Skip to main content

Analysis of Cyst(e)ine Residues, Disulfide Bridges, and Sulfhydryl Groups in Proteins

  • Chapter
Advanced Methods in Protein Microsequence Analysis

Abstract

The presence and the state of cysteine and cystine residues often have considerable influence on the properties, the structure, and the function of a protein. The sulfhydryl groups of the cysteine residues are in most cases the most reactive functional side chains of the protein. They can easily be oxidized or otherwise modified. They are often of importance for the biological acitivity of the protein. The disulfide bonds of the cystine residues contribute in a unique way to the protein’s spatial structure and to the stability of this structure. Proteins may contain only cysteine residues, only cystine residues, or a mixture of both. In certain proteins post-translationally derivatized sulfhydryl groups have been shown to exist. Obviously, proteins may also be devoid of cyst(e)ine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Liu T-Y (1977) In: Neurath H, Hill RL (eds) The proteins, 3rd end, III. Academic Press, London New York, pp 239–402.

    Google Scholar 

  2. Torchinsky YM (1981) Sulfur in proteins. Pergamon, Oxford, pp 1–294.

    Google Scholar 

  3. Lundblad RL, Noyes CM (1984) Chemical reagents for protein modification. I. CRC Boca Raton, pp 55-98.

    Google Scholar 

  4. Gardner MLG (1984) Anal Biochem 141:429–431.

    Article  PubMed  CAS  Google Scholar 

  5. Moore S (1963) J Biol Chem 238:235–237.

    CAS  Google Scholar 

  6. Brown JR, Hartley BS (1966) Biochem J 101:214–228.

    PubMed  CAS  Google Scholar 

  7. Pechère J-F, Dixon GH, Maybury RH, Neurath H (1958) J Biol Chem 233:1364–1372.

    PubMed  Google Scholar 

  8. Bailey JL, Cole RD (1959) J Biol Chem 234:1733–1739.

    PubMed  CAS  Google Scholar 

  9. Rüegg VT, Rudinger J (1977) Methods Enzymol 47:111–116.

    Article  PubMed  Google Scholar 

  10. Henschen A, Edman P (1972) Biochim Biophys Acta 263:351–367.

    PubMed  CAS  Google Scholar 

  11. Gurd FRN (1972) Methods Enzymol 25:424–438.

    Article  CAS  Google Scholar 

  12. Han KK, Belaiche D, Moreau O, Briand G (1985) Int J Biochem 17:429–445.

    Article  CAS  Google Scholar 

  13. Rochat C, Rochat H, Edman P (1970) Anal Biochem 37:259–267.

    Article  PubMed  CAS  Google Scholar 

  14. Lottspeich F (1980) Hoppe-Seyler’s Z Physiol Chem 361:1829–1834.

    Article  PubMed  CAS  Google Scholar 

  15. Heinrikson RL (1971) J Biol Chem 246:4090–4096.

    PubMed  CAS  Google Scholar 

  16. Raftery MA, Cole RD (1966) J Biol Chem 241:3457–3461.

    PubMed  CAS  Google Scholar 

  17. Lindley H (1956) Nature 178:647–648.

    Article  PubMed  CAS  Google Scholar 

  18. Friedman M, Krall LH, Cavins JF (1970) J Biol Chem 245:3868–3871.

    PubMed  CAS  Google Scholar 

  19. Fullmer CS (1984) Anal Biochem 142:336–339.

    Article  PubMed  CAS  Google Scholar 

  20. Riordan JF, Vallée BL (1972) Methods Enzymol 25:449–456.

    Article  CAS  Google Scholar 

  21. Riddles PW, Blakeley RL, Zerner B (1983) Methods Enzymol 91:49–60.

    Article  PubMed  CAS  Google Scholar 

  22. Degani Y, Patchornik A (1974) Biochemistry 13:1–11.

    Article  PubMed  CAS  Google Scholar 

  23. Imai K, Toyo’oka T, Miyano H (1984) Analyst 109:1365–1373.

    Article  CAS  Google Scholar 

  24. Perrett D, Rudge SR (1985) J Pharm Biomed Anal 3:3–27.

    Article  PubMed  CAS  Google Scholar 

  25. Henschen A (1978) Hoppe-Seyler’s Z Physiol Chem 359:1757–1770.

    Article  PubMed  CAS  Google Scholar 

  26. Spector A, Wang G-M, Huang R-RC (1986) Curr Eye Res 5:47–51.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Henschen, A. (1986). Analysis of Cyst(e)ine Residues, Disulfide Bridges, and Sulfhydryl Groups in Proteins. In: Wittmann-Liebold, B., Salnikow, J., Erdmann, V.A. (eds) Advanced Methods in Protein Microsequence Analysis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71534-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71534-1_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71536-5

  • Online ISBN: 978-3-642-71534-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics