res, 90(B11), 9285–9299, 1985.

    Article  Google Scholar 

  • Rizos C, An efficient computer technique for the evaluation of geopotential from spherical harmonic models, Australian J of Geodesy, Photogrammetry, and Cartography, No. 31, 161–170, 1979.

    Google Scholar 

  • Rummel R and R Rapp, The influence of the atmosphere in detailed geoid computations and in potential coefficient determinations with gravity data, J Geophys Res, 81(32), 5639–5642, 1976.

    Article  Google Scholar 

  • Scharroo R, P Visser, G Mets, Precise orbit determinations and gravity field improvement for the ERS satellites, J Geophys Res (Oceans), ERS Spec Sect, in press, 1998.

    Google Scholar 

  • Schwintzer P et al, A new Earth gravity model in support of ERS-1 and SPOT-2: GRIM4-S1/C1, final Rpt to DARA and CNES, DGFI/GRGS, Münich/Toulouse, 1991.

    Google Scholar 

  • Schwintzer P et al, Improvement of GRIM4 Earth gravity models using Geosat altimeter and SPOT-2 and ERS-1 tracking data, in Proc. (Montag A and Reigber A, eds) Geodesy and Physics of the Earth, IAG Sym 112, Potsdam, Springer, Berlin, 1992.

    Google Scholar 

  • Schwintzer P et al, Long-wave length global gravity field models: GRIM4-S4, GRIM4-C4, J Geodesy, 71:189–208, 1997.

    Article  Google Scholar 

  • Seppelin T, The Department of Defense World Geodetic System 1972, The Canadian Surveyor, 28(5), 496–506, 1974.

    Google Scholar 

  • Shum C-K et al, An improved model for the Earth’s gravity field, in Gravity, Gradiometry, Gradiometry, and Gravimetry (eds. Rummel and Hipkin), IAG Sym 103, 97–108, Springer, Berlin, 1989.

    Google Scholar 

  • Tapley B et al, An improved model for the Earth’s gravity field, in Progress in the Determination of the Earth’s Gravity Field, Rpt 397, Dept of Geodetic Science and Surveying, Ohio State University, Columbus, OH, 1989.

    Google Scholar 

  • Tapley B et al, The University of Texas Earth gravity model, presented at the IUGG General Assembly, IAG Sym, G3, Gravity Field Determination from Space and Airborne Measurements, Vienna, Austria, Aug 1991.

    Google Scholar 

  • Tapley B et al, The Joint Gravity Model 3, J Geophys Res, 101(B12), 28,029–28,049, 1996.

    Article  Google Scholar 

  • Tapley B et al, The TEG-3 Earth gravity field model, in (Segawa, J, Fujimato, H, Okubo, S, eds), Proc. Gravity, Geoid, Marine Geodesy, Springer, Berlin, 1997.

    Google Scholar 

  • Uotila UA, Determination of the shape of the geoid, Pub. Inst. Geod. Photogr. Cart. No. 7, 90–97, The Ohio State University, Columbus, OH, 1957.

    Google Scholar 

  • Uotila UA, Harmonic analysis of worldwide gravity material, Annalis Academiae Fennicae, Ser. A, 111, Geologica-Geographica., 60, 1–17, 1962.

    Google Scholar 

  • Weber G, H Zomorrodian, Regional geopotential model improvement for the Iranian geoid determination, Bulletin Geodesique, 62, 125–141, 1988.

    Article  Google Scholar 

  • Wenzel H-G, Hochaufloesende Kugelkenktionsmodelle fuer das Gravitationspotential der Erde, Wiss Arb Fachrichtung Vermessungswesen der Universitaet Hannover, 1985.

    Google Scholar 

  • White H, The World Geodetic System 1984 Earth Gravitational Model, in Proc. 4th Int. Geodetic Symp. on Satellite Positioning, The University of Texas at Austin, Applied Res. Lab, Vol. 1, 93–116, 1986.

    Google Scholar 

  • Vetter J, The evolution of Earth gravitational models used in astrodynamics, Johns Hopkins APL Technical Digest, 15(4): 319–335, 1994.

    Google Scholar 

  • Zhongolovich ID, The external gravitational field of the Earth and the fundamental constants related to it, Acad. Sci. Publ. Inst. Teor. Astron., Leningrad, 1952.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rapp, R.H. (1998). Past and Future Developments in Geopotential Modeling. In: Forsberg, R., Feissel, M., Dietrich, R. (eds) Geodesy on the Move. International Association of Geodesy Symposia, vol 119. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72245-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72245-5_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-72247-9

  • Online ISBN: 978-3-642-72245-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics