Skip to main content

Dissecting Light Repression of the Asparagine Synthetase gene (AS1) in Arabidopsis

  • Conference paper
Cellular Integration of Signalling Pathways in Plant Development

Part of the book series: NATO ASI Series ((ASIH,volume 104))

Abstract

In plants, asparagine is a key amino acid used to mobilize assimilated nitrogen from sources to sinks. Inorganic nitrogen assimilated initially into glutamine is converted into asparagine under certain metabolic conditions (see Figure 1). Biochemical, physiological and molecular studies suggest that asparagine biosynthesis in plants is a dynamic process that is tightly regulated throughout development and by environmental factors such as light (Sieciechowicz et al., 1988; Lam et al., 1994; Tsai and Coruzzi, 1990,1991). Physiological studies on pea and Arabidopsis have shown that when plants are dark-adapted, asparagine levels are elevated and asparagine becomes the predominant amino acid transported in the phloem (Urquhart and Joy, 1982; Schultz, 1994; Lam et al., 1995). Asparagine has a higher nitrogen to carbon ratio than glutamine, hence it is a more economical nitrogen transport compound in plants grown in the dark, when carbon skeletons are limiting. As such asparagine is the preferred nitrogen transport compound in dark- adapted plants (see Figure 1). By contrast, asparagine synthesis is repressed by light as evidenced by changes in amino acid levels and gene expression studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bent, A., Kunkel, B.N., Dahlbeck, D., Brown, K.L., Schmidt, R., Giraudat, J., Leung, J., Staskawicz, B.J. (1994) Science 265: 183–396.

    Article  Google Scholar 

  • Bruce, W.B., Deng, X.-W. and Quail, P.H. (1991) A negatively acting DNA sequence elements mediates phytochrome-directed repression of phyA gene transcription. EMBO J. 10: 3015–3024.

    CAS  PubMed  Google Scholar 

  • Chevaliar, C., Bourgeois, E., Pradet, A. and Raymond, P. (1996) Metabolic regulation of asparagine synthetase gene expression in maize (Zea mays L.) root tips. Plant Mol. Biol. 28: 473–485.

    Article  Google Scholar 

  • Davis, K.M. and King, G.A. (1993) Isolation and characterization of a cDNA clone for a harvest induced asparagine synthetase from Asparagus officinalis L. Plant. Physiol. 102: 1337–1340.

    Article  Google Scholar 

  • Johnson, A. (1995) The price of repression. Cell 81: 655–658.

    Article  CAS  PubMed  Google Scholar 

  • Lam, H.-M., Peng, S.S.-Y and Coruzzi, G.M. (1994) Metabolic regulation of the gene encoding glutamine-dependent asparagine synthetase in Arabidopsis thaliana. Plant Physiol. 106: 1347–1357.

    Article  CAS  PubMed  Google Scholar 

  • Lam, H.-M., Coschigano, K., Schultz, C., Melo-Oliveira, R., Tjaden, G., Oliveira, I., Ngai, N., Hsieh, M.-H and Coruzzi, G. (1995) Use of A. thaliana mutants and genes to study amide amino acid biosynthesis. Plant Cell 7: 887–898.

    Article  CAS  PubMed  Google Scholar 

  • Neuhaus, G., Bowler, C., Hiratsuka, K., Yamagata, H. and Chua, N.-H. (1997) Phytochrome-regulated repression of gene expression requires calcium and cGMP. EMBO J. 10: 2554–2564.

    Article  Google Scholar 

  • Ngai, N, Tsai, F.-Y and Coruzzi, G.M. (1997) Light-Induced Transcriptional Repression of the Pea AS1 Gene: Identification of Cis-elements and Transfactors. Plant J., in press.

    Google Scholar 

  • Oaks, A. and Ross, D.W. (1984) Asparagine synthetase in Zea mays. Can. J. Bot. 62: 68–73.

    Article  CAS  Google Scholar 

  • Sato, N. (1988) Nucleotide sequence and expression of the phytochrome gene in Pisum sativum: Differential regulation by light of multiple transcripts. Plant Mol. Biol. 11: 697–710.

    Article  CAS  Google Scholar 

  • Schultz, C.J. (1994) A molecular and genetic dissection of the aspartate aminotransferase isoenzymes of Arabidopsis thaliana. PhD thesis. New York University, New York.

    Google Scholar 

  • Sieciechowicz, K.A., Joy, K.W. and Ireland, R.J. (1988) The metabolism of asparagine in plants. Phytochemistry 27: 663–671.

    Article  CAS  Google Scholar 

  • Tjaden, G., Edwards, J.W. and Coruzzi, G.M. (1995) cis elements and trans-acting factors affecting regulation of a non-photosynthetic light-regulated gene for chloroplast glutamine synthetase. Plant Physiol. 108: 1109–1117.

    Article  CAS  PubMed  Google Scholar 

  • Tsai, F.-Y. and Coruzzi, G.M. (1990) Dark-induced and organ-specific expression of two asparagine synthetase genes in Pisum sativum. EMBO J. 9: 323–332.

    CAS  PubMed  Google Scholar 

  • Tsai, F.-Y. and Coruzzi, G.M. (1991) Light represses the transcription of asparagine synthetase genes in photosynthetic and non-photosynthetic organs of plants. Mol. Cell. Biol. 11: 4966–4972.

    CAS  PubMed  Google Scholar 

  • Urquhart, A.A. and Joy, K.W. (1982) Transport, metabolism, and redistribution of Xylem-borne amino acids in developing pea shoots. Plant Physiol. 69:1226–1232.H. and Coruzzi, G. (1995) Use of A. thaliana

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ngai, N., Coruzzi, G. (1998). Dissecting Light Repression of the Asparagine Synthetase gene (AS1) in Arabidopsis. In: Lo Schiavo, F., Last, R.L., Morelli, G., Raikhel, N.V. (eds) Cellular Integration of Signalling Pathways in Plant Development. NATO ASI Series, vol 104. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72117-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72117-5_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-72119-9

  • Online ISBN: 978-3-642-72117-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics