Skip to main content

Troponin C and Calmodulin as Calcium Receptors: Mode of Action and Sensitivity to Drugs

  • Chapter
Calcium in Drug Actions

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 83))

Abstract

The first suggestion of the essential role of Ca2+ was made in cardiac muscle research more than a century ago, in 1883, and the second, more direct indication came from a study on skeletal muscle in 1940. Studies of Ca2+ as the intracellular regulator were, until recently, almost exclusively confined to muscle, so the history of Ca research in muscle is per se that of the early stage of Ca research in general. A brief history is given in Sect. B. The discovery of troponin (TN) in 1965, the first Ca receptor protein, provided a firm basis for the Ca concept in muscle. The subsequent discovery of calmodulin (CaM) around 1970 emancipated Ca2+ from muscle. Now Ca2+ is the common interest of all biological scientists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Ashley CC, Moisescu DG (1977) Effect of changing the composition of the bathing solutions upon the isometric tension-pCa relationship in bundles of crustacean myofibrils. J Physiol 270:627–652

    PubMed  CAS  Google Scholar 

  • Babu YS, Sack JS, Greenhough TJ, Bugg CE, Means AR, Cook WJ (1985) Three-dimensional structure of calmodulin. Nature 315:37–40

    PubMed  CAS  Google Scholar 

  • Blumenthal DK, Stull JT (1980) Activation of skeletal muscle myosin light chain kinase by calcium (2+) and calmodulin. Biochemistry 19:5608–5614

    PubMed  CAS  Google Scholar 

  • Boström S-L, Ljung B, Mârdh S, Forsen S, Thulin E (1981) Interaction of the antihypertensive drug felodipine with calmodulin. Nature 292:777–778

    PubMed  Google Scholar 

  • Bozler E (1954) Relaxation in extracted muscle fibers. J Gen Physiol 38:149–159

    PubMed  CAS  Google Scholar 

  • Brandt PW, Cox RN, Kawai M (1980) Can the binding of Ca2+ to two regulatory sites on troponin C determine the steep pCa/tension relationship of skeletal muscle? Proc Natl Acad Sci USA 77:4717–4720

    PubMed  CAS  Google Scholar 

  • Bremel RD, Weber A (1972) Cooperation within actin filament in vertebrate skeletal muscle. Nature New Biol 238:97–101

    PubMed  CAS  Google Scholar 

  • Burger D, Cox JA, Fischer EH, Stein EA (1982) The activation of rabbit skeletal muscle Phosphorylase kinase requires the binding of 3 Ca2 + per δ subunit. Biochem Biophys Res Commun 105:632–638

    PubMed  CAS  Google Scholar 

  • Burger D, Stein EA, Cox JA (1983) Free energy coupling in the interactions between Ca2+, calmodulin, and Phosphorylase kinase. J Biol Chem 258:14733–14739

    PubMed  CAS  Google Scholar 

  • Burger D, Cox JA, Comte M, Stein EA (1984) Sequential conformational changes in calmodulin upon binding of calcium. Biochemistry 23:1966–1971

    CAS  Google Scholar 

  • Burtnick LD, Kay CM (1977) The calcium-binding properties of bovine cardiac troponin C. FEBS Lett 75:105–110

    PubMed  CAS  Google Scholar 

  • Charbonneau H, Cormier MJ (1979) Purification of plant calmodulin by fluphenazine-se-pharose affinity chromatography. Biochem Biophys Res Commun 90:1039–1047

    PubMed  CAS  Google Scholar 

  • Cheung WY (1970) Cyclic 3′, 5′-nucleotide phosphodiesterase: demonstration of an activator. Biochem Biophys Res Commun 38:533–538

    PubMed  CAS  Google Scholar 

  • Cheung WY (ed) (1980) Calcium and cell function, vol I. Calmodulin. Academic, New York

    Google Scholar 

  • Cheung WY, Lynch TJ, Wallace RW, Tallant EA (1981) cAMP renders Ca2+-dependent phosphodiesterase refractory to inhibition by a calmodulin-binding protein (calci-neurin). J Biol Chem 256:4439–4443

    PubMed  CAS  Google Scholar 

  • Comte M, Maulet Y, Cox JA (1983) Ca2+-dependent high-affinity complex formation between calmodulin and melittin. Biochem J 209:269–272

    PubMed  CAS  Google Scholar 

  • Cox JA, Malnoë A, Stein EA (1981) Regulation of brain cyclic nucleotide phosphodiesterase by calmodulin: a quantitative analysis. J Biol Chem 256:3218–3222

    PubMed  CAS  Google Scholar 

  • Cox JA, Comte M, Malnoë A (1984) Mode of action of the regulatory protein calmodulin. In: Sigel H (ed) Metal ions in biological systems, vol 17. Calcium and its role in biology. Dekker, New York, pp 215–273

    Google Scholar 

  • Cox JA, Comte M, Fitton JE, DeGrado WF (1985) The interaction of calmodulin with am-phiphilic peptides. J Biol Chem 260:2527–2534

    PubMed  CAS  Google Scholar 

  • Crouch TH, Klee CB (1980) Positive cooperative binding of calcium to bovine brain calmodulin. Biochemistry 19:3692–3698

    PubMed  CAS  Google Scholar 

  • Crouch TH, Holroyde MJ, Collins JH, Solaro J, Potter JD (1981) Interaction of calmodulin with skeletal muscle myosin light chain kinase. Biochemistry 20:6318–6325

    PubMed  CAS  Google Scholar 

  • Dedman JR, Potter JD, Jackson RL, Johnson JD, Means AR (1977) Physicochemical properties of rat testis Ca2+-dependent regulator protein of cyclic nucleotide phosphodiesterase: relationship of Ca2+-binding, conformational changes, and phosphodiesterase activity. J Biol Chem 252:8415–8422

    PubMed  CAS  Google Scholar 

  • Deuticke HJ (1934) Über die Sedimentationskonstante von Muskelproteinen. Hoppe Sey-lers Z Physiol Chem 224:216–228

    CAS  Google Scholar 

  • Donaldson SKB, Hermansen L (1978) Differential, direct effects of H+ on Ca2+-activated force of skinned fibers from the soleus, cardiac and adductor magnus muscles of rabbits. Pflugers Arch 376:55–65

    PubMed  CAS  Google Scholar 

  • Ebashi S (1959) The mechanism of relaxation in glycerinated muscle fiber (in Japanese). In: Natori R (ed) IVth symposium on physicochemistry of biomacromolecules, 1958. Nanko-do, Tokyo, pp 25–34

    Google Scholar 

  • Ebashi S (1960) Calcium binding and relaxation in the actomyosin system. J Biochem 48:150–151

    CAS  Google Scholar 

  • Ebashi S (1961) Calcium binding activity of vesicular relaxing factor. J Biochem 50:236–244

    CAS  Google Scholar 

  • Ebashi S (1963) Third component participating in the superprecipitation of “natural actomyosin”. Nature 200:1010–1011

    PubMed  CAS  Google Scholar 

  • Ebashi S (1974) Regulatory mechanism of muscle contraction with special reference to the Ca-troponin-tropomyosin system. Essays Biochem 10:1–36

    PubMed  CAS  Google Scholar 

  • Ebashi S, Endo M (1968) Calcium ion and muscle contraction. Prog Biophys Mol Biol 18:123–183

    PubMed  CAS  Google Scholar 

  • Ebashi S, Kodama A (1965) A new protein factor promoting aggregation of tropomyosin. J Biochem 58:107–108

    PubMed  CAS  Google Scholar 

  • Ebashi S, Lipmann F (1962) Adenosine triphosphate-linked concentration of calcium ions in a particulate fraction of rabbit muscle. J Cell Biol 14:389–400

    PubMed  CAS  Google Scholar 

  • Ebashi S, Kodama A, Ebashi F (1968) Troponin. I. Preparation and physiological function. J Biochem 64:465–477

    PubMed  CAS  Google Scholar 

  • Endo M (1972) Stretch-induced increase in activation of skinned muscle fibres by calcium. Nature New Biol 237:211–213

    PubMed  CAS  Google Scholar 

  • Endo M (1973) Length dependence of activation of skinned muscle fibres by calcium. Cold Spring Harbor Symp Quant Biol 37:505–510

    CAS  Google Scholar 

  • Endo M, Kitazawa T (1978) Excitation-contraction coupling in chemically skinned fibers of cardiac muscle. In: Hayase S, Murao S (eds) Proceedings of the VIII world congress on cardiology. Excerpta Medica, Amsterdam, pp 800–803

    Google Scholar 

  • Fabiato A (1981) Myoplasmic free calcium concentration reached during the twitch of an intact isolated cardiac cell and during calcium-induced release of calcium from the sarcoplasmic reticulum of a skinned cardiac cell from the adult rat or rabbit ventricle. J Gen Physiol 78:457–497

    PubMed  CAS  Google Scholar 

  • Fabiato A, Fabiato F (1975) Effects of magnesium on contractile activation of skinned cardiac cells. J Physiol 249:497–517

    PubMed  CAS  Google Scholar 

  • Fabiato A, Fabiato F (1978 a) Effects of pH on the myofilaments and the sarcoplasmic reticulum of skinned cells from cardiac and skeletal muscles. J Physiol 276:233–255

    PubMed  CAS  Google Scholar 

  • Fabiato A, Fabiato F (1978 b) Myofilament-generated tension oscillations during partial calcium activation and activation dependence of the sarcomere length-tension relation of skinned cardiac cells. J Gen Physiol 72:667–699

    PubMed  CAS  Google Scholar 

  • Feuer G, Moinar F, Pettko E, Straub FB (1948) Studies on the composition and polymerisation of actin. Hungar Acta Physiol 1:150–163

    PubMed  CAS  Google Scholar 

  • Fuchs F (1977) Cooperative interactions between calcium binding sites on glycerinated muscle fibres: the influence of cross-bridge attachments. Biochim Biophys Acta 462:314–322

    PubMed  CAS  Google Scholar 

  • Fuchs F, Fox C (1982) Parallel measurements of bound calcium and force in glycerinated rabbit psoas muscle fibers. Biochim Biophys Acta 679:110–115

    PubMed  CAS  Google Scholar 

  • Giedroc DP, Keravis TM, Staros JV, Ling N, Wells JN, Puet D (1985) Functional properties of covalent β-endorphin peptide/calmodulin complexes. Chlorpromazine binding and phosphodiesterase activation. Biochemistry 24:1203–1211

    PubMed  CAS  Google Scholar 

  • Gillis JM (1980) The biological significance of muscle parvalbumins. In: Siegel FL, Carafoli E, Kretzinger RH, MacLennan DH, Wasserman RH (eds) Calcium binding proteins: structure and function. Elsevier, Amsterdam, pp 309–311

    Google Scholar 

  • Gillis JM, Thomason D, Lefèvre J, Kretsinger RH (1982) Parvalbumins and muscle relaxation: a computer simulation study. J Muscle Res Cell Motil 3:377–398

    PubMed  CAS  Google Scholar 

  • Godt RE, Lindley BD (1982) Influence of temperature upon contractile activation and isometric force production in mechanically skinned muscle fibers of the frog. J Gen Physiol 80:279–297

    PubMed  CAS  Google Scholar 

  • Gordon AM, Godt RE, Donaldson SKB, Harris CE (1973) Tension in skinned frog muscle fibers in solutions of varying ionic strength and neutral salt composition. J Gen Physiol 62:550–574

    PubMed  CAS  Google Scholar 

  • Grabarek Z, Grabarek J, Leavis PC, Gergely J (1983) Cooperative binding to the Ca2+-specific sites of troponin C in regulated actin and actomyosin. J Biol Chem 258:14098–14102

    PubMed  CAS  Google Scholar 

  • Gulati J, Babu A (1985) Contraction kinetics of intact and skinned frog muscle fibers and degree of activation. Effects of intracellular Ca2+ on unloaded shortening. J Gen Physiol 86:479–500

    PubMed  CAS  Google Scholar 

  • Gulati J, Podolsky RJ (1978) Contraction transients of skinned muscle fibers: effects of calcium and ionic strength. J Gen Physiol 72:701–716

    PubMed  CAS  Google Scholar 

  • Haiech J, Klee CB, Demaille JG (1981) Effects of cations on affinity of calmodulin for calcium: ordered binding of calcium ions allows the specific activation of calmodulin-stimulated enzymes. Biochemistry 20:3890–3897

    PubMed  CAS  Google Scholar 

  • Harafuji H, Ogawa Y (1980) Re-examination of the apparent binding constant of ethylene glycol bis(β-aminoethylether)-N,N,N’,N’-tetraacetic acid with calcium around neutral pH. J Biochem 87:1305–1312

    PubMed  CAS  Google Scholar 

  • Hartshorne DJ, Mueller H (1968) Fractionation of troponin into two distinct proteins. Biochem Biophys Res Commun 31:647–653

    PubMed  CAS  Google Scholar 

  • Heilbrunn LV (1940) The action of calcium on muscle protoplasm. Physiol Zool 13:88–94

    CAS  Google Scholar 

  • Heilbrunn LV, Wiercinski FL (1947) The action of various cations on muscle protoplasm. J Cell Comp Physiol 29:15–32

    CAS  Google Scholar 

  • Henrotte JG (1955) A crystalline component of carp myogen precipitating at high ionic strength. Nature 176:1221

    CAS  Google Scholar 

  • Herzberg O, James MNG (1985) Structure of the calcium regulatory muscle protein troponin-C at 2.8 Å resolution. Nature 313:653–659

    PubMed  CAS  Google Scholar 

  • Hibberd MG, Jewell BR (1982) Calcium- and length-dependent force production in rat ventricle muscle. J Physiol 329:527–540

    PubMed  CAS  Google Scholar 

  • Hidaka H, Yamaki T, Naka M, Tanaka T, Hayashi H, Kobayashi R (1980) Calcium-regulated modulator protein interacting agents inhibit smooth muscle calcium-stimulated protein kinase and ATPase. Mol Pharmacol 17:66–72

    PubMed  CAS  Google Scholar 

  • Hidaka H, Sasaki Y, Tanaka T, Endo T, Ohno S, Fujii Y, Nagata T (1981) N-(6-amino-hexyl)-5-chloro-l-naphthalenesulfonamide, a calmodulin antagonist, inhibits cell proliferation. Proc Natl Acad Sci USA 78:4354–4357

    PubMed  CAS  Google Scholar 

  • Hiromi K (1978) Kinetics of fast enzyme reactions: theory and practice. Kodansha, Tokyo

    Google Scholar 

  • Holroyde MJ, Robertson SP, Johnson JD, Solaro RJ, Potter JD (1980) The calcium and magnesium binding sites on cardiac troponin and their role in the regulation of myofibrillar adenosine triphosphatase. J Biol Chem 255:11688–11693

    PubMed  CAS  Google Scholar 

  • Huang CY, Chau V, Chock PB, Wang JH, Sharma RK (1981) Mechanism of activation of cyclic nucleotide phosphodiesterase: requirement of the binding of four Ca2+ to calmodulin for activation. Proc Natl Acad Sci USA 78:871–874

    PubMed  CAS  Google Scholar 

  • Inagaki M, Tanaka T, Sasaki Y, Hidaka H (1985) Calcium-dependent interactions of an ionophore A23187 with calmodulin. Biochem Biophys Res Commun 130:200–206

    PubMed  CAS  Google Scholar 

  • Jamieson GA Jr, Vanaman TC (1979) Calcium dependent affinity chromatography of calmodulin on an immobilized phenothiazine. Biochem Biophys Res Commun 90:1048–1056

    PubMed  CAS  Google Scholar 

  • Johnson JD, Fugman DA (1983) Calcium and calmodulin antagonists binding to calmodulin and relaxation of coronary segments. J Pharmacol Exp Ther 226:330–334

    PubMed  CAS  Google Scholar 

  • Johnson JD, Potter JD (1978) Detection of two classes of Ca2+ binding sites in troponin C with circular dichroism and tyrosine fluorescence. J Biol Chem 253:3775–3777

    PubMed  CAS  Google Scholar 

  • Johnson JD, Collins JH, Potter JD (1978) Dansylaziridine-labeled troponin C: a fluorescent probe of Ca2+ binding to the Ca2+-specific regulatory sites. J Biol Chem 253:6451–6458

    PubMed  CAS  Google Scholar 

  • Johnson JD, Charlton SC, Potter JD (1979) A fluorescence stopped flow analysis of Ca2+ exchange with troponin C. J Biol Chem 254:3497–3502

    PubMed  CAS  Google Scholar 

  • Johnson JD, Collins JH, Robertson SP, Potter JD (1980) A fluorescent probe study of Ca2+ binding to the Ca2+-specific sites of cardiac troponin and troponin C. J Biol Chem 255:9635–9640

    PubMed  CAS  Google Scholar 

  • Johnson JD, Robinson DE, Robertson SP, Schwartz A, Potter JD (1981) Ca2+ exchange with troponin and the regulation of muscle contraction. In: Grinnell AD, Brazier MAB (eds) The regulation of muscle contraction: excitation-contraction coupling. Academic, New York, pp 241–259

    Google Scholar 

  • Kakiuchi S (1981) Calmodulin and cytoskeletal system. Seikagaku 53:1267–1289 (in Japanese)

    Google Scholar 

  • Kakiuchi S, Sobue K (1981) Ca2+- and calmodulin-dependent flip-flop mechanism in microtubule assembly-disassembly. FEBS Lett 132:141–143

    PubMed  CAS  Google Scholar 

  • Kakiuchi S, Yamazaki R (1970 a) Stimulation of the activity of cyclic 3′, 5′-nucleotide phosphodiesterase by calcium ion. Proc Jpn Acad 46:387–392

    CAS  Google Scholar 

  • Kakiuchi S, Yamazaki R (1970 b) Calcium dependent phosphodiesterase activity and its activating factor (PAF) from brain. III. Studies on cyclic 3′, 5′-nucleotide phosphodiesterase. Biochem Biophys Res Commun 41:1104–1110

    PubMed  CAS  Google Scholar 

  • Kakiuchi S, Yamazaki R, Nakajima H (1969) Studies on brain phosphodiesterase (2). Bull Jpn Neurochem Soc 8:17–20 (in Japanese)

    Google Scholar 

  • Kakiuchi S, Yamazaki R, Nakajima H (1970) Properties of a heat-stable phosphodiesterase activating factor isolated from brain extract. Proc Jpn Acad 46:587–592

    CAS  Google Scholar 

  • Kakiuchi S, Yasuda S, Yamazaki R, Teshima Y, Kanda K, Kakiuchi R, Sobue K (1982) Quantitative determinations of calmodulin in the supernatant and particulate fractions of mammalian tissues. J Biochem 92:1041–1048

    PubMed  CAS  Google Scholar 

  • Kamada T, Kinosita H (1943) Disturbances initiated from naked surface of muscle protoplasm. Jpn J Zool 10:469–493

    Google Scholar 

  • Kasai M (1969) The divalent cation bound to actin and thin filament. Biochim Biophys Acta 172:171–173

    PubMed  CAS  Google Scholar 

  • Kasai M, Oosawa F (1968) The exchangeability of actin-bound calcium with various divalent cations. Biochim Biophys Acta 154:520–528

    PubMed  CAS  Google Scholar 

  • Keller CH, Olwin BB, Heideman W, Storm DR (1982 a) The energetics and chemistry for interactions between calmodulin and calmodulin-binding proteins. In: Cheung WY (ed) Calcium and cell function, vol III. Academic, New York, pp 103–127

    Google Scholar 

  • Keller CH, Olwin BB, LaPorte DC, Storm DR (1982 b) Determination of the free-energy coupling for binding of calcium ions and troponin I to calmodulin. Biochemistry 21:156–162

    PubMed  CAS  Google Scholar 

  • Kerrick WGL, Donaldson SKB (1972) The effects of Mg2+ on submaximum Ca2+-activated tension in skinned fibers of frog skeletal muscle. Biochim Biophys Acta 275:117–122

    PubMed  CAS  Google Scholar 

  • Kerrick WGL, Donaldson SKB (1975) The comparative effects of [Ca2+] and [Mg2+] on tension generation in the fibers of skinned frog skeletal muscle and mechanically disrupted rat ventricular cardiac muscle. Pflugers Arch 358:195–201

    PubMed  CAS  Google Scholar 

  • Kerrick WGL, Hoar PE, Cassidy PS, Malencik DA (1981) Ca2+ regulation of contraction in skinned muscle fibers. In: Grinnell AD, Brazier MAB (eds) The regulation of muscle contraction: excitation-contraction coupling. Academic, New York, pp 227–239

    Google Scholar 

  • Kielley WW, Meyerhof O (1948 a) A new magnesium-activated adenosinetriphosphatase from muscle. J Biol Chem 174:387–388

    PubMed  CAS  Google Scholar 

  • Kielley WW, Meyerhof O (1948 b) Studies on adenosinetriphosphatase of muscle. II. a new magnesium activated adenosinetriphosphatase. J Biol Chem 183:391–401

    Google Scholar 

  • Kitazawa T, Shuman H, Somlyo AP (1982) Calcium and magnesium binding to thin and thick filaments in skinned muscle fibres: electron probe analysis. J Muscle Res Cell Motil 3:437–454

    PubMed  CAS  Google Scholar 

  • Klee CB, Vanaman TC (1982) Calmodulin. Adv Protein Chem 35:213–321

    PubMed  CAS  Google Scholar 

  • Kohama K (1979) Divalent cation binding properties of slow skeletal muscle troponin in comparison with those of cardiac and fast skeletal muscle troponins. J Biochem 86:811–820

    PubMed  CAS  Google Scholar 

  • Kohama K (1980) Role of the high affinity Ca binding sites of cardiac and fast skeletal troponins. J Biochem 88:591–599

    PubMed  CAS  Google Scholar 

  • Kretsinger RH, Nockolds CE (1973) Carp muscle calcium-binding protein. II. Structure determination and general description. J Biol Chem 248:3313–3326

    PubMed  CAS  Google Scholar 

  • Kumagai H, Ebashi S, Takeda F (1955) Essential relaxing factor in muscle other than myokinase and creatine Phosphokinase. Nature 176:166

    PubMed  CAS  Google Scholar 

  • Kurebayashi N, Ogawa Y (1985) Effect of quercetin on tension development by skinned fibres from frog skeletal muscle. J Muscle Res Cell Motil 6:189–195

    PubMed  CAS  Google Scholar 

  • LaPorte DC, Toscano WA Jr, Storm DR (1979) Cross-linking of iodine-125-labeled, calcium-dependent regulatory protein to the Ca2+-sensitive phosphodiesterase purified from bovine heart. Biochemistry 18:2820–2825

    PubMed  CAS  Google Scholar 

  • LaPorte DC, Wierman BM, Storm DR (1980) Calcium induced exposure of a hydrophobic surface on calmodulin. Biochemistry 19:3814–3819

    PubMed  CAS  Google Scholar 

  • Leavis PC, Gergely J (1984) Thin filament proteins and thin filament-linked regulation of vertebrate muscle contraction. CRC Crit Rev Biochem 16:235–305

    PubMed  CAS  Google Scholar 

  • Levin RM, Weiss B (1976) Mechanism by which psychotropic drugs inhibit adenosine cyclic 3′, 5′-monophosphate phosphodiesterase of brain. Mol Pharmacol 12:581–589

    PubMed  CAS  Google Scholar 

  • Levin RM, Weiss B (1977) Binding of trifluoperazine to the calcium-dependent activator of cyclic nucleotide phosphodiesterase. Mol Pharmacol 13:690–697

    PubMed  CAS  Google Scholar 

  • Levin RM, Weiss B (1978) Specificity of the binding of trifluoperazine to the calcium-dependent activator of phosphodiesterase and to a series of other calcium-binding proteins. Biochim Biophys Acta 540:197–204

    PubMed  CAS  Google Scholar 

  • Levin RM, Weiss B (1979) Selective binding of antipsychotics and other psychoactive agents to the calcium-dependent activator of cyclic nucleotide phosphodiesterase. J Pharmacol Exp Ther 208:454–459

    PubMed  CAS  Google Scholar 

  • Lin YM, Liu YP, Cheung WY (1974) Cyclic 3′: 5′-nucleotide phosphodiesterase. Purification, characterization and active form of the protein activator from bovine brain. J Biol Chem 249:4943–4954

    PubMed  CAS  Google Scholar 

  • Liu YP, Cheung WY (1976) Cyclic 3′, 5′-nucleotide phosphodiesterase. Ca2+ confers more helical conformation to the protein activator. J Biol Chem 251:4193–4198

    PubMed  CAS  Google Scholar 

  • Malencik DA, Anderson SR (1982) Binding of simple peptides, hormones, and neurotransmitters by calmodulin. Biochemistry 21:3480–3486

    PubMed  CAS  Google Scholar 

  • Malencik DA, Anderson SR (1983 a) Binding of hormones and neuropeptides by calmodulin. Biochemistry 22:1995–2001

    PubMed  CAS  Google Scholar 

  • Malencik DA, Anderson SR (1983 b) High affinity binding of the mastoparans by calmodulin. Biochem Biophys Res Commun 114:50–56

    PubMed  CAS  Google Scholar 

  • Malencik DA, Anderson SR (1984) Peptide binding by calmodulin and its proteolytic fragments and by troponin C. Biochemistry 23:2420–2428

    PubMed  CAS  Google Scholar 

  • Malencik DA, Anderson SR, Shalitin Y, Shimerlik MI (1981) Rapid kinetic studies on calcium interactions with native and fluorescently labeled calmodulin. Biochem Biophys Res Commun 101:390–395

    PubMed  CAS  Google Scholar 

  • Malencik DA, Anderson SR, Bohnert JL, Shalitin Y (1982) Functional interactions between smooth muscle myosin light chain kinase and calmodulin. Biochemistry 21:4031–4039

    PubMed  CAS  Google Scholar 

  • Marsh BB (1951) A factor modifying muscle fibre syneresis. Nature 167:1065–1066

    PubMed  CAS  Google Scholar 

  • Marshak DR, Lukas TJ, Watterson DM (1985) Drug-protein interactions: binding of chlorpromazine to calmodulin, calmodulin fragments, and related calcium binding proteins. Biochemistry 24:144–150

    PubMed  CAS  Google Scholar 

  • Maulet Y, Cox JA (1983) Structural changes in melittin and calmodulin upon complex formation and their modulation by calcium. Biochemistry 22:5680–5686

    PubMed  CAS  Google Scholar 

  • Mills JS, Johnson JD (1985) Metal ions as allosteric regulators of calmodulin. J Biol Chem 260:15100–15105

    PubMed  CAS  Google Scholar 

  • Mills JS, Bailey BL, Johnson JD (1985) Cooperativity among calmodulin’s drug binding sites. Biochemistry 24:4897–4902

    PubMed  CAS  Google Scholar 

  • Minowa O, Yagi K (1984) Calcium binding to tryptic fragments of calmodulin. J Biochem 96:1175–1182

    PubMed  CAS  Google Scholar 

  • Morimoto S, Ohtsuki I (1987) Ca2+- and Sr2+-sensitivity of the ATPase activity of rabbit skeletal myofibrils. Effect of the complete substitution of troponin C with cardiac troponin C, calmodulin and parvalbumins. J Biochem 101:291–301

    PubMed  CAS  Google Scholar 

  • Moss RL, Swinford AE, Greaser ML (1983) Alterations in the Ca2+ sensitivity of tension development by single skeletal muscle fibres at stretched lengths. Biophys J 43:115–119

    PubMed  CAS  Google Scholar 

  • Moss RL, Giulian GG, Greaser ML (1985) The effects of partial extraction of TnC upon the tension-pCa relationship in rabbit skinned skeletal muscle fibers. J Gen Physiol 86:585–600

    PubMed  CAS  Google Scholar 

  • Murray JM, Weber A, Bremel A (1975) Could cooperativity in the actin filament play a role in muscle contraction? In: Carafoli E,. Clementi F, Drabikowski W, Margreth A (eds) Calcium transport in contraction and secretion. Elsevier, Amsterdam, pp 489–496

    Google Scholar 

  • Newton DL, Oldewurted MD, Krinks MH, Shiloach J, Klee CB (1984) Agonist and antagonist properties of calmodulin fragments. J Biol Chem 259:4419–4426

    PubMed  CAS  Google Scholar 

  • Norman JA, Drummond AH, Moser P (1979) Inhibition of calcium-dependent regulator-stimulated phosphodiesterase activity by neuroleptic drugs is unrelated to their clinical efficacy. Mol Pharmacol 16:1089–1094

    PubMed  CAS  Google Scholar 

  • Ogawa Y (1985) Calcium binding to troponin C and troponin: effect of Mg2+, ionic strength and pH. J Biochem 97:1011–1023

    PubMed  CAS  Google Scholar 

  • Ogawa Y, Tanokura M (1984) Calcium binding to calmodulin: effects of ionic strength, Mg2+, pH and temperature. J Biochem 95:19–28

    PubMed  CAS  Google Scholar 

  • Ogawa Y, Tanokura M (1985) Calcium binding to calmodulin and its modification by cal-modulin-ligands in view of the regulatory role in vivo of the calmodulin system. In: Ebashi S (ed) Cellular regulation and malignant growth. Japan Sci Soc Press, Tokyo/Springer, Berlin Heidelberg New York Tokyo, pp 250–258

    Google Scholar 

  • Ogawa Y, Tanokura M (1986 a) Steady-state properties of calcium binding to parvalbumins from bullfrog skeletal muscle: effects of Mg2+, pH, ionic strength, and temperature. J Biochem 99:73–80

    PubMed  CAS  Google Scholar 

  • Ogawa Y, Tanokura M (1986 b) Kinetic studies of calcium binding to parvalbumins from bullfrog skeletal muscle. J Biochem 99:81–89

    PubMed  CAS  Google Scholar 

  • Ogawa Y, Harafuji H, Kurebayashi N (1980) Comparison of the characteristics of four metallochromic dyes as potential calcium indicators for biological experiments. J Biochem 87:1293–1303

    PubMed  CAS  Google Scholar 

  • Ohnishi ST (1978) Characterization of the murexide method: dual wavelength spectrophotometry of cations under physiological conditions. Anal Biochem 85:165–179

    PubMed  CAS  Google Scholar 

  • Ohnishi T, Ebashi S (1963) Spectrophotometrical measurement of instantaneous calcium binding of the relaxing factor of muscle. J Biochem 54:506–511

    PubMed  CAS  Google Scholar 

  • Ohtsuki I, Nagano K (1982) Molecular arrangement of troponin-tropomyosin in the thin filament. Adv Biophys 15:93–130

    PubMed  CAS  Google Scholar 

  • Ohtsuki I, Maruyama K, Ebashi S (1986) Regulatory and cytoskeletal protein of vertebrate skeletal muscle. Adv Protein Chem 38:1–67

    PubMed  CAS  Google Scholar 

  • Oliver JL, Rainteau D, Bereziat G, Wolf C (1986) Interaction between calmodulin and five different spin-labelled chlorophenothiazines. Biochem J 233:853–857

    Google Scholar 

  • Olwin BB, Storm DR (1985) Calcium binding to complexes of calmodulin and calmodulin binding proteins. Biochemistry 24:8081–8086

    PubMed  CAS  Google Scholar 

  • Olwin BB, Keller CH, Storm DR (1982) Interaction of a fluorescent N-dansylaziridine derivative of troponin I with calmodulin in the absence and presence of calcium. Biochemistry 21:5669–5675

    PubMed  CAS  Google Scholar 

  • Olwin BB, Edelman AM, Krebs EG, Storm DR (1984) Quantitation of energy coupling between Ca2+, calmodulin, skeletal muscle myosin light chain kinase, and kinase substrates. J Biol Chem 259:10949–10955

    PubMed  CAS  Google Scholar 

  • Ozawa E, Hosoi K, Ebashi S (1967) Reversible stimulation of muscle Phosphorylase b kinase by low concentration of calcium ions. J Biochem 61:531–533

    PubMed  CAS  Google Scholar 

  • Pechère J-F, Capony J-P, Ryden L (1971) The primary structure of the major parvalbumin from hake muscle. Isolation and general properties of the protein. Eur J Biochem 23:421–428

    PubMed  Google Scholar 

  • Potter JD, Gergely J (1975) The calcium and magnesium binding sites on troponin and their role in the regulation of myofibrillar adenosine triphosphatase. J Biol Chem 250:4628–4633

    PubMed  CAS  Google Scholar 

  • Potter JD, Johnson JD (1982) Troponin. In: Cheung WY (ed) Calcium and cell function, vol II. Academic, New York, pp 145–173

    Google Scholar 

  • Potter JD, Hsu F-J, Pownall HJ (1977) Thermodynamics of Ca2+ binding to troponin-C. J Biol Chem 252:2452–2454

    PubMed  CAS  Google Scholar 

  • Potter JD, Robertson SP, Collins JH, Johnson JD (1980) The role of the Ca2+ and Mg2+ binding sites on troponin and other myofibrillar proteins in the regulation of muscle contraction. In: Siegel FL, Carafoli E, Kretsinger RH, MacLennan DH, Wasserman RH (eds) Calcium-binding proteins: structure and function. Elsevier, Amsterdam, pp 279–288

    Google Scholar 

  • Potter JD, Robertson SP, Johnson JD (1981) Magnesium and the regulation of muscle contraction. Fed Proc 40:2653–2656

    PubMed  CAS  Google Scholar 

  • Proziakeck WC, Weiss B (1982) Inhibition of calmodulin by phenothiazines and related drugs: structure-activity relationships. J Pharmacol Exp Ther 222:509–516

    Google Scholar 

  • Ringer S (1883) A further contribution regarding the influence of the different constituents of the blood on the contraction of the heart. J Physiol 4:29–42

    PubMed  CAS  Google Scholar 

  • Ringer S (1886) Further experiments regarding the influence of small quantities of lime potassium and other salts on muscular tissue. J Physiol 7:291–308

    PubMed  CAS  Google Scholar 

  • Robertson SP, Johnson JD, Potter JD (1978) The effect of pH on calcium binding to the Ca2+-Mg2+ and Ca2+-specific sites of rabbit skeletal TnC. Biophys J 21:16a

    Google Scholar 

  • Robertson SP, Johnson JD, Potter JD (1981) The time-course of Ca2+ exchange with calmodulin, troponin, parvalbumin, and myosin in response to transient increases in Ca2+. Biophys J 34:559–569

    PubMed  CAS  Google Scholar 

  • Roufogalis BD (1982) Specificity of trifluoperazine and related phenothiazines for calcium-binding proteins. In: Cheung WY (ed) Calcium and cell function, vol III. Academic, New York, pp 129–159

    Google Scholar 

  • Rüegg JC, Pfitzer G, Zimmer M, Hofmann F (1984) The calmodulin fraction responsible for contraction in an intestinal smooth muscle. FEBS Lett 170:383–386

    PubMed  Google Scholar 

  • Seaton BA, Head JF, Engelman DM, Richards FM (1985) Calcium-induced increase in the radius of gyration and maximum dimension of calmodulin measured by small-angle X-ray scattering. Biochemistry 24:6740–6743

    PubMed  CAS  Google Scholar 

  • Sellinger-Barnette M, Weiss B (1982) Interaction of β-endorphin and other opioid peptides with calmodulin. Mol Pharmacol 21:86–91

    PubMed  CAS  Google Scholar 

  • Shimizu T, Hatano M (1983) Interaction of trifluoperazine with porcine calmodulin 19F NMR and induced CD spectral studies. FEB Lett 160:182–186

    CAS  Google Scholar 

  • Shimizu T, Hatano M (1984) Effects of metal cations on trifluoperazine-calmodulin interactions: induced circular dichroism studies. Biochemistry 23:6403–6409

    CAS  Google Scholar 

  • Shimizu T, Hatano M, Muto Y, Nozawa Y (1984) Interaction of trifluoperazine with Tetrahymena calmodulin: a 19F NMR study. FEBS Lett 166:373–377

    PubMed  CAS  Google Scholar 

  • Stephenson DG, Williams DA (1981) Calcium-activated force responses in fast- and slow-twitch skinned muscle fibres of the rat at different temperatures. J Physiol 317:281–302

    PubMed  CAS  Google Scholar 

  • Stephenson DG, Williams DA (1982) Effects of sarcomere length on the force-pCa relations in fast- and slow-twitch skinned muscle fibres from the rat. J Physiol 333:637–653

    PubMed  CAS  Google Scholar 

  • Stiles PG (1901) On the rhythmic activity of the oesophagus and the influence upon it of various media. Am J Physiol 5:338–357

    CAS  Google Scholar 

  • Stull JT, Buss JE (1978) Calcium binding properties of beef cardiac troponin. J Biol Chem 253:5932–5938

    PubMed  CAS  Google Scholar 

  • Sundaralingam M, Bergstrom R, Strasburg G, Rao ST, Roychowdhury P, Greaser M, Wang BC (1985) Molecular structure of troponin C from chicken skeletal muscle at 3-angstrom resolution. Science 227:945–948

    PubMed  CAS  Google Scholar 

  • Szent-Györgyi A (1942) The reversibility of the contraction of myosin threads. Studies Inst Med Chem Univ Szeged 2:25–26

    Google Scholar 

  • Takagi A (1976) Abnormality of sarcoplasmic reticulum in malignant hyperthermia. Adv Neurol 20:109–113 (in Japanese)

    Google Scholar 

  • Tanaka T, Hidaka H (1980) Hydrophobic regions function in calmodulin-enzyme(s) interactions. J Biol Chem 255:11078–11080

    PubMed  CAS  Google Scholar 

  • Tanaka T, Hidaka H (1981) Interaction of local anesthetics with calmodulin. Biochem Biophys Res Commun 101:447–453

    PubMed  CAS  Google Scholar 

  • Tanaka T, Ohmura T, Hidaka H (1982) Hydrophobic interaction of the Ca2+-calmodulin complex with calmodulin antagonists: naphthalenesulfonamide derivatives. Mol Pharmacol 22:403–407

    PubMed  CAS  Google Scholar 

  • Teo TS, Wang JH (1973) Mechanism of activation of a cyclic adenosine 3′: 5′-monophosphate phosphodiesterase from bovine heart by calcium ions: identification of the protein activator as a Ca2+ binding protein. J Biol Chem 248:5950–5955

    PubMed  CAS  Google Scholar 

  • Thames MD, Teichholz LE, Podolsky RJ (1974) Ionic strength and the contraction kinetics of skinned muscle fibers. J Gen Physiol 63:509–530

    PubMed  CAS  Google Scholar 

  • Toyota N, Shimada Y (1981) Differentiation of troponin in cardiac and skeletal muscles in chicken embryos as studied by immunofluorescence microscopy. J Cell Biol 91:497–504

    PubMed  CAS  Google Scholar 

  • Van Eerd JP, Takahashi K (1976) Determination of the complete amino acid sequence of bovine cardiac troponin C. Biochemistry 15:1171–1180

    PubMed  Google Scholar 

  • Wang C-LA, Leavis PC, Gergely J (1984) Kinetic studies that Ca2+ and Tb3+ have different binding preferences toward the four Ca2+-binding sites of calmodulin. Biochemistry 23:6410–6415

    PubMed  CAS  Google Scholar 

  • Watanabe S (1955) Relaxing effects of EDTA on glycerol-treated muscle fibers. Arch Biochem Biophys 54:559–562

    PubMed  CAS  Google Scholar 

  • Watterson DM, Sharief F, Vanaman TC (1980) The complete amino acid sequence of calmodulin of bovine brain. J Biol Chem 255:962–975

    PubMed  CAS  Google Scholar 

  • Weber A (1959) On the role of calcium in the activity of adenosine 5’-triphosphate hydrolysis by actomyosin. J Biol Chem 234:2764–2769

    PubMed  CAS  Google Scholar 

  • Weber A (1966) Energized calcium transport and relaxing factors. In: Sanadi DR (ed) Current topics in bioenergetics, vol 1. Academic, New York, pp 203–254

    Google Scholar 

  • Weber A, Herz R (1963) The binding of calcium to actomyosin systems in relation to their biological activity. J Biol Chem 238:599–605

    PubMed  CAS  Google Scholar 

  • Weber A, Winicur S (1961) The role of calcium in the superprecipitation of actomyosin. J Biol Chem 236:3198–3202

    PubMed  CAS  Google Scholar 

  • Wendt IR, Stephenson DG (1983) Effect of caffeine on Ca-activated force production in skinned cardiac and skeletal muscle fibres of the rat. Pflugers Arch 398:213–219

    Google Scholar 

  • Wnuk W, Schoechlin M, Stein EA (1984) Regulation of actomyosin ATPase by a single calcium-binding site on troponin C from crayfish. J Biol Chem 259:9017–9023

    PubMed  CAS  Google Scholar 

  • Wolff DJ, Poirier PG, Brostrom CO, Brostrom MA (1977) Divalent cation binding properties of bovine brain Ca2+-dependent regulator protein. J Biol Chem 252:4108–4117

    PubMed  CAS  Google Scholar 

  • Yagi S, Endo M (1980) Effects of dibucaine on skinned skeletal muscle fibers. An example of multiple actions of a drug on a single subcellular structure. Biomed Res 1:269–272

    CAS  Google Scholar 

  • Yamada K, Kometani K (1982) The changes in heat capacity and entropy of troponin C induced by calcium binding. J Biochem 92:1505–1517

    PubMed  CAS  Google Scholar 

  • Yamamoto K (1983) Sensitivity of actomyosin ATPase to calcium and strontium ions. Effect of hybrid troponins. J Biochem 93:1061–1069

    PubMed  CAS  Google Scholar 

  • Yazawa M, Yagi K (1978) Purification of modulator-deficient myosin light-chain kinase by modulator protein-sepharose affinity chromatography. J Biochem 84:1259–1265

    PubMed  CAS  Google Scholar 

  • Zot HG, Iida S, Potter JD (1983) Thin filament interactions and Ca2+ binding to Tn. Chemica Scripta 21:133–136

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ebashi, S., Ogawa, Y. (1988). Troponin C and Calmodulin as Calcium Receptors: Mode of Action and Sensitivity to Drugs. In: Baker, P.F. (eds) Calcium in Drug Actions. Handbook of Experimental Pharmacology, vol 83. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71806-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71806-9_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71808-3

  • Online ISBN: 978-3-642-71806-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics