Skip to main content

Pathogenesis of Reovirus Infections of the Central Nervous System

  • Chapter
Reoviruses II

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 233/2))

Abstract

Reovirus infection in rodents, and predominantly mice, has been extensively utilized as an experimental model system for studying the pathogenesis of viral disease of the CNS (for review see Tyler and Fields 1988, 1996; Tyler 1991; Virgin et al. 1997). Rare cases of reovirus-induced neurological disease in humans, including encephalitis and meningitis (Van Tongeren 1957; Krainer and Aronson 1959; Joske et al. 1964; Johansson et al. 1996; Tyler, unpublished) have been reported. Isolated case reports purporting to show an association between reovirus infection and atypical forms of motor neuron disease and chronic mental illness are totally unconvincing (Averback 1982; Szirmai et al. 1983). Reovirus has also been associated with neurological illnesses in nonhuman animals, including hydrocephalus in monkeys (Sabin 1959), encephalitis in dogs (Masste and Shaw 1966), and ataxia in cats (Csiza 1974).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amerongen HM, Weltzin RA, Farnet CM, Michetti P, Haseltine WA, Neutra MR (1991) Transepithelial transport of HIV by intestinal M cells: a mechanism for transmission of AIDS. J Acquir Immune Defic Syndr Hum Retrovirol 4: 760–765

    CAS  Google Scholar 

  • Amerongen HM, Wilson GAR, Fields BN, Neutra MR (1994) Proteolytic processing of reovirus is required for adherence to intestinal M cells. J Virol 68: 8428–8432

    PubMed  CAS  Google Scholar 

  • Armstrong GD, Paul RW, Lee PW (1984) Studies on reovirus receptors of L cells: virus binding char-acteristics and comparison with reovirus receptors of erythrocytes. Virology 138: 37–48

    Article  PubMed  CAS  Google Scholar 

  • Averback P (1982) Reovirus and pathogenesis of some forms of chronic mental illness. Med Hypotheses 8: 383–391

    Article  PubMed  CAS  Google Scholar 

  • Babiss LE, Luftig RB, Weatherbee JA, Weihing RR, Ray UR, Fields BN (1979) Reovirus serotypes I and 3 differ in their in vitro association with microtubules. J Virol 30: 863–874

    PubMed  CAS  Google Scholar 

  • Barthold SW, Smith AL, Bhatt PN (1993) Infectivity, disease patterns, and serologic profiles of reovirus serotypes 1, 2, and 3 in infant and weanling mice. Lab Anim Sci 43: 425–430

    CAS  Google Scholar 

  • Bass DM, Trier JS, Dambrauskas R, Wolf JL (1988) Reovirus type 1 infection of small intestinal epithelium in suckling mice and its effect on M cells. Lab Invest 58: 226–235

    PubMed  CAS  Google Scholar 

  • Bass DM, Bodkin D, Dambrauskas R, Trier JS, Fields BN, Wolf JL (1990) Intraluminal proteolytic activation plays an important role in replication of type 1 reovirus in the intestines of neonatal mice. J Virol 64: 1830–1833

    PubMed  CAS  Google Scholar 

  • Bassel-Duby R, Spriggs DR, Tyler KL, Fields BN (1986) Identification of attenuating mutations on the reovirus type 3 SI double-stranded RNA segment with a rapid sequencing technique. J Virol 60: 64–67

    PubMed  CAS  Google Scholar 

  • Chappell JD, Gums VL, Wetzel JD, Baer GS, Dermody TS (1997) Mutations in type 3 reovirus that determine binding to sialic acid are contained in the fibrous tail domain of viral attachment protein sigma I. J Virol 71: 1834–1841

    PubMed  CAS  Google Scholar 

  • Choi AH, Lee PWK (1988) Does the beta-adrenergic receptor function as a reovirus receptor? Virology 163: 191–197

    Article  PubMed  CAS  Google Scholar 

  • Choi AH, Paul RW, Lee PW (1990) Reovirus binds to multiple plasma membrane proteins of mouse L fibroblasts. Virology 178: 316–320

    Article  PubMed  CAS  Google Scholar 

  • Co MS, Gaulton GN, Fields BN, Greene MI (1985a) Isolation and biochemical characterization of the mammalian reovirus type 3 cell-surface receptor. Proc Natl Acad Sci USA 82: 1494–1498

    Article  PubMed  CAS  Google Scholar 

  • Co MS, Gaulton GN, Tominaga A, Homey CJ, Fields BN, Greene MI (1985b) Structural similarities between the mammalian beta-adrenergic and reovirus type 3 receptors. Proc Natl Acad Sci USA 82: 5315–5318

    Article  PubMed  CAS  Google Scholar 

  • Cohen JA, Williams WV, Weiner DB, Geller HM, Greene MI (1990) Ligand binding to the cell surface receptor for reovirus type 3 stimulates galactocerebroside expression by developing oligodendrocytes. Proc Natl Acad Sci USA 87: 4922–4926

    Article  PubMed  CAS  Google Scholar 

  • Cohen JA, Williams WV, Geller HM, Greene MI (1991) Anti-reovirus receptor antibody accelerates expression of the optic nerve oligodendrocyte developmental program. Proc Natl Acad Sei USA 88: 1266–1270

    Article  CAS  Google Scholar 

  • Cohen JA, Sergott RC, Williams WV, Hill SJ, Brown MJ, Greene MI (1992) In vivo modulation of oligodendrocyte function by an anti-receptor antibody. Pathobiology 60: 151–156

    Article  PubMed  CAS  Google Scholar 

  • Csiza CK (1974) Characterization and serotyping of three feline reovirus isolates. Infect Immun 9: 159–166

    PubMed  CAS  Google Scholar 

  • Davis LE (1982) Experimental viral infection of the inner ear. III. Viremic spread of reovirus to hamster eighth nerve ganglion cells. Ann Otol Rhino’ Laryngol 91: 90–93

    CAS  Google Scholar 

  • Dermody TS, Nibert ML, Bassel-Duby R, Fields BN (1990) A sigma 1 region important for hemagglutination by serotype 3 reovirus strains. J Virol 64: 5173–5176

    PubMed  CAS  Google Scholar 

  • Dichter MA, Weiner HL (1984) Infection of neuronal cell cultures with reovirus mimics in vitro patterns of neurotropism. Ann Neurol 16: 603–610

    Article  PubMed  CAS  Google Scholar 

  • Dichter MA, Weiner HL, Fields BN, Mitchell G, Noseworthy J, Gaulton GN et al (1986) Antiidiotypic antibody to reovirus binds to neurons and protects from viral infection. Ann Neurol 19: 555–558

    Article  PubMed  CAS  Google Scholar 

  • Donta ST, Shanley JD (1990) Reovirus type 3 binds to antagonist domains of the beta-adrenergic receptor. J Virol 64: 639–641

    PubMed  CAS  Google Scholar 

  • Flamand A, Gagner JP, Morrison LA, Fields BN (1991) Penetration of the nervous systems of suckling mice by mammalian reoviruses. J Virol 65: 123–131

    PubMed  CAS  Google Scholar 

  • Gentsch JR, Hatfield JW (1984) Saturable attachment sites for type 3 mammalian reoviruses on murine L cells and human HeLa cells. Virus Res 1: 401–424

    Article  PubMed  CAS  Google Scholar 

  • Gentsch JR, Pacitti AF (1985) Effect of neuraminidase treatment of cells and effects of soluble glycoproteins on type 3 reovirus attachment to murine L cells. J Virol 54: 307–315

    Google Scholar 

  • Gentsch JR, Pacitti AF (1987) Differential interaction of reovirus type 3 with sialylated receptor component on animal cells. Virology 161: 245–248

    Article  PubMed  CAS  Google Scholar 

  • George A, Kost SI, Witzleben CL, Cebra JJ, Rubin DH (1990) Reovirus-induced liver disease in severe combined immunodeficient ( SCID) mice. J Exp Med 171: 929–934

    Article  PubMed  CAS  Google Scholar 

  • Gonatas NK, Margolis G, Kilham L (1971) Reovirus type III encephalitis: observations of virus-cell interactions in neural tissues. II. Electron microscopic studies. Lab Invest 24: 101–109

    PubMed  CAS  Google Scholar 

  • Haller BL, Barkon ML, Vogler GP, Virgin HW (1995a) Genetic mapping of reovirus virulence and organ tropism in severe combined immunodeficient mice: organ-specific virulence genes. J Virol 69: 357–364

    PubMed  CAS  Google Scholar 

  • Haller BL, Barkon ML, Li X-Y, Hu WM, Wetzel JD, Dermody TS et al (1995b) Brain-and intestine-specific variants of reovirus serotype 3 strain Dearing are selected during chronic infection of severe combined immunodeficient mice. J Virol 69: 3933–3937

    PubMed  CAS  Google Scholar 

  • Hrdy DB (1984) Virus infection and primate evolution with special reference to the reoviridae. Thesis, Harvard University

    Google Scholar 

  • Hrdy DB, Rubin DN, Fields BN (1982) Molecular basis of reovirus neurovirulence: role of the M2 gene in avirulence. Proc Natl Acad Sci USA 79: 1298–1302

    Article  PubMed  CAS  Google Scholar 

  • Jayasuriya AK (1991) Molecular characterization of the reovirus M2 gene. Thesis, Harvard University

    Google Scholar 

  • Jenson AB, Rabin ER, Phillips CA, Melnick JL (1965) Reovirus encephalitis in newborn mice: an electron microscopic and virus assay study. Am J Pathol 47: 223–239

    PubMed  CAS  Google Scholar 

  • Johansson PJH, Sveger T, Ahlfors K, Ekstrand J, Svensson L (1996) Reovirus type 1 associated with meningitis. Scand J Infect Dis 28: 117–120

    Article  PubMed  CAS  Google Scholar 

  • Joske RA, Keall DD, Leak PJ, Stanley NF, Walters MN (1964) Hepatitis-encephalitis in humans with reovirus infections. Arch Intern Med 113: 811–816

    PubMed  CAS  Google Scholar 

  • Kauffman RS, Wolf JL, Finberg R, Trier JS, Fields BN (1983) The sigma 1 protein determines the extent of spread of reovirus from the gastrointestinal tract of mice. Virology 124: 403–410

    Article  PubMed  CAS  Google Scholar 

  • Kaye KM, Spriggs DR, Bassel-Duby R, Fields BN, Tyler KL (1986) Genetic basis for altered patho-genesis of an immune-selected antigenic variant of reovirus type 3 Dearing. J Virol 59: 90–97

    PubMed  CAS  Google Scholar 

  • Kilham L, Margolis G (1969) Hydrocephalus in hamsters, ferrets, rats and mice following inoculations with reovirus type 1. I. Virologie studies. Lab Invest 21: 183–188

    CAS  Google Scholar 

  • Krainer L, Aronson BE (1959) Disseminated encephalomyelitis in humans with recovery of hepatoencephalitis virus. J Neuropathol Exp Neurol 18: 339–342

    Google Scholar 

  • Kundin WD, Lin C, Gigstad J (1966) Reovirus infection in suckling mice: immunofluorescent and infectivity studies. J Immunol 97: 393–401

    PubMed  CAS  Google Scholar 

  • Liu J, Co MS, Greene MI (1988) Reovirus type 3 and [125I]-iodocyanopindolol hind to distinct domains on the beta-adrenergic like receptor. Immunol Res 7: 232–238

    Article  PubMed  CAS  Google Scholar 

  • Maratos-Flier. E, Kahn CR, Spriggs DR, Fields BN (1983) Specific plasma membrane receptors for reovirus on rat pituitary cells in culture. J Clin Invest 72: 617–621

    Article  Google Scholar 

  • Maratos-Flier E, Goodman MJ, Fields BN, Kahn CR (1985) Differential effects of viral infection on islet and pituitary cell lines. Endocrinology 116: 2430–2437

    Article  PubMed  CAS  Google Scholar 

  • Margolis G, Kilham L (1969a) Hydrocephalus in hamsters, ferrets, rats, and mice following inoculations with reovirus type 1. II. Pathologic studies. Lab Invest 21: 189–198

    Google Scholar 

  • Margolis G, Kilham L (1969b) Experimental virus-induced hydrocephalus. Relation to pathogenesis of the Arnold-Chiari malformation. J Neurosurgery 31: 1–9

    Article  CAS  Google Scholar 

  • Margolis G, Kilham L, Gonatos N (1971) Reovirus type III encephalitis: observations of virus-cell interactions in neural tissues. I. Light microscopy studies. Lab Invest 24: 91–109

    CAS  Google Scholar 

  • Massie EL, Shaw ED (1966) Reovirus type I in laboratory dogs. Am J Vet Res 27: 783–878

    PubMed  CAS  Google Scholar 

  • Masters C, Alpers M, Kakulas B (1977) Pathogenesis of reovirus type I hydrocephalus in mice: significance of aqueductal changes. Arch Neurol 34: 18–28

    PubMed  CAS  Google Scholar 

  • Milhorat TH, Kotzen RM (1994) Stenosis of the central canal of the spinal cord following inoculation of suckling hamsters with reovirus type 1. J Neurosurgery 81: 103–106

    Article  CAS  Google Scholar 

  • Morin MJ, Warner A, Fields BN (1994) A pathway of entry of reoviruses into the host through M cells of the respiratory tract. J Exp Med 180: 1523–1527

    Article  PubMed  CAS  Google Scholar 

  • Morin MJ, Warner A, Fields BN (1996) Reovirus infection in rat lungs as a model to study the pathogenesis of viral pneumonia. J Virol 70: 541–548

    PubMed  CAS  Google Scholar 

  • Morrison LA, Fields BN (1991) Parallel mechanisms in neuropathogenesis of enteric virus infections. J Virol 65: 2767–2772

    PubMed  CAS  Google Scholar 

  • Morrison LA, Sidman RL, Fields BN (1991) Direct spread of reovirus from the intestinal lumen to the central nervous system through vagal autonomic nerve fibers. Proc Natl Acad Sci USA 88: 3852–3856

    Article  PubMed  CAS  Google Scholar 

  • Morrison LA, Fields BN, Dermody TS (1993) Prolonged replication in the mouse central nervous system of reoviruses isolated from persistently infected cell cultures. J Virol 67: 3019–3026

    PubMed  CAS  Google Scholar 

  • Nepom J, Weiner HL, Dichter MA, Tardieu M, Spriggs DR, Gram M, Powers ML, Fields BN, Greene MI (1982) Identification of a hemagglutinin-specific idiotype associated with reovirus recognition shared by lymphoid and neural cells. J Exp Med 155: 155–167

    Article  PubMed  CAS  Google Scholar 

  • Neutra MR, Kraehenbuhl JP (1992) Transepithelial transport and mucosal defense. I. The role of M cells. Trends Cell Biol 2: 134–138

    Article  PubMed  CAS  Google Scholar 

  • Nielsen SL, Baringer JR (1972) Reovirus-induced aqueductal stenosis in hamsters: phase contrast and electron microscopic studies. Lab Invest 27: 531–537

    PubMed  CAS  Google Scholar 

  • Oberhaus SM, Smith RL, Clayton GH, Dermody TS, Tyler KL (1997) Reovirus infection and tissue injury in the mouse central nervous system are associated with apoptosis. J Virol 71: 2100–2106

    PubMed  CAS  Google Scholar 

  • Onodera T, Toniolo A, Ray UR, Jenson AB, Knazek RA, Notkins AL (1981) Virus-induced diabetes mellitus. XX. Polyendocrinopathy and autoimmunity. J Exp Med 153: 1457–1473

    Article  PubMed  CAS  Google Scholar 

  • Papadimitriou JM (1967) An electron microscopic study of murine reovirus 3 encephalitis. Am J Pathol 50: 59–75

    PubMed  CAS  Google Scholar 

  • Paul RW, Lee PWK (1987) Glycophorin is the reovirus receptor on human erythrocytes. Virology 159: 94–101

    Article  PubMed  CAS  Google Scholar 

  • Paul RW, Choi AH, Lee PWK (1989) The alpha-anomeric form of sialic acid is the minimal receptor determinant recognized by reovirus. Virology 172: 382–385

    Article  PubMed  CAS  Google Scholar 

  • Phillips PA, Alpers MP, Stanley NF (1970) Hydrocephalus in mice inoculated neonatally by the oronasal route with reovirus type 1. Science 168: 858–859

    Article  PubMed  CAS  Google Scholar 

  • Raine CS, Fields BN (1973) Ultrastructural features of reovirus type 3 encephalitis. J Neuropathol Exp Neurol 32: 19–33

    Article  PubMed  CAS  Google Scholar 

  • Rubin DH, Wetzel JD, Williams WV, Cohen JA, Dworkin C, Dermody TS (1992) Binding of type 3 reovirus by a domain of the sigma I protein important for hemagglutination leads to infection of murine erythroleukemia cells. J Clin Invest 90: 2536–2542

    Article  PubMed  CAS  Google Scholar 

  • Sabin AB (1959) Reoviruses. Science 130: 1387–1389

    CAS  Google Scholar 

  • Sawutz DG, Bassel-Duby R, Homey CJ (1987) High affinity binding of reovirus type 3 to cells that lack beta adrenergic receptor activity. Life Sci 40: 399–406

    Article  PubMed  CAS  Google Scholar 

  • Sicinski P, Rowinski J, Warchol JB, Jarzcahek Z, Gut W, Szczygiel B et al (1990) Poliovirus type 1 enters the human host through intestinal M cells. Gastroenterology 98: 56–58

    PubMed  CAS  Google Scholar 

  • Spriggs DR, Fields BN (1982) Attenuated type 3 strains generated by selection of hemagglutinin antigenic variants. Nature 297: 68–70

    Article  PubMed  CAS  Google Scholar 

  • Spriggs DR, Bronson RT, Fields BN (1983) Hemagglutinin variants of reovirus type 3 have altered central nervous system tropism. Science 220: 505–507

    Article  PubMed  CAS  Google Scholar 

  • Stanley NF, Dorman DC, Ponsford J (1953) Studies on the pathogenesis of a hitherto undescribed virus (hepato-encephalomyelitis) producing unusual symptoms in suckling mice. Aust J Exp Biol 31: I47–160

    Google Scholar 

  • Stanley NF, Dorman DC, Ponsford J (1954) Studies on the hepato-encephalomyelitis virus ( HEV ). Aust J Exp Biol 32: 543–562

    Article  CAS  Google Scholar 

  • Stanley NF. Leak PJ, Walters MN, Joske RA (1964) Murine infection with reovirus. II. The chronic disease following reovirus type 3 infection. Br J Exp Pathol 45: 142–149

    PubMed  CAS  Google Scholar 

  • Strong JE, Tang D, Lee PWK (1993) Evidence that the epidermal growth factor receptor on host cells confers reovirus infection efficiency. Virology 197: 405–411

    Article  PubMed  CAS  Google Scholar 

  • Szirmai I, Antalicz M, Trombitas K, Kuntar L, Gati I (1983) Adult onset rapidly progressive spinal muscle atrophy of shoulder girdle with gammopathy. Clinical Neuropathol 2: 128–133

    CAS  Google Scholar 

  • Tang D, Strong JE, Lee PWK (1993) Recognition of the epidermal growth factor receptor by reovirus. Virology 197: 412–414

    Article  PubMed  CAS  Google Scholar 

  • Tardieu M, Weiner HL (1982) Viral receptors on isolated murine and human ependymal cells. Science 215: 419–421

    Article  PubMed  CAS  Google Scholar 

  • Tardieu M, Powers ML, Weiner HL (1983) Age-dependent susceptibility to reovirus type 3 encephalitis: role of viral and host factors. Ann Neurol 13: 602–607

    Article  PubMed  CAS  Google Scholar 

  • Tyler KL (1991) Pathogenesis of reovirus infections of the central nervous system. Semis Neurosci 3: 117–124

    Article  Google Scholar 

  • Tyler KL, Fields BN (1988) Reovirus infections of the central nervous system. In: Johnson RT. Lyon G (eds) Virus infections of the developing nervous system. Kluwer, Dordrecht, pp 11–19

    Chapter  Google Scholar 

  • Tyler KL, Fields,BN (1996) Reoviruses. In: Fields BN, Knipe DM (eds) Fields’ virology. Raven, New York, pp 1597–1623

    Google Scholar 

  • Tyler KL, Bronson RT, Byers KB, Fields BN (1985) Molecular basis of viral neurotropism: experimental reovirus infection. Neurology 35: 88–92

    PubMed  CAS  Google Scholar 

  • Tyler KL, McPhee DA, Fields BN (1986) Distinct pathways of viral spread in the host determined by reovirus SI gene segment. Science 233: 770–774

    Article  PubMed  CAS  Google Scholar 

  • Tyler KL, Virgin HW IV, Bassel-Duby R, Fields BN (1989) Antibody inhibits defined stages in the pathogenesis of reovirus serotype 3 infection of the central nervous system. J Exp Med 170: 887–900

    Article  PubMed  CAS  Google Scholar 

  • Tyler KL, Mann MA, Fields BN, Virgin HW IV (1993) Protective anti-reovirus monoclonal antibodies and their effects on viral pathogenesis. J Virol 67: 3446–3453

    PubMed  CAS  Google Scholar 

  • Van Tongeren HAE (1957) A familial infection with hepatoencephalomyelitis virus in the Netherlands: study on some properties of the infective agent. Arch Gesamt Virusforsch 7: 429–448

    Article  Google Scholar 

  • Virgin HW IV, Bassel-Duby R, Fields BN, Tyler KL (1988) Antibody protects against lethal infection with the neurally spreading Reovirus type 3 ( Dearing ). J Virol 62: 4594–4604

    PubMed  CAS  Google Scholar 

  • Virgin HW IV, Tyler KL, Dermody TS (1997) Reovirus. In: Nathanson N (ed) Viral pathogenesis. Lippincott-Raven, New York, pp 669–699

    Google Scholar 

  • Walters MN, Joske RA, Leak PJ, Stanley NF (1963) Murine infection with reovirus. I. Pathology of the acute phase. Br J Exp Pathol 44: 427–436

    PubMed  CAS  Google Scholar 

  • Walters MN, Leak PJ, Joske RA, Stanley NF, Perret DH (1965) Murine infection with reovirus. III. Pathology of infection with types 1 and 2. Br J Exp Pathol 46: 200–212

    PubMed  CAS  Google Scholar 

  • Weiner FIL, Drayna D, Averill DRJR, Fields BN (1977) Molecular basis of reovirus virulence: role of the SI gene. Proc Natl Acad Sci USA 74: 5744–5748

    Article  PubMed  CAS  Google Scholar 

  • Weiner HL, Powers ML, Fields BN (1980) Absolute linkage of virulence and central nervous system tropism of reoviruses to viral hemagglutinin. J Infect Dis 141: 609–616

    Article  PubMed  CAS  Google Scholar 

  • Wessner DR (1991) Isolation and characterization of ethanol resistant mutants of reovirus. Thesis, Harvard University

    Google Scholar 

  • Wessner DR, Fields BN (1993) Isolation and genetic characterization of ethanol-resistant reovirus mutants. J Virol 67: 2442–2447

    PubMed  CAS  Google Scholar 

  • Wolf JL, Rubin DH, Finberg R. Kauffman RS, Sharpe AH, Trier JS et al (1981) Intestinal M cells: a pathway of entry of reovirus into the host. Science 212: 471–472

    Article  PubMed  CAS  Google Scholar 

  • Wolf JL, Kauffman RS, Finberg R, Dambrauskas R, Fields BN (1983) Determinants of reovirus in-teraction with intestinal M cells and absorptive cells of murine intestine. Gastroenterology 85: 291–300

    PubMed  CAS  Google Scholar 

  • Wolf JL, Dambrauskas R, Sharpe AH, Trier JS (1987) Adherence to and penetration of the intestinal epithelium by reovirus type 1 in neonatal mice. Gastroenterology 92: 82–91

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tyler, K.L. (1998). Pathogenesis of Reovirus Infections of the Central Nervous System. In: Tyler, K.L., Oldstone, M.B.A. (eds) Reoviruses II. Current Topics in Microbiology and Immunology, vol 233/2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72095-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72095-6_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-72097-0

  • Online ISBN: 978-3-642-72095-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics