Skip to main content

The Regulation of Lymphocyte Traffic

  • Conference paper
Current Topics in Microbiology and Immunology

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 128))

Abstract

The distribution of lymphocytes among the tissues of the body is not random. Both the number and the representation of particular functional subsets of lymphocytes are carefully controlled, differing in each lymphoid organ or tissue in a manner that presumably reflects local immune requirements. The tissue distribution of lymphocytes is a function of lymphocyte class, of their previous history or stage of differentiation, and of their antigenic specificity. For example, those lymphocyte populations primarily responsible for humoral immunity (B cells) predominate in the spleen and in the gut-associated Peyer’s patches, whereas T cells, which are primarily regulatory and cytotoxic cells, are the major lymphocyte type in the peripheral lymph nodes and skin (Stevens et al. 1982; Streilein 1978). Functionally and antigenically defined T-cell subsets are also unequally distributed between mucosal and nonmucosal lymphoid tissues (Elson et al. 1979; Kraal et al. 1983). The distribution of certain effector and effector-precursor populations can be even more restricted: especially dramatic is the segregation of IgA- vs. IgG-expressing B cells. Surface IgA-bearing lymphocytes are highly represented in the mucosa-associated lymphoid organs, and the mucosal surfaces attract predominantly IgA-secreting plasma cells (Guy-Grand et al. 1974; reviewed by Lamm 1976). In nonmucosal sites, such as peripheral lymph nodes or the skin, IgA-bearing cells are rare, and most plasma cells secrete IgM or IgG. Lymphocytes can also segregate in vivo on the basis of antigen specificity: antigen-specific B and T cells are disproportionately represented in lymph nodes or spleen challenged with antigen (Kraal et al. 1982; Sprent 1980) and antigen-specific plasma cells accumulate in tissue sites of specific antigen deposition (Husband and Gowans 1978; Husband 1982).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson ND, Anderson AO, Wyllie RG (1975) Microvascular changes in lymph nodes draining skin allografts. Am J Pathol 81:131–160

    PubMed  CAS  Google Scholar 

  • Andrews P, Ford WL, Stoddart RW (1980) Metabolic studies of high-walled endothelium of post-capillary venules in rat lymph nodes. In: Blood cells and vessel walls. Excerpta Medica, Amsterdam, pp 211–230 (Ciba Foundation symposium no 71)

    Google Scholar 

  • Andrews P, Milsom DW, Ford WL (1982) Migration of lymphocytes across specialized vascular endothelium. V. Production of a sulphated macromolecule by high endothelial cells in lymph nodes. J Cell Sci 57:277–292

    PubMed  CAS  Google Scholar 

  • Andrews P, Milson DW, Stoddart RW (1983) Glycoconjugates from high endothelial cells. I. Partial characterization of a sulphated glycoconjugate from the high endothelial cells of rat lymph nodes. J Cell Sci 59:231–244

    PubMed  CAS  Google Scholar 

  • Arnaud-Battandier F (1982) Immunologie characteristics of isolated gut mucosal lymphoid cells. In: Strober W, Hanson LA, Sell KW (eds) Recent advances in mucosal immunity. Raven, New York, p 289

    Google Scholar 

  • Asherson GL, Allwood GG (1972) Inflammatory lymphoid cells. Cells in immunized lymph nodes that move to sites of inflammation. Immunology 22:493

    PubMed  CAS  Google Scholar 

  • Bevilacqua MP, Pober JS, Wheeler ME, Cotran RS, Gimbrone MA (1985) Interleukin-1 acts on cultured human vascular endothelium to increase the adhesion of polymorphonuclear leukocytes, monocytes, and related leukocyte cell lines. J Clin Invest 76:2003–2011

    Article  PubMed  CAS  Google Scholar 

  • Butcher EC (1983) The control of lymphocyte migration and tissue distribution. In: Daynes RA, Spikes JD (eds) Experimental and clinical photoimmunology, vol 1, chap. 12. CRC, Boca Raton

    Google Scholar 

  • Butcher EC, Weissman IL (1979) Cellular, genetic and evolutionary aspects of lymphocyte interactions with high endothelial venules. In: Blood cells and vessel walls: functional interactions. Excerpta Medica, Amsterdam, pp 265–286 (Ciba Foundation symposium no 71)

    Google Scholar 

  • Butcher EC, Scollay RG, Weissman IL (1979) Lymphocyte adherence to high endothelial venules: characterization of a modified in vitro assay, and examination of the binding of syngeneic and allogeneic lymphocyte populations. J Immunol 123:1996

    PubMed  CAS  Google Scholar 

  • Butcher EC, Scollay RG, Weissman IL (1980) Organ specificity of lymphocyte migration: mediation by highly selective lymphocyte interactions with organ-specific determinants on high endothelial venules. Eur J Immunol 10:556

    Article  PubMed  CAS  Google Scholar 

  • Butcher EC, Kraal G, Stevens SK, Weissman IL (1982a) Selective migration of murine lymphocyte and lymphoblast populations and the role of endothelial cell recognition. Adv Exp Med Biol 149:199–206

    PubMed  CAS  Google Scholar 

  • Butcher EC, Kraal G, Stevens SK, Weissman IL (1982b) A recognition function of endothelial cells: directing lymphocyte traffic. In: Nossal H, Vogel H (eds) The pathobiology of the endothelial cell. Academic, New York, pp 409–424

    Google Scholar 

  • Butcher EC, Rouse RV, Coffman RL, Nottenburg C, Hardy RH, Weissman IL (1982c) Surface phenotype of Peyer’s patch germinal center B cells: implications for the role of germinal centers in B cell differentiation. J Immunol 129:2698

    PubMed  CAS  Google Scholar 

  • Butcher EC, Lewinsohn D, Duijvestijn A, Bargatze R, Wu N, Jalkanen S (1986) Interactions between endothelial cells and leukocytes. J Cell Biochem 30:121–131

    Article  PubMed  CAS  Google Scholar 

  • Cahill RNP, Frost H, Trnka Z (1976) The effects of antigen on the migration of recirculating lymphocytes through single lymph nodes. J Exp Med 143:870

    Article  PubMed  CAS  Google Scholar 

  • Cahill RNP, Poskitt DC, Frost H, Trnka A (1977) Two distinct pools of recirculating T lymphocytes: migratory characteristics of nodal and intestinal T lymphocytes. J Exp Med 145:420–428

    Article  PubMed  CAS  Google Scholar 

  • Cahill RNP, Heron I, Poskitt DC, Trnka A (1980) Lymphocyte recirculation in the sheep fetus. In: Blood cells and vessel walls: functional interactions. Excerpta Medica, Amsterdam, pp 145–166 (Ciba Foundation symposium no 71)

    Google Scholar 

  • Carey GD, Chin Y-H, Woodruff JJ (1981) Lymphocyte recognition of lymph node high endothelium. III. Enhancement by a component of thoracic duct lymph. J Immunol 127:976–979

    PubMed  CAS  Google Scholar 

  • Cavender DE, Haskard DO, Joseph B, Ziff M (1986) Interleukin 1 increases the binding of human B and T lymphocytes to endothelial cell monolayers. J Immunol 136:203–207

    PubMed  CAS  Google Scholar 

  • Chin W, Hay JB (1980) A comparison of lymphocyte migration through intestinal lymph nodes, subcutaneous lymph nodes, and chronic inflammatory sites of sheep. Gastroenterology 79:1231–1242

    PubMed  CAS  Google Scholar 

  • Chin Y-H, Rasmussen RA, Woodruff JJ, Easton TG (1986) A monoclonal anti-HEBF antibody with specific for lymphocyte surface molecules mediating adhesion to Peyer’s patch high endothelium of the rat. J Immunol 136:1–5

    Google Scholar 

  • Coico RF, Bhogal BS, Thorbecke GJ (1983) Relationship of germinal centers in lymphoid tissue to immunologic memory. VI. Transfer of B cell memory with lymph node cells fractionated according to their receptors for peanut agglutinin. J Immunol 131:2254–2257

    PubMed  CAS  Google Scholar 

  • Dailey MO, Fathman CG, Butcher EC, Pillemer E, Weissman I (1982) Abnormal migration of T-lymphocyte clones. J Immunol 128:2134–2136

    PubMed  CAS  Google Scholar 

  • Dailey MO, Gallatin WM, Weissman IL, Butcher EC (1983) Surface phenotype and migration properties of activated lymphocytes and T cell clones. In: Parker JW, O’Brien RL (eds) Intercellular communication in leukocyte function. Wiley, New York, pp 641–644

    Google Scholar 

  • Duijvestijn AD, Schreiber A, Butcher EC (1986) Interferon-gamma induces an antigen specific for endothelium involved in lymphocyte homing. Proc Nat Acad Sci USA, in press

    Google Scholar 

  • Elson CO, Heck JA, Strober W (1979) T cell regulation of murine IgA synthesis. J Exp Med 149:632

    Article  PubMed  CAS  Google Scholar 

  • Fink PJ, Gallatin WM, Reichert RA, Butcher EC and Weissman IL (1985) Homing receptor-bearing thymocytes, an immunocompetent cortical subpopulation. Nature 313:233–235

    Article  PubMed  CAS  Google Scholar 

  • Ford WL (1975) Lymphocyte migration and immune responses. Prog Allergy 19:38

    Google Scholar 

  • Ford WL, Smith ME, Andrews P (1978) Possible clues to the mechanism underlying the selective migration of lymphocytes from the blood. In: Curtis ASG (ed) Cell-cell recognition. Cambridge University Press, Cambridge, pp 359–392

    Google Scholar 

  • Fossum S, Smith ME, Ford WL (1983) The recirculation of T- and B-lymphocytes in the athymic, nude rat. Scand J Immunol 17:551–557

    Article  PubMed  CAS  Google Scholar 

  • Gallatin WM, Weissman, Butcher EC (1983) A cell surface molecule involved in organ-specific homing of lymphocytes. Nature 304:30–34

    Article  PubMed  CAS  Google Scholar 

  • Gowans JL, Knight EJ (1964) The route of recirculation of lymphocytes in the rat. Proc R Soc Lond [Biol] 159:257

    Article  CAS  Google Scholar 

  • Gray D, MacLennan ICM, Bazin H, Khan M (1982) Migrant μ+ δ+ and μ+ δ static B lymphocyte subsets. Eur J Immunol 12:564

    Article  PubMed  CAS  Google Scholar 

  • Gresser I, Guy-Grand D, Maury C, Maunoury MT (1981) Interferon induces peripheral lymphadenopathy. J Immunol 127:1569–1575

    PubMed  CAS  Google Scholar 

  • Griscelli C, Vassalli P, McCluskey RT (1969) The distribution of large dividing lymph node cells in syngeneic recipient rats after intravenous injection. J Exp Med 130:1427–1451

    Article  PubMed  CAS  Google Scholar 

  • Guy-Grand D, Vassalli P (1982) Nature and function of gut granulated T-lymphocytes. In: Strober W, Hanson LA, Sell KW (eds) Recent advances in mucosal immunity. Raven, New York, p 301

    Google Scholar 

  • Guy-Grand D, Griscelli C, Vassalli P (1974) The gut-associated lymphoid system: nature and properties of the large dividing cells. Eur J Immunol 4:435–443

    Article  PubMed  CAS  Google Scholar 

  • Guy-Grand D, Griscelli C, Vassalli P (1978) The mouse gut T-lymphocyte, a novel type of T cell. Nature, origin and traffic in mice in normal and graft-versus-host conditions. J Exp Med 148:1661–1667

    Article  PubMed  CAS  Google Scholar 

  • Hall JG, Parry DM, Smith ME (1972) The distribution and differentiation of lymph-borne immunoblasts after intravenous injection into syngeneic recipients. Cell Tissue Kinet 5:269

    PubMed  CAS  Google Scholar 

  • Hall JG, Hopkins J, Orlans E (1979) Studies on the lymphocytes of sheep. III. Destination of lymph-borne immunoblasts in relation to their tissue of origin. Eur J Immunol 7:30–37

    Article  Google Scholar 

  • Halstead TE, Hall JG (1972) The homing of lympho-borne immunoblasts to the small gut in neonatal rats. Transplantation 14:339

    Article  PubMed  CAS  Google Scholar 

  • Hamann A, Jablonski-Westrich D, Raedler A, Thiele HG (1984) Lymphocytes express specific antigen-independent contact interaction sites upon activation. Cell Immunol 86:14–32

    Article  PubMed  CAS  Google Scholar 

  • Hamann A, Jablonski-Westrich D, Scholz K-U, Duijvestijn A, Butcher EC, Thiele HG (1986) Activation results in complex alterations in homing receptor expression and migratory properties of lymphocytes. (To be published)

    Google Scholar 

  • Hay JB, Johnston MG, Vadas P, Chin W, Issekutz T, Movat HZ (1980) Relationship between changes in blood flow and lymphocyte migration induced by antigen. Monogr Allergy 16:112–125

    PubMed  CAS  Google Scholar 

  • Hendriks HR, Estermans IL (1983) Disappearance and reappearance of high endothelial venules and immigrating lymphocytes in lymph nodes deprived of afferent lymphatic vessels: a possible regulatory role of macrophages in lymphocyte migration. Eur J Immunol 13:663–669

    Article  PubMed  CAS  Google Scholar 

  • Hopkins J, McConnell I, Pearson JD (1981) Lymphocyte traffic through antigen-stimulated lymph nodes. II. Role of prostaglandin E2 as a mediator of cell shutdown. Immunology 42:225–231

    PubMed  CAS  Google Scholar 

  • Husband AJ (1982) Kinetics of extravasation and redistribution of IgA-specific antibody-containing cells in the intestine. J Immunol 128:1355–1359

    PubMed  CAS  Google Scholar 

  • Husband AJ, Gowans JL (1978) The origin and antigen-dependent distribution of IgA-containing cells in the intestine. J Exp Med 148:1146–1160

    Article  PubMed  CAS  Google Scholar 

  • Husband AJ, Monie HG, Gowans JL (1977) The natural history of the cells producing IgA in the gut. In: Immunology of the gut. Excerpta Medica, Amsterdam (Ciba Foundation symposium no 46)

    Google Scholar 

  • Jalkanen ST, Butcher EC (1985) In vitro analysis of the homing properties of human lymphocytes: developmental regulation of functional receptors for high endothelial venules. Blood 66:577–582

    PubMed  CAS  Google Scholar 

  • Jalkanen S, Bargatze R, Herron L, Butcher EC (1986 a) A lymphoid cell surface glycoprotein involved in endothelial cell recognition and lymphocyte homing in man. Eur J Immunol, in press

    Google Scholar 

  • Jalkanen S, Steere A, Fox R, Butcher EC (1986 b) A distinct endothelial cell recognition system controlling lymphocyte traffic into inflamed synovium. Science, in press

    Google Scholar 

  • Jalkanen S, Bargatze R, Butcher EC (1986c) A gp 90 receptor class mediates several organ-specific lymphocyte-endothelial recognition events in man. (To be published)

    Google Scholar 

  • Kieda C, Monsigny M (1983) The adhesion of mouse spleen cells to lymph node venules involves endogenous membrane lectins (sugar receptors) of the lymphocytes. In: Parker JW, O’Brien RL (eds) Intercellular communication in leukocyte function. Wiley, New York, p 649

    Google Scholar 

  • Klaus GGB, Kunkl A (1981) The role of germinal centres in the generation of immunological memory. In: Microenvironments in haemopoietic and lymphoid differentiation. Excerpta Medica, Amsterdam, pp 265–280

    Google Scholar 

  • Korngold R, Blank KJ, Murasko DM (1983) Effect of interferon on thoracic duct lymphocyte output: induction with either poly I:poly C or vaccinia virus. J Immunol 130:2236–2240

    PubMed  CAS  Google Scholar 

  • Kraal G, Weissman IL, Butcher EC (1982) Germinal center B cells: antigen specificity and changes in heavy-chain isotype expression. Nature 298:377

    Article  PubMed  CAS  Google Scholar 

  • Kraal G, Weissman IL, Butcher EC (1983) Differences in in vivo distribution and homing of T cell subsets to mucosal vs. non-mucosal lymphoid organs. J Immunol 130:1097–1102

    PubMed  CAS  Google Scholar 

  • Kraal G, Weissman IL, Butcher EC (1985) Germinal center cells: antigen specificity, heavy chain class expression and evidence of memory. Adv Exp Med Biol 186:145–151

    PubMed  CAS  Google Scholar 

  • Kraal G, Hardy RR, Gallatin WM, Weissman IL, Butcher EC (1986) Antigen-induced changes in B cell subsets in lymph nodes: analysis by dual fluorescence flow cytofluorometry. (To be published)

    Google Scholar 

  • Lamm ME (1976) Cellular aspects of immunoglobulin A. Adv Immunol 22:223–290

    Article  PubMed  CAS  Google Scholar 

  • Lewinsohn D, Bargatze R, Butcher EC (1986) A common endothelial cell recognition system shared by neutrophils, lymphocytes, and other leukocytes. (To be published)

    Google Scholar 

  • Marchesi VT, Gowans JL (1964) The migration of lymphocytes through the endothelium of venules in lymph nodes. Proc R Soc Lond [Biol] 159:283

    Article  CAS  Google Scholar 

  • McConnell I, Hopkins J (1981) Lymphocyte traffic through antigen-stimulated lymph nodes. I. Complement activation within lymph nodes initiates cell shutdown. Immunology 42:217–223

    PubMed  CAS  Google Scholar 

  • McCullagh P (1980) Unresponsiveness of recirculating lymphocytes after antigenic challenge. Monogr Allergy 16:143–156

    PubMed  CAS  Google Scholar 

  • McDermott MR, Bienenstock J (1979) Evidence for a common mucosal immunologic system. I. Migration of B immunoblasts into intestinal, respiratory and genital tissues. J Immunol 122:1892

    PubMed  CAS  Google Scholar 

  • McWilliams M, Phillips-Quagliata JM, Lamm ME (1975) Characteristics of mesenteric lymph node cells homing to gut-associated lymphoid tissue in syngeneic mice. J Immunol 115:54–58

    PubMed  CAS  Google Scholar 

  • McWilliams M, Phillips-Quagliata JM, Lamm ME (1977) Mesenteric lymph node B lymphoblasts which home to the small intestine are pre-committed to IgA synthesis. J Exp Med 145:866–875

    Article  PubMed  CAS  Google Scholar 

  • Moore TC, Lachmann PJ (1982) Cyclic AMP reduces and cyclic GMP increases the traffic of lymphocytes through peripheral lymph nodes of sheep in vivo. Immunology 47:423–428

    PubMed  CAS  Google Scholar 

  • Navarro RF, Jalkanen ST, Hsu M, Goronzy J, Weyand C, Fathman G, Clayberger C, Krensky J, Butcher EC (1985) Human T cell clones express functional homing receptors required for normal lymphocyte trafficking. J Exp Med 162:1075–1080

    Article  PubMed  CAS  Google Scholar 

  • Ottaway CA, Parrott DMV (1979) Regional blood flow and its relationship to lymphocyte and lymphoblast traffic during a primary immune reaction. J Exp Med 150:218

    Article  PubMed  CAS  Google Scholar 

  • Parrot DMV, Ferguson A (1974) Selective migration of lymphocytes within the mouse small intestine. Immunology 26:571

    Google Scholar 

  • Rannie GH, Donald KJ (1977) Estimation of the migration of thoracic duct lymphocytes to nonlymphoid tissues. Cell Tissue Kinet 10:523

    PubMed  CAS  Google Scholar 

  • Rasmussen RA, Chin YH, Woodruff JJ, Easton TG (1985) Lymphocyte recognition of lymph node high endothelium. VII. Cell surface proteins involved in adhesion defined by monoclonal anti-HEBFLN (A. 11) antibody. J Immunol 135:19–24

    PubMed  CAS  Google Scholar 

  • Reichert RA, Weissman IL, Butcher EC (1983) Germinal center cells lack homing receptors necessary for normal lymphocyte recirculation. J Exp Med 157:813–827

    Article  PubMed  CAS  Google Scholar 

  • Reichert RA, Gallatin WM, Butcher EC, Weissman IL (1984) A homing receptor bearing cortical thymocyte subpopulation: implications for thymus cell migration and the nature of cortisone-resistant thymocytes. Cell 38:89–99

    Article  PubMed  CAS  Google Scholar 

  • Reichert RA, Gallatin WM, Weissman IL, Butcher EC (1986a) Phenotypic analysis of thymocytes that express homing receptors for peripheral lymph nodes. J Immunol (to be published)

    Google Scholar 

  • Reichert RA, Jerabek L, Gallatin WM, Butcher EC, Weissman IL (1986b) Ontogeny of lymphocyte homing receptor expression in the mouse thymus. J Immunol (to be published)

    Google Scholar 

  • Reynolds J, Heron I, Dudler L, Trnka Z (1982) T-eell recirculation in the sheep: Migratory properties of cells from lymph nodes. Immunology 47:415–421

    PubMed  CAS  Google Scholar 

  • Rose ML, Parrott DMV, Bruce RG (1976) Migration of lymphoblasts to the small intestine. II. Divergent migration of mesenteric and peripheral immunoblasts to site of inflammation in the mouse. Cell Immunol 27:36–46

    Article  PubMed  CAS  Google Scholar 

  • Rose ML, Parrott DMV, Bruce RG (1978) Accumulation of immunoblasts in extravascular tissues including mammary gland, peritoneal cavity, gut and skin. Immunology 35:415

    PubMed  CAS  Google Scholar 

  • Rose ML, Birbeck MSC, Wallis VJ, Forrester JA, Davies AJS (1980) Peanut lectin binding properties of germinal centers in mouse lymphoid tissue. Nature 284:364–366

    Article  PubMed  CAS  Google Scholar 

  • Rosen SD, Singer MS, Yednock TA, Stoolman LM (1985) Involvement of sialic acid on endothelial cells in organ-specific lymphocyte recirculation. Science 228:1005–1007

    Article  PubMed  CAS  Google Scholar 

  • Rowley DA, Gowans JL, Atkins RC, Ford RC, Smith WL (1972) The specific selection of recirculating lymphocytes by antigen in normal and preimmunized rats. J Exp Med 136:499

    Article  PubMed  CAS  Google Scholar 

  • Schmitz M, Nunez D, Butcher EC (1986) Selective recognition of mucosal endothelium by gut intraepithelial leukocytes. (To be published)

    Google Scholar 

  • Scollay R, Hopkins J, Hall J (1976) Possible role of surface Ig in non-random recirculation of small lymphocytes. Nature 260:528–529

    Article  PubMed  CAS  Google Scholar 

  • Scollay RG, Butcher EC, Weissman IL (1980) Thymus cell migration: quantitative aspects of cellular traffic from the thymus to the periphery in mice. Eur J Immunol 10:210–218

    Article  PubMed  CAS  Google Scholar 

  • Smith JG, McIntosh GH, Morris B (1970) The traffic of cells through tissues: a study of peripheral lymph in sheep. J Anat 107:87

    PubMed  CAS  Google Scholar 

  • Smith ME, Martin AF, Ford WL (1980) Migration of lymphoblasts in the rat: preferential localization of DNA-synthesizing lymphocytes in particular lymph nodes and other sites. Monogr Allergy 16:203–232

    PubMed  CAS  Google Scholar 

  • Spangrude GJ, Braaten BA, Daynes RA (1984) Molecular mechanisms of lymphocyte extravasation. I. Studies of two selective inhibitors of lymphocyte recirculation. J Immunol 132:354–362

    PubMed  CAS  Google Scholar 

  • Sprent J (1973) Circulating T and B lymphocytes of the mouse. I. Migratory properties. Cell Immunol 7:10

    Article  PubMed  CAS  Google Scholar 

  • Sprent J (1977) Recirculating lymphocytes. In: Marchalonis JJ (ed) The lymphocyte: structure and function, chap 2. Dekker, New York

    Google Scholar 

  • Sprent J (1980) Antigen-induced selective sequestration of T lymphocytes: role of the major histocompatibility complex. Monogr Allergy 16:233–244

    PubMed  CAS  Google Scholar 

  • Stamper HB Jr, Woodroff JJ (1976) Lymphocyte homing into lymph nodes: In vitro demonstration of the selective affinity of recirculating lymphocytes for high endothelial venules. J Exp Med 144:828–833

    Article  PubMed  Google Scholar 

  • Stevens SK, Weissman IL, Butcher EC (1982) Differences in the migration of B and T lymphocytes: organ-selectivity and the role of lymphocyte-endothelial cell recognition. J Immunol 128:844–851

    PubMed  CAS  Google Scholar 

  • Stoolman LM, Rosen SD, Tenforde T (1983) Phosphorylated carbohydrates inhibit an adhesive interaction implicated in lymphocyte recirculation. Abstract 339. J Cell Biol 97:88a

    Google Scholar 

  • Stoolman LM, Tenforde TS, Rosen SD (1984) Phosphomannosyl receptors may participate in the adhesive interaction between lymphocytes and high endothelial venules. J Cell Biol 99:1535–1540

    Article  PubMed  CAS  Google Scholar 

  • Streilein JW (1978) Lymphocyte traffic, T cell malignancies and the skin. J Invest Dermatol 71:167–171

    Article  PubMed  CAS  Google Scholar 

  • Strober S, Dilley J (1973) Maturation of B lymphocytes in the rat. I. Migration pattern, tissue distribution and turnover rate of unprimed and primed B lymphocytes involved in the antidinitrophenyl response. J Exp Med 138:1331

    Article  PubMed  CAS  Google Scholar 

  • Thorbecke GJ, Romano TJ, Lerman SP (1974) In: Brent L, Holborow J (eds) Progress of immunology II. vol 3. North-Holland, Amsterdam, pp 25–34

    Google Scholar 

  • Trnka Z, Cahill RNP (1980) Aspects of the immune response in single lymph nodes. Monogr Allergy 16:245–259

    PubMed  CAS  Google Scholar 

  • van Dinther-Janssen AC, van Maarsseveen AC, DeGroot J (1983) Comparative migration of T- and B-lymphocyte subpopulations into skin inflammatory sites. Immunology 48:519–527

    PubMed  CAS  Google Scholar 

  • Woodruff JJ, Katz IM, Lucas LE, Stamper HB Jr (1977) An in vitro model of lymphocyte homing. II. Membrane and cytoplasmic events involved in lymphocyte homing. J Immunol 119:1603

    PubMed  CAS  Google Scholar 

  • Yednock TA, Butcher EC, Stoolman LM, Rosen SD (1986) Lymphocyte-homing receptors: relationship between the MEL-14 antigen and a carbohydrate-binding receptor. (To be published)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Butcher, E.C. (1986). The Regulation of Lymphocyte Traffic. In: Clarke, A., et al. Current Topics in Microbiology and Immunology. Current Topics in Microbiology and Immunology, vol 128. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71272-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71272-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71274-6

  • Online ISBN: 978-3-642-71272-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics