Skip to main content

Part of the book series: Yearbook of Intensive Care and Emergency Medicine ((YEARBOOK,volume 1998))

Abstract

Mechanical ventilation is an indispensable supportive intervention in intensive care medicine. However, ventilatory support can have a number of adverse sequelae directly on the lung, and indirectly on distal organs. In this review, we examine the manifestations and proposed pathophysiology of ventilator-induced injury, as well as the rationale behind several ventilatory strategies that have been suggested to minimize or prevent ventilator associated morbidity and mortality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Macklin MT, Macklin CC (1944) Malignant interstitial emphysema of the lungs and mediastinum as an important occult complication in many respiratory diseases and other conditions: An interpretation of the clinical literature in the light of laboratory experiment. Medicine 23: 281–352

    Article  Google Scholar 

  2. Bouhuys A (1969) Physiology and musical instruments. Nature 221: 1199–1204

    Article  PubMed  CAS  Google Scholar 

  3. Gammon RB, Shin MS, Groves RH,Jr, Hardin MJ, Hsu C, Buchalter SE (1995) Clinical risk factors for pulmonary barotrauma: A multivariate analysis. Am J Respir Crit Care Med 152: 1235–1240

    PubMed  CAS  Google Scholar 

  4. Rouby J J, Lherm T,, de Lassale EM et al (1993) Histologic aspects of pulmonary barotrauma in critically ill patients with acute respiratory failure. Intensive Care Med 19: 383–389

    Article  PubMed  CAS  Google Scholar 

  5. Petersen GW, Baier H (1983) Incidence of pulmonary barotrauma in a medical ICU. Crit Care Med 11: 67–69

    Article  PubMed  CAS  Google Scholar 

  6. Webb HH, Tierney DF (1974) Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressures. Protection by positive end-expiratory pressure. Am Rev Respir Dis 110: 556–565

    PubMed  CAS  Google Scholar 

  7. Kolobow T, Moretti MP, Fumagalli R, et al (1987) Severe impairment in lung function induced by high peak airway pressure during mechanical ventilation. Am Rev Respir Dis 135: 312–315

    PubMed  CAS  Google Scholar 

  8. Tsuno K, Miura K, Takeya M, Kolobow T, Morioka T (1991) Histopathologic pulmonary changes from mechanical ventilation at high peak airway pressures. Am Rev Respir Dis 143: 1115–1120

    PubMed  CAS  Google Scholar 

  9. Parker JC, Hernandez LA, Longenecker GL, Peevy K, Johnson W (1990) Lung edema caused by high peak inspiratory pressures in dogs. Am Rev Respir Dis 142: 321–328

    PubMed  CAS  Google Scholar 

  10. Greenfield LJ, Ebert PA, Benson DW (1964) Effect of positive pressure ventilation on surface tension properties of lung extracts. Anesthesiology 25: 312–316

    Article  PubMed  CAS  Google Scholar 

  11. Faridy EE, Permutt S, Riley RL (1966) Effect of ventilation on surface forces in excised dogs’ lungs. J Appl Physiol 21: 1453–1462

    PubMed  CAS  Google Scholar 

  12. Moon VH (1948) The pathology of secondary shock. Am J Pathol 24: 235–273

    PubMed  CAS  Google Scholar 

  13. Teplitz C (1976) The core pathobiology and integrated medical science of adult acute respiratory insufficiency. Surg Clin North Am 56: 1091–1133

    PubMed  CAS  Google Scholar 

  14. Finfer S, Rocker G (1996) Alveolar overdistension is an important mechanism of persistent lung damage following severe protracted ARDS. Anaesth Intensive Care 24: 569–573

    PubMed  CAS  Google Scholar 

  15. Gattioni L, Bombino M, Pelosi P, et al (1994) Lung structure and function in different stages of severe adult respiratory distress syndrome. JAMA 271: 1772–1779

    Article  Google Scholar 

  16. Dreyfuss D, Saumon G (1993) Role of tidal volume, FRC, and end-inspiratory volume in the development of pulmonary edema following mechanical ventilation. Am Rev Respir Dis 148: 1194–1203

    PubMed  CAS  Google Scholar 

  17. Hernandez LA, Peevy KJ, Moise AA, Parker JC (1989) Chest wall restriction limits high airway pressure-induced lung injury in young rabbits. J Appl Physiol 66: 2364–2368

    PubMed  CAS  Google Scholar 

  18. Carlton DP, Cummings JJ, Scheerer RG, Poulain FR, Bland RD (1990) Lung overexpansion increases pulmonary microvascular protein permeability in young lambs. J Appl Physiol 69: 577–583

    PubMed  CAS  Google Scholar 

  19. Dreyfuss D, Soler P, Basset G, Saumon G (1988) High inflation pressure pulmonary edema. Respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure. Am Rev Respir Dis 137: 1159–1164

    PubMed  CAS  Google Scholar 

  20. West JB, Tsukimoto K, Prediletto R (1991) Stress failure in pulmonary capillaries. J Appl Physiol 70: 1731–1742

    PubMed  CAS  Google Scholar 

  21. Tsukimoto K, Mathieu-Costello O, Prediletto R, Elliot AR, West JB (1991) Ultrastructural appearances of pulmonary capillaries at high transmural pressures. J Appl Physiol 71: 573–582

    PubMed  CAS  Google Scholar 

  22. Dreyfuss D, Soler P, Saumon G (1992) Spontaneous resolution of pulmonary edema caused by short periods of cyclic overinflation. J Appl Physiol 72: 2081–2089

    PubMed  CAS  Google Scholar 

  23. Fu Z, Costello ML, Tsukimoto K, et al (1992) High lung volume increases stress failure in pulmonary capillaries. J Appl Physiol 73: 123–133

    PubMed  CAS  Google Scholar 

  24. Cooper JA, Van der Zee H, Line BR, Malik AB (1987) Relationship of end-expiratory pressure, lung volume, and ppTc-DTPA clearance. J Appl Physiol 63: 1586–1590

    PubMed  CAS  Google Scholar 

  25. Marks JD, Luce JM, Lazar NM, Wu JN, Lipavsky A, Murray JF (1985) Effect of increases in lung volume on clearance of aerosolized solute from human lungs. J Appl Physiol 59: 1242–1248

    PubMed  CAS  Google Scholar 

  26. Nolop KB, Maxwell DL, Royston D, Hughes JMB (1986) Effect of raised thoracic pressure and volume on clearance of aerosolized solute from human lungs. J Appl Physiol 60: 1493–1497

    Article  PubMed  CAS  Google Scholar 

  27. Mead J, Takishima T, Leith D (1970) Stress distribution in lungs: a model of pulmonary elasticity. J Appl Physiol 28: 596–608

    PubMed  CAS  Google Scholar 

  28. Gattinoni L, D’Andrea L, Pelosi P, Vitale G, Pesenti A, Fumagalli R (1993) Regional effects and mechanism of positive end-expiratory pressure in early adult respiratory distress syndrome. JAMA 269: 2122–2127

    Article  PubMed  CAS  Google Scholar 

  29. Gaver DPI, Samsel RW, Solway J (1990) Effects of surface tension and viscosity on airway reopening. J Appl Physiol 69: 74–85

    PubMed  Google Scholar 

  30. Robertson B (1984) Lung surfactant. In: Robertson B, Van Golde L, Batenburg J (eds) Pulmonary surfactant. Elsevier, Amsterdam

    Google Scholar 

  31. Muscedere JG, Mullen JBM, Gan K, Slutsky AS (1994) Tidal ventilation at low airway pressures can augment lung injury. Am J Respir Crit Care Med 149: 1327–1334

    PubMed  CAS  Google Scholar 

  32. Argiras EP, Blakely CR, Dunnill MS, Otremski S, Sykes MK (1987) High PEEP decreases hyaline membrane formation in surfactant deficient lungs. Br J Anaesth 59: 1278–1285

    Article  PubMed  CAS  Google Scholar 

  33. Kawano T, Mori S, Cybulsky M, et al (1987) Effect of granulocyte depletion in a ventilated surfactant-depleted lung. J Appl Physiol 62: 27–33

    PubMed  CAS  Google Scholar 

  34. Pison U, Max M, Neuendank A, Weibbach S, Pietschmann S (1994) Host defence capacities of pulmonary surfactant: evidence for ‘non-surfactant’ functions of the surfactant system. Eur J Clin Invest 24: 586–599

    Article  PubMed  CAS  Google Scholar 

  35. Froese AB, McCulloch PR, Sugiura M, Vaclavik S, Possmayer F, Moller F (1993) Optimizing alveolar expansion prolongs the effectiveness of exogenous surfactant therapy in the adult rabbit. Am Rev Respir Dis 148: 569–577

    Article  PubMed  CAS  Google Scholar 

  36. Massaro D, Clerch L, Massaro GD (1981) Surfactant aggregation in rat lungs: influence of temperature and ventilation. Appl Physiol 51: 646–653

    CAS  Google Scholar 

  37. Nicholas TE,Barr HA (1983) The release of surfactant in rat lungs by brief periods of hyperventilation. Respir Physiol 52: 69–83

    Article  Google Scholar 

  38. Ito Y, Veldhuizen RAW, Yao L, McCaig LA, Bartlett AJ, Lewis JF (1997) Ventilation strategies affect surfactant aggregate conversion in acute lung injury. Am J Respir Crit Care Med 155: 493–499

    PubMed  CAS  Google Scholar 

  39. Brown ES, Johnson RP, Clements JA (1959) Pulmonary surface tension. J Appl Physiol 14: 717–720

    PubMed  CAS  Google Scholar 

  40. Faridy EE (1976) Effect of ventilation on movement of surfactant in airways. Respir Physiol 27: 323–334

    Article  PubMed  CAS  Google Scholar 

  41. Wyszogrodski I, Kyei-Aboagye K,Taeusch W, Avery ME (1975) Surfactant inactivation by hyperventilation: conservation by end-expiratory pressure. J Appl Physiol 38: 461–466

    CAS  Google Scholar 

  42. Coker PJ, Hernandez LA, Peevy KJ, Adkins K, Parker JC (1992) Increased sensitivity to mechanical ventilation after surfactant inactivation in young rabbit lungs. Crit Care Med 20: 635–640

    Article  PubMed  CAS  Google Scholar 

  43. Bowton DL, Kong DL (1989) High tidal volume ventilation produces increased lung water in oleic acid-injured rabbit lungs. Crit Care Med 17: 908–911

    Article  PubMed  CAS  Google Scholar 

  44. Bshouty Z, Ali J,Younes M (1988) Effect of tidal volume and PEEP on rate of edema formation in in situ perfused canine lobes. J Appl Physiol 64: 1900–1907

    CAS  Google Scholar 

  45. Sugiura M, McCulloch PR, Wren S, Dawson RH, Froese AB (1994) Ventilator pattern influences neutrophil influx and activation in atelectasis-prone rabbit lung. J Appl Physiol 77: 1355–1365

    PubMed  CAS  Google Scholar 

  46. Matsuoka T, Kawano T, Miyasaka K (1994) Role of high-frequency ventilation in surfactant-depleted lung injury as measured by granulocytes. J Appl Physiol 76: 539–544

    PubMed  CAS  Google Scholar 

  47. Imai Y, Kawano T, Miyasaka K, Takata M, Imai T, Okuya K (1994) Inflammatory chemical mediators during conventional ventilation and during high frequency oscillatory ventilation. Crit Care Med 150: 1550–1554

    CAS  Google Scholar 

  48. Tremblay L, Valenza F, Ribeiro SP, Li J, Slutsky AS (1997) Injurious ventilatory strategies increase cytokines and c-fos m-RNA expression in an isolated rat lung model. J Clin Invest 99: 944–952

    Article  PubMed  CAS  Google Scholar 

  49. Narimanbekov IO, Rozycki HJ (1995) Effect of II-1 blockade on inflammatory manifestations of acute ventilator-induced lung injury in a rabbit model. Exper Lung Research 21: 239–254

    Article  CAS  Google Scholar 

  50. Donnelly SC, Haslett C (1992) Cellular mechanisms of acute lung injury implications for future treatment of the adult respiratory distress syndrome. Thorax 47: 260–263

    Article  PubMed  CAS  Google Scholar 

  51. Spragg RG, Smith RM (1992) Biology of acute lung injury. In: Crystal RG, West JB (eds) Lung Injury. Raven Press, New York, pp 243–257

    Google Scholar 

  52. de Latorre FJ, Tomasa A, Klamburg J, Leon C, Soler M, Rius J (1977) Incidence of pneumothorax and pneumomediastinum in patients with aspiration pneumonia requiring ventilatory support. Chest 72: 141–144

    Article  PubMed  Google Scholar 

  53. Hernandez LA, Coker PJ, May S, Thompson AL, Parker JC (1990) Mechanical ventilation increases microvascular permeability in oleic acid-injured lungs. J Appl Physiol 69: 2057–2061

    PubMed  CAS  Google Scholar 

  54. Gattinoni L, Pesenti A, Torresin A, et al (1986) Adult respiratory distress syndrome profiles by computed tomography. J Thorac Imag 1: 25–30

    Article  CAS  Google Scholar 

  55. Gammanpila S, Bevan DR, Bhudu R (1977) Effect of positive and negative expiratory pressure on renal function. Br J Anaesth 49: 199–204

    Article  PubMed  CAS  Google Scholar 

  56. Love R, Choe E, Lippton H, Flint L, Steinberg S (1995) Positive end-expiratory pressure decreases mesenteric blood flow despite normalization of cardiac output. J Trauma Injury Infect Crit Care 39: 195–199

    Article  CAS  Google Scholar 

  57. Bezzant TB, Mortensen JD (1994) Risks and hazards of mechanical ventilation: A collective re-view of published literature. Disease-a-Month XL: 581–640

    Google Scholar 

  58. Tutor JD, Mason CM, Dobard E, Beckerman RC, Summer WR, Nelson S (1994) Loss of compartmentalization of alveolar tumor necrosis factor after lung injury. An J Respir Crit Care Med 149: 1107–1111

    CAS  Google Scholar 

  59. Uhlig S, Bethmann AN (1997) Prolonged hyperventilation is required for release of tumor necrosis factor a, but not interleukin-6 from isolated perfused mouse lung. Am J Respir Crit Care Med 155: A320 (Abst)

    Google Scholar 

  60. Bone RC (1996) Toward a theory regarding the pathogenesis of the systemic inflammatory response syndrome: What we do and do not know about cytokine regulation. Crit Care Med 24: 163–172

    Article  PubMed  CAS  Google Scholar 

  61. Roumen RMH, Redl H, Schlag G, et al (1995) Inflammatory mediators in relation to the development of multiple organ failure in patients after severe blunt trauma. Crit Care Med 23: 474–480

    Article  PubMed  CAS  Google Scholar 

  62. Nahum A, Hoyt J, McKibben A, et al (1996) Effect of mechanical ventilation strategy on E. coli pneumonia in dogs. Am J Respir Crit Care Med 153: A530 (Abst)

    Google Scholar 

  63. Guery B, Neviere R, Fialdes P, et al (1997) Mechanical ventilation regimen induces intestinal permeability changes in a rat model. Am J Respir Crit Care Med 155: A505 (Abst)

    Google Scholar 

  64. Borelli M, Kolobow T, Spatola R, Prato P, Tsuno K (1988) Severe acute respiratory failure managed with continuous positive airway pressure and partial extracorporeal carbon dioxide removal by an artificial membrane lung. Am Rev Respir Dis 138: 1480–1487

    PubMed  CAS  Google Scholar 

  65. Amato MB, Barbas CS, Filho GL, et al (1996) Improved survival in ARDS: Beneficial effects of a lung protective strategy. Am J Respir Crit Care Med 153: A531 (Abst)

    Google Scholar 

  66. Slutsky AS (1994) Consensus conference on mechanical ventilation. Intensive Care Med 20: 64–79

    Article  PubMed  CAS  Google Scholar 

  67. Pelosi P, Cereda M, Foti G, Giacomini M, Pesenti A (1995) Alterations of lung and chest wall mechanics in patients with acute lung injury: Effects of positive end-expiratory pressure. Am J Respir Crit Care Med 152: 531–537

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tremblay, L.N., Slutsky, A.S. (1998). Mechanical Ventilation-Induced Injury. In: Vincent, JL. (eds) Yearbook of Intensive Care and Emergency Medicine 1998. Yearbook of Intensive Care and Emergency Medicine, vol 1998. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72038-3_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72038-3_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63798-1

  • Online ISBN: 978-3-642-72038-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics