Skip to main content

Part of the book series: NATO ASI Series ((ASIH,volume 104))

Abstract

K+ uptake is essential throughout the plant life cycle. Transport and accumulation of this macronutrient in large quantities have been recognized e.g. during germination, cell division and growth, differentiation, movement and reproduction. Since K+ transport is electrogenic - accompanied by the movement of charges - electrophysiological techniques have been used to unravel the molecular mechanisms of K+ transporters and ion channels, pumps and carriers in general (Hedrich, 1995). This review will concentrate on the biophysical and molecular biological approaches the results of which have shaped our current picture of the structure and function of plant ion channels. For related studies on carriers and pumps see (Hedrich and Schroeder, 1989; Lohse and Hedrich, 1992; Walker et al., 1996; for review see Chasan and Schroeder, 1992; Maathuis and Sanders, 1992).

Patch clamp studies have identified K+ uptake K+ release channels, two major channel types which are inversely activated by the membrane voltage (Blatt, 1988, 1992; Schroeder, 1988, 1989; for review see Schroeder et al., 1994; Hedrich and Dietrich, 1996). Besides, voltage-independent cation channels with often very broad selectivity were described as well (Hedrich and Neher, 1987; Enz et al., 1993; Schulz-Lessdorf and Hedrich, 1995; Allen and Sanders, 1996). Since for K+ uptake and K+ release channels extensive in vivo-studies, molecular cloning and functional expression analyses are available this review will focus on these channel types, only.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Allen G.J. &; Sanders D. 1996. Control of ionic currents in guard cell vacuoles by cytosolic and luminal calcium. Plant J. 10, 1055–1069.

    Article  CAS  PubMed  Google Scholar 

  • Anderson, J. A., Huprikar, S. S., Kochian, L. V., Lucas, W. J. & Gaber, R. F. 1992. Functional expression of a probable Arabidopsis thaliana potassium channel in Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 89, 3736 - 3740.

    Article  CAS  PubMed  Google Scholar 

  • Becker, D., Dreyer, I., Hoth, S., Reid, J.D., Busch, H., Lehnen, M., Palme, K. & Hedrich, R. 1996. Changes in voltage-activation, Cs+ sensitivity, and ion permeability in H5 mutants of a plant K+ channel, KAT1. Proc. Natl Acad. Sci. USA, 93, 8123–8128.

    Article  CAS  PubMed  Google Scholar 

  • Bertl, A., Anderson, J. A., Slayman, C. L. & Gaber, R. F. 1995. Use of Saccharomyces cerevisiae for patch-clamp analysis of heterologous membrane proteins: Characterization of Katl, an inward-rectifying K+ channel from Arabidopsis thaliana, and comparison with endogeneous yeast channels and carriers. Proc. Natl Acad. Sci. USA 92, 2701–2705.

    Article  CAS  PubMed  Google Scholar 

  • Blatt, M. R. 1988. Potassium-dependent, bipolar gating of K+ channels in guard cells. J: Membr. Biol 102, 235–246.

    Article  Google Scholar 

  • Blatt, M. R. 1992. K+ channels of stomatal guard cells/Characteristics of the inward rectifier and its control by pH. J. Gen. Physiol 99, 615–644.

    Article  CAS  PubMed  Google Scholar 

  • Bult C.J., White O, Olsen G.J., Zhou L., Fleischmann R.D., Sutton G.G., Blake J.A., FitzGerald L.M., Clayton R.A., Gocayne J.D., KerlavageA.R., Dougherty B. A., Tomb J.F., Adams M.D., Reich C.I., Overbeek R., Kirkness E.F, Weinstock K.G., Merrick J.M., Glodek A., Scott J.L., Geoghagen N.S.M., Weidman J.F., Fuhrmann J.L., Venter J.C., et al. 1996. Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 273, 1058–1073.

    CAS  Google Scholar 

  • Chasan, R. and Schroeder, J.I. 1992. Excitation in plant membrane biology The Plant Cell, 1180–1188.

    Google Scholar 

  • Cosgrove, J. 1993. How do plant cell walls extend?Plant Physiol 102, 1–6.

    CAS  Google Scholar 

  • Czempinski, K., Zimmermann, S., Ehrhardt,T. & Müller-Röber, B. 1997. New structure and function in plant K+ channels: KCOl, an outward rectifier with a steep Ca2+ dependency. EMBO J. 16, 2565–2575.

    Article  CAS  PubMed  Google Scholar 

  • Daram, R, Urbach, S., Gaymard, E, Sentenac, H. & Charel, I. 1997. Tetramerization of the AKT1 plant potassium channel involves its C-tenninal cytoplasmic domain.EMBO J 16, 3455–3463.

    Article  CAS  PubMed  Google Scholar 

  • Dietrich, I, Dreyer, I., & Hedrich. 1997. Cation-sensitivity and kinetics of guard cell potassium channels differ among species-dependent. Plant J., submitted.

    Google Scholar 

  • Dreyer, I., Antunes, S., Hoshi, T., Müller-Röber, B., Palme, K., Pongs, O., Reintanz, B. & Hedrich, R. 1997. Plant K+ channel α-subunits assemble indiscriminately Biophysical Journal 72, 2143–2150.

    Article  CAS  PubMed  Google Scholar 

  • Durell, S. R. & Guy, H. R. 1992. Atomic scale structure and functional models of voltage- gated potassium channels. Biophys. J. 62, 238–250.

    Article  CAS  PubMed  Google Scholar 

  • Durell, S. R. & Guy, H. R. 1996. Structural model of the outer vestibule and selectivity filter of the Shaker voltage-gated K+ channel. Neuropharmacology 35, 761–773.

    Article  CAS  PubMed  Google Scholar 

  • Ehrhardt, T., Zimmermann, S. & Müller-Röber, B. 1997. Association of plant K+ channels is mediated by conserved C-termini and does not affect subunit assembly. FEBS Lett 409, 166–170.

    Article  CAS  PubMed  Google Scholar 

  • Enz, C., Steinkamp, T. & Wagner, R. 1993. Ion channels in the thylakoid membrane. Biochim. Biophys. Acta 1143, 67–76.

    Article  CAS  Google Scholar 

  • Ficker, E., Taglialatela, M., Wible, B.A., Henley, C.M. & Brown, A.M. 1994. Spermine and spermidine as gating molecules for inward rectifier K+ channels. Science 266, 1068–1072.

    Article  CAS  PubMed  Google Scholar 

  • Fink, M., Duprat, F., Lesage, F., Reyes, R., Romey, G., Heurteaux, C. & Lazdunski, M. 1996. Cloning, functional expression and brain localization of a novel unconventional outward rectifier K+ channel. EMBO J. 15, 6854–6862.

    CAS  PubMed  Google Scholar 

  • Gaymard, F., Cerutti, N., Horeau, C., Lemaillet, G., Urbach, S., Ravallec, M., Devauchelle, G., Sentenac, H. & Thibaud, J.B. 1996. The bacculovirus/insect cell system is an alternative to Xenopus oocytes. First characterization of the AKT 1 K+ channel from Arabidopsis thaliana. J Biol Chem. 271, 22863–22870.

    CAS  Google Scholar 

  • Goldstein, S.A., Price, L.A., Rosenthal, D.N. & Pausch, M.H. 1996. ORK1, a potassium- selective leak channel with two pore domains cloned from Drosophila melanogaster by expression in Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 93, 13256–13261.

    Article  CAS  PubMed  Google Scholar 

  • Hedrich, R. 1995. Technical approaches to studying specific properties of ion channels in plants. In: Single Channel Recording, 2nd edition, Sakmann, B. & Nehei E., eds., Ch. 12, 277–305.

    Google Scholar 

  • Hedrich, R. & Becker, D. 1994. Green circuits - The potential of plant specific ion channels. In: Plant Molecular Biology, 26. Ausg. Palme, K. Hrsg., Kluwer Academic Publishers, Dordrecht, Belgium, 1637–1650.

    Google Scholar 

  • Hedrich, R. & Dietrich, P 1996. Plant K+ channels: Similarity and diversity. Bot. Acta 109, 94–101.

    CAS  Google Scholar 

  • Hedrich, R. & Neher, E. 1987. Cytoplasmic calcium regulates voltage-dependent ion channels in plant vacuoles. Nature 329, 833–836.

    Article  Google Scholar 

  • Hedrich, R. & Schroeder, J. I. 1989. The physiology of ion channels and electrogenic pumps in higher plants. Ann. Rev. Plant Physiol 40, 539–569.

    Article  Google Scholar 

  • Hedrich, R., Moran, O., Conti, F., Busch, H., Becker, D., Gambale, F., Dreyer, I., Küch, A., Neuwinger, K. & Palme, K. 1995. Inward rectifier potassium channels in plants differ from their animal counterparts in response to voltage and channel modulators. Eur. Biophys. J. 24, 107–115.

    Article  CAS  PubMed  Google Scholar 

  • Hille, B. 1992. Ionic channels of excitable membranes, Sinauer Associates Inc., Sunderland, Massachusetts.

    Google Scholar 

  • Hodgkin, A. L. & Huxley, A. F. 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544.

    CAS  PubMed  Google Scholar 

  • Hoshi, T. 1995. Regulation of voltage dependence of the KAT1 channel by intracellular factors. J. Gen. Physiol 105, 309–328.

    Article  CAS  PubMed  Google Scholar 

  • Hoth, S., Dreyer, I., Dietrich, P., Becker, D., Müller-Röber, B. & Hedrich, R. 1997a. Molecular basis of plant-specific acid activation of K+ uptake channels. Proc. Natl Acad. Sci. USA 94, 4806–4810.

    Article  CAS  PubMed  Google Scholar 

  • Hoth, S., Dreyer, I. & Hedrich, R. 1997b. Mutational analysis of functional domains within plant K+ uptake channels. J. Exp. Bot. 48 Special Issue, 415–420.

    Article  CAS  Google Scholar 

  • Jan, L. Y. & Jan, Y.N. 1997. Cloned potassium channels from eukaryotes and prokaryotes. Annu. Rev. Neurosci. 20, 91–123.

    Article  CAS  PubMed  Google Scholar 

  • Ketchum, K. A. & Slayman, C. W. 1996. Isolation of an ion channel gene from Arabidopsis thaliana using the H5 signature sequence from voltage-dependent K+ channels. FEBS Lett. 378, 19–26.

    Article  CAS  PubMed  Google Scholar 

  • Ketchum, K. A., Joiner, W. J., Sellers, A. J. Kaczmarek, L. K. & Goldstein, S.A. 1995. A new family of outwardly rectifying potassium channel proteins with two pore domains in tandem. Nature 376, 690–695.

    Article  CAS  PubMed  Google Scholar 

  • Krause, J.D., Foster, C.D. & Reinhart, P. H. 1996. Xenopus laevis oocytes contain endogenous large conductance Ca2+-activated K+ channels. Neuropharmacology. 35, 1017–1022.

    Article  CAS  PubMed  Google Scholar 

  • Lesage, F., Guillemare, E., Fink,M., Duprat, F., Lazdunski,M. Romey, G. & Barhanin, J. 1996a. A pH-sensitive yeast outward rectifier K+ channel with two pore domains and novel gating properties. J. Biol Chem. 271, 4183–4187.

    Article  CAS  PubMed  Google Scholar 

  • Lesage, F., Guillemare, E., Fink, M., Duprat, F., Lazdunski, M., Romey, G. & Barhanin, J. 1996b. TWIK-1, a ubiquitous human weakly inward rectifying K+ channel with a novel structure. EMBO J. 15, 1004–10011.

    CAS  PubMed  Google Scholar 

  • Lohse, G. & Hedrich, R. 1992. Characterization of the plasmamembrane HATPase from Vicia faba guard cells. Planta 188, 206–214.

    Article  CAS  Google Scholar 

  • Lu, Z. & MacKinnon, R. 1994. Electrostatic tuning of Mg2+ affinity in an inward-rectifier K+ channel. Nature 371, 243–246.

    Article  CAS  PubMed  Google Scholar 

  • Maathuis, F.J.M. & Sanders, D. 1992. Plant membrane transport. Current Opinion in Cell Biology 4, 661–669.

    Article  CAS  PubMed  Google Scholar 

  • Mannuzzu, L. M., Moronne M. M., & Isacoff E. Y, 1996. Direct physical measure of conformational rearrangement underlying potassium channel gating. Science 271,213–216.

    Article  CAS  PubMed  Google Scholar 

  • Marten, I. & Hoshi, T. 1997. Voltage-dependent gating characteristics of the K+ channel KAT1 depend on the N and C termini. Proc. Natl Acad. Sci USA. 94, 3448–3453.

    Article  CAS  PubMed  Google Scholar 

  • Marten, I., Gaymard, F., Lemaillet, G., Thibaud, J.-B., Sentenac, H., & Hedrich, R. 1996. Cytoplasmic Ca2+ and nucleotides do not affect the voltage–dependent activity of KAT1, FEES Lett. 380, 229–232.

    Article  CAS  Google Scholar 

  • Müller-Ròber, B., Ellenberg, J., Provart,N., Willmitzer, L., Busch, H., Becker, D., Dietrich, R, Hoth, S. & Hedrich, R. 1995. Cloning and electrophysiological analysis of KST1, an inward-rectifying K+ channel expressed in potato guard cells. EMBO J. 14, 2409–2416.

    PubMed  Google Scholar 

  • Nakamura, R.L., Anderson, J.A. & Gaber R.E 1997. Determination of key structural requirements of a K+ channel pore. J. Biol Chem. 272, 1011–1018.

    Article  CAS  PubMed  Google Scholar 

  • Papazian, D. M., Schwarz,T. L., Tempel, B. L., Jan, Y. N. & Jan, L. Y. 1987. Cloning of genomic and complementary DNA from Shaker, a putative potassium channel gene from Drosophila. Science 237, 749–753.

    Article  CAS  PubMed  Google Scholar 

  • Papazian, D. M., Timpe, L. C., Jan, Y. N. & Jan, L. Y. 1991. Alteration of voltage- dependence of Shaker potassium channel by mutations in the S4 sequence. Nature 349, 305–310.

    Article  CAS  PubMed  Google Scholar 

  • Perozo, E., Santacruz-Toloza, L., Stafani, E., Bezanilla, E & Papazian, D. M. 1994. S4 mutations alter gating currents of Shaker K+ channels. Biophys. J. 66, 345–354.

    Article  CAS  PubMed  Google Scholar 

  • Reid, J. D., Lukas, W., Shafaatian, R., Berti, A., Scheurmann-Kettner, C., Guy, H. R. & North, R. A. 1996. The S. cerevisiae outwardly-rectifying potassium channel (DUK1) identifies a new family of channels with duplicated pore domains. Recept. Channels 4, 51–62.

    CAS  PubMed  Google Scholar 

  • Satter, R.L., Morse, M.J., Lee, Y., Crain, R.C. Coté, G.G. & Moran, N. 1988. Light- and clock-controlled leaflet movements inSamanea saman: A physiological, biophysical and biochemical analysis. Bot. Acta 101, 205–213.

    CAS  Google Scholar 

  • Schachtman, D.P., Schroeder, J.I., Lucas, W.J., Anderson, J.A. & Gaber R.F. 1992. Expression of an inward-rectifying potassium channel by thtArabidopsis KAT1 cDNA. Science 258, 1645–1658.

    Article  Google Scholar 

  • Schrempf, H., Schmidt, O., Kummerlen, R., Hinnah, S., Mullen D., Betzler, M., Stein- kamp, T. & Wagner, R. 1995. A procaryotic potassium ion channel with two predicted transmembrane segments from Streptomyces lividans. EMBO J. 14, 5170–5178.

    CAS  PubMed  Google Scholar 

  • Schroeder, J. I. 1988. K+ transport properties of K+ channels in the plasma membrane of Vicia faba guard cells. J. Gen. Physiol 92, 667–683.

    Article  CAS  PubMed  Google Scholar 

  • Schroeder, J. I. 1989. Qantitative analysis of outward rectifying K+ channel currents in guard cell protoplasts from Vicia faba. J. Membr. Biol 107, 229–235.

    Article  CAS  PubMed  Google Scholar 

  • Schroeder, J.I., Hedrich, R. & Fernandez, J.M. 1984. Potassium-selective single channels in guard cell protoplasts of Vicia faba. Nature 312, 361–362.

    Article  CAS  Google Scholar 

  • Schroeder, J. I., Ward, J. M. & Gassmann, W. 1994. Perspectives on the physiology and structure of inward-rectifying K+ channels in higher plants: Biophysical implications for K+ uptake. Annu. Rev. Biophys. Biomol. Struct. 23, 441–4471.

    Article  CAS  PubMed  Google Scholar 

  • Schulz-Lessdorf, B. & Hedrich, R. 1995. Protons and calcium modulate SV-type channels in the vacuolar-lysosomal compartment - channel interaction with calmodulin inhibitors. Planta 197, 655–671.

    Article  CAS  Google Scholar 

  • Sentenac, H., Bonneaud, N., Minet, M., Lacroute, E, Salmon, J. -M., Gaymard, F. & Grignon, C. 1992. Cloning and expression in yeast of a plant potassium ion transport system. Science 256, 663–665.

    Article  CAS  PubMed  Google Scholar 

  • Tempel, B., Papazian, D. M., Schwarz,T. L., Jan, Y. N. & Jan, L. Y. 1987. Sequence of a probable potassium channel component encoded at the Shaker locus of Drosophila. Science 237, 770–775.

    Article  CAS  PubMed  Google Scholar 

  • Thompson, J.D., Higgins, D.G. & Gibson, T.J. 1994. CLUS1AL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22,4673– 4680.

    Article  CAS  PubMed  Google Scholar 

  • Uozumi, N., Gassmann, W., Cao, Y.& Schroeder, J.I. Identification of strong modifications in cation selectivity in an Arabidopsis inward rectifying potassium channel by mutant selection in yeast. Biol Chem. 270, 24276–24281.

    Google Scholar 

  • Very, A.-A., Bosseux, C., Gaymard, F., Sentenac, H. & Thibaud, J. -B. 1994. Level of expression in Xenopus oocytes affects some characteristics of a plant inward-rectifying voltage-gated K+ channel. Pflügers Arch. 428, 422–424.

    Article  CAS  PubMed  Google Scholar 

  • Very, A.-A., Gaymard, F., Bosseux, C., Sentenac, H. & Thibaud, J. -B. 1995. Expression of a cloned plant K+ channel in Xenopus oocytes: analysis of macroscopic currents. Plant J. 7, 321–332.

    Article  CAS  PubMed  Google Scholar 

  • Walker N.A., Sanders D., & Maathuis EJ. 1996. High-affinity potassium uptake in plants. Science 273, 977–979.

    Article  CAS  PubMed  Google Scholar 

  • Warmke, J. W. & Ganetzky, B. 1994. A family of potassium channel genes related to eag in Drosophila and mammals. Proc. Natl Acad. Sci. USA 91, 3438–3442.

    Article  CAS  PubMed  Google Scholar 

  • Wei, A., Jegla, T. & Salkoff, L. 1996. Eight potassium channel families revealed by the C. elegans genome project. Neuropharmacology 35, 805–829.

    Article  CAS  PubMed  Google Scholar 

  • Weisenseel, M.H. & Jaffe, L.F. 1976. Natural H+ currents traverse growing roots and root hairs of barley (Hordeum vulgare L.). Planta 133, 1–7.

    Article  Google Scholar 

  • Yang, X.-C. & Sachs, F. 1989. Block of stretch-activated ion channels inXenopus laevis oocytes by gadolinium and calcium ions.Science 243, 1068–1071.

    Article  CAS  PubMed  Google Scholar 

  • Yusa, S.P., Wray, D.& Sivaprasadarao, A. 1996. Measurement of the movement of the S4 segment during the activation of a voltage-gated potassium channel. Pflügers Arch. 433, 91–97.

    Article  Google Scholar 

  • Zhou, X. L., Vaillant, B., Loukin, S. H., Kung C. & Saimi Y. 1995. YKC1 encodes the depolarization-activated K+ channel in the plasma membrane of yeast. FEBS Lett. 373, 170–176.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hedrich, R., Hoth, S., Becker, D., Dreyer, I., Dietrich, P. (1998). On the Structure and Function of Plant K+ Channels. In: Lo Schiavo, F., Last, R.L., Morelli, G., Raikhel, N.V. (eds) Cellular Integration of Signalling Pathways in Plant Development. NATO ASI Series, vol 104. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72117-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72117-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-72119-9

  • Online ISBN: 978-3-642-72117-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics