Skip to main content

Electrical and Mechanical Effects of Prostacyclin in the Canine Carotid Artery

  • Conference paper
Prostacyclin and Its Stable Analogue Iloprost

Abstract

Prostacyclin (PGI2), the main but unstable metabolite of arachidonic acid in vascular tissue, has potent cardiocirculatory properties [4, 8, 16]. Besides being the most effective platelet anti-aggregating substance, PGI2 has been reported to relax a variety of vascular preparations [4, 5, 10,15, 17], to reduce myogenic activity [10], and to inhibit transmission at the neuromuscular junction [15]. These vasodilatory actions were found both in isolated blood vessels [4] and in the intact organism [1, 7].

This paper was not presented at the meeting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armstrong JM, Lattimer N, Moncada S, Vane JR (1978) Comparison of the vasodepressor effects of prostacyclin and 6-oxo-prostaglandin F1α with those of prostaglandin E2 in rats and rabbits. Br J Pharmacol 62: 125–130

    PubMed  CAS  Google Scholar 

  2. Bolton TB (1979) Mechanisms of action of transmitters and other substances on smooth muscle. Physiol Rev 59: 606–718

    PubMed  CAS  Google Scholar 

  3. Brundin J (1968) The effect of prostaglandin Ex on the response of the rabbit oviduct to hypogastric nerve stimulation. Acta Physiol Scand 73: 54–57

    Article  PubMed  CAS  Google Scholar 

  4. Bunting S, Gryglewski R, Moncada S, Vane JR (1976) Arterial walls generate from prostaglandin endoperoxides a substance (prostaglandin X) which relaxes strips of mesenteric and coeliac arteries and inhibits platelet aggregation. Prostaglandins 12: 897–913

    Article  PubMed  CAS  Google Scholar 

  5. Dusting GJ, Moncada S, Vane JR (1977) Prostacyclin (PGX) is the endogenous metabolite responsible for relaxation of coronary arteries induced by arachidonic acid. Prostaglandins 13: 3–15

    Article  PubMed  CAS  Google Scholar 

  6. Dusting GJ, Moncada S, Vane JR (1977) Prostacyclin (PGI2) is a weak contractor of coronary arteries of the pig. Eur J Pharmacol 45: 301–304

    Article  PubMed  CAS  Google Scholar 

  7. Dusting GJ, Moncada S, Vane JR (1978) Vascular actions of arachidonic acid and its metabolites in perfused mesenteric and femoral beds of the dog. Eur J Pharmacol 49: 65–72

    Article  PubMed  CAS  Google Scholar 

  8. Gryglewski RJ, Bunting S, Moncada S, Flower RJ, Vane JR (1976) Arterial walls are protected against deposition of platelet thrombi by a substance (prostaglandin X) which they make from prostaglandin endoperoxides. Prostaglandins 12: 685–713

    Article  PubMed  CAS  Google Scholar 

  9. Hedqvist P (1968) Reduced effector response to nerve stimulation in the cat spleen after administration of prostaglandin Ex. Acta Physiol Scand 74: 7A

    Google Scholar 

  10. Herman AG, Verbeuren TJ, Moncada S, Vanhoutte PM (1978) Effect of prostacyclin on myogenic activity and adrenergic neuroeffector interaction in canine isolated veins. Prostaglandins 16: 911–921

    Article  PubMed  CAS  Google Scholar 

  11. Kajiwara M, Droogmans G, Casteels R (1984) Effects of 2-nicotinamidoethyl nitrate (nicorandil) on excitation-contraction coupling in the smooth muscle cells of rabbit ear artery. J Pharmacol Exp Ther 230: 462–468

    PubMed  CAS  Google Scholar 

  12. Kitamura K, Suzuki H, Kuriyama H (1976) Prostaglandin action on the main pulmonary artery and portal vein of the rabbit. Jpn J Physiol 26: 681–692

    Article  PubMed  CAS  Google Scholar 

  13. Levy JV (1978) Contractile responses to prostacyclin (PGI2) of isolated human saphenous and rat venous tissue. Prostaglandins 16: 93–97

    Article  PubMed  CAS  Google Scholar 

  14. Lichey J, Hansen L, Danisevskis P, Platsch K, Wiederholt M (1984) Effect of prostaglandin E2 and prostacyclin analogue on membrane potential and intracellular potassium activity in sheep cardiac Purkinje fibers. Prostaglandins 27 [suppl]: 31

    Article  Google Scholar 

  15. Makita Y (1983) Effects of prostaglandin I2 and carbocyclic thromboxane A2 on smooth muscle cells and neuromuscular transmission in the guinea-pig mesenteric artery. Br J Pharmacol 78: 517–527

    PubMed  CAS  Google Scholar 

  16. Moncada S, Gryglewski R, Bunting S, Vane JR (1976) An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation. Nature 263: 663–665

    Article  PubMed  CAS  Google Scholar 

  17. Omini C, Moncada S, Vane JR (1977) The effects of prostacyclin (PGI2) on tissues which detect prostaglandins (PG’S). Prostaglandins 14: 625–632

    Article  PubMed  CAS  Google Scholar 

  18. Schillinger E, Krais Th, Stock G (1986) Iloprost. In: Scriabine A (ed) New Drugs Annual: Cardiovascular Drugs. Raven, New York (to be published)

    Google Scholar 

  19. Schillinger E, Losert WF (1980) Identification of PGI2-receptors and c-AMP levels in platelets and femoral arteries. Acta Ther 6: 37

    Google Scholar 

  20. Schrör K, Darius H, Matzky R, Ohlendorf R (1981) The antiplatelet and cardiovascular actions of a new carbacyclin derivative (ZK 36 374) — equipotent to PGI2 in vitro. Naunyn- Schmiedebergs Arch Pharmacol 316: 252–255

    Article  PubMed  Google Scholar 

  21. Siegel G, Adler A, Christ C, Schnalke F, Howe B (1985) Membrane physiological bases of peripheral vascular control. Angéiologie 37: 247–258

    Google Scholar 

  22. Siegel G, Adler A, Ebeling BJ, Roedel H, Hofer HW, Nolte J (1984) Temporal behaviour of transmembrane ion exchange in vascular smooth muscle. Angéiologie 36: 261–285

    Google Scholar 

  23. Siegel G, Ehehalt R, Koepchen HP (1978) Membrane potential and relaxation in vascular smooth muscle. In: Vanhoutte PM, Leusen I (eds) Mechanisms of vasodilatation. Karger, Basel, pp 56–72

    Google Scholar 

  24. Siegel G, Schneider W (1981) Anions, cations, membrane potential, and relaxation. In: Vanhoutte PM, Leusen I (eds) Vasodilatation. Raven, New York, pp 285–298

    Google Scholar 

  25. Siegel G, Stock G, Schnalke F, Litza B (1986) The effect of Iloprost on the electro-mechanical properties of vascular smooth muscle. Pflügers Arch Eur J Physiol 406: R41

    Google Scholar 

  26. Siegel G, Walter A, Thiel M, Ebeling BJ (1984) Local regulation of blood flow. Adv Exp Med Biol 169: 515–540

    PubMed  CAS  Google Scholar 

  27. Vanhoutte PM (1978) Heterogeneity in vascular smooth muscle. In: Kaley G, Altura BM (eds) Microcirculation, vol II. University Park Press, Baltimore, pp 181–309

    Google Scholar 

  28. Watson SP, McConnell RT, Lapetina EG (1984) The rapid formation of inositol phosphates in human platelets by thrombin is inhibited by prostacyclin. J Biol Chem 259: 13199–13203

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag, Berlin Heidelberg

About this paper

Cite this paper

Siegel, G., Stock, G., Schnalke, F., Litza, B. (1987). Electrical and Mechanical Effects of Prostacyclin in the Canine Carotid Artery. In: Gryglewski, R.J., Stock, G. (eds) Prostacyclin and Its Stable Analogue Iloprost. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71499-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71499-3_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71501-3

  • Online ISBN: 978-3-642-71499-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics