Skip to main content

Effects of Hydrostatic Pressure on Ionic and Osmotic Regulation

  • Conference paper
High Pressure Effects on Selected Biological Systems

Abstract

The biological effects of hydrostatic pressure are extremely varied and depend not only upon the rate and magnitude of the pressure change, but also upon the organism and tissue being studied and the environmental (acclimatory) and evolutionary history of the animal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Antonov, V.F., Petrov, V.V., Molnar, A.A., Predvoditelev, D.A., Ivanov, A.A. (1980) The appearance of single-ion channels in unmodified lipid bilayer membranes at the phase transition temperature. Nature, 283, 585–586.

    Article  PubMed  CAS  Google Scholar 

  • Boheim, G., Hanke, W., Eibl, H. (1980) LipM phase transition in planar bilayer membrane and its effect on carrier- and poremediated ion transport. Proc. Natl. Acad. Sci. USA, 77, 3403–3407.

    Google Scholar 

  • Brauer, R.W., Bekman, M.Y., Keyser, J.B., Nesbitt, D.L., Shvetzov, S. G., Sidelev, G.N., Wright, S.L. (1980) Comparative studies of sodium transport and its relation to hydrostatic pressure in deep $nd shallow water gammarid crustaceans from Lake Baikal. Comp. Biochem. Physiol. 65A, 129–134.

    Google Scholar 

  • Brauer, R.W., Royal, R.D. (1979) A systems approach to live retrieval of and experimentation with deep sea animals. I. The life support system. In: Ocean Energy Marine Technol. Society, Washington D.C., pp. 65–69.

    Google Scholar 

  • Brouha, A., Pequeux, A., Schoffeniels, E., Disteche, A. (1970) The effects of high hydrostatic pressure on the permeability characteristics of the isolated frog skin. Biochim. Biophys. Acta 219, 455–462.

    Google Scholar 

  • Bruner, L.J., Hall, J.E. (1983). Pressure effects on alamethicin conductance in bilayer membranes. Biophys. J. 44, 3 9–48.

    Google Scholar 

  • Chapelle, S. (1978) The influence of acclimation temperature on the fatty acid composition of an aquatic crustacean (Cavciinus maenas). J. Exp. Zool. 204, 337–346.

    Google Scholar 

  • Chapelle, S., Brichon, G., Zwingelstein, G. (1982) Effect of environ-3mental temperature on the incorporation of H-ethanolamine into the phospholipids of the tissues of the crab Cavoinus maenas. J. Exp. Zool. 224, 289–297.

    Google Scholar 

  • Chapelle, S., Zwingelstein, G., Meister, R., Brichon, G. (1979). The influence of acclimation temperature on the phospholipid metabolism of an aquatic Crustacea ( Cavoinus maenas) J.Exp. Zool. 210, 371–380.

    Google Scholar 

  • Cossins, A.R., Prosser, C.L. (1978) Evolutionary adaptation of membranes to temperature. Proc. Natl. Acad. Sci. USA 75, 2040–2043.

    Google Scholar 

  • De Kruijff, B., Van Zoelen, E.J.J. (1978) Effect of the phase transition on the trans-bilayer movement of dimyristoyl phosphatidylcholine in unilamellar vesicles. Biochim. Biophys. Acta, 511, 105–115.

    Google Scholar 

  • De Smedt, H., Borghgraef, R., Ceuterick, F., Heremans, K. (1979). Pressure effects on lipid-protein interactions in (Na +K )- AT Pase. Biochim. Biophys. Acta 556, 479–489.

    Google Scholar 

  • Disteche, A. (1972). Effects of pressure on the dissociation of weak acids. Symp. Soc. Exp. Biol. 26, 27–60. 46

    Google Scholar 

  • Disteche, A. (1972). Effects of pressure on the dissociation of weak acids. Symp. Soc. Exp. Biol. 26, 27–60. 46

    Google Scholar 

  • Economos, A.C.(1982) Human homeostasis in the space environment : A systems synthesis approach. In : Miquel, A., Economos, A.C. (Eds) Space Gerontology. NASA Conf. Pub. 2248 pp.22+ +23.

    Google Scholar 

  • Goldinger, J.M., Kang, B.S., Choo, Y.E., Paganelli, C.V., Hong. S.K. (1980) Effect of hydrostatic pressure on ion transport and metabolism in human erythrocytes. J. Appl. Physiol. Respir. Environ. 49, 224-231.

    Google Scholar 

  • Goldman, S.S., Albers, R.W. (1973) Sodium-potassium activated adenosine triphosphatase. IX. The role of phospholipids. J. Biol. Chem. 248, 867-874.

    Google Scholar 

  • Hazel, J.R., Prosser, C.L. (1974) Molecular mechanisms of temperature compensation in poikilotherms. Physiol. Rev. 54, 620-677.

    Google Scholar 

  • Hilbig, R., Rahmann, H., Rosner, H. (1979) Brain gangliosides and temperature adaptation in eury- and stenothermic teleost fish (carp and rainbow trout). J. Therm. Biol. 4, 29-34.

    Google Scholar 

  • Jahnig, F. (1981a) Critical effects from lipid-protein interaction in membranes. I. Theoretical description. Biophys. J. 36, 329-345.

    Google Scholar 

  • Jahnig, F. (1981b) Critical effects from lipid-protein interaction in membranes. II. Interpretation of experimental results. Biophys. J. 36, 347-357.

    Google Scholar 

  • Jain, M.K. (1983) Nonrandom lateral organization in bilayers and biomembranes. In: Aloia, R.C.(ed) Membrane fluidity in biology vol I. Academic Press, New York. pp. 1 - 37.

    Google Scholar 

  • Kimelberg, H.K., Papahadjopoulos, D. (1972) Phospholipid requirements for ( Na++K+)-AT Pase activity: Head group specificity and fatty acid fluidity. Biochim. Biophys. Acta 282, 277-292.

    Google Scholar 

  • Kimelberg, H.K., Papahadjopoulos, D. (1972) Phospholipid requirements for ( Na++K+)-AT Pase activity: Head group specificity and fatty acid fluidity. Biochim. Biophys. Acta 282, 277-292.

    Google Scholar 

  • Moon, T.W. (1975) Effects of hydrostatic pressure on gill Na-K-AT Pase in an abyssal and a surface-dwelling teleost. Comp. Biochem. Physiol. 52B, 59-65.

    Google Scholar 

  • Pequeux, A. (1972) Hydrostatic pressure and membrane permeability. The effects of pressure on organisms. Symp.Soc.Exp.Biol. 26, 483–484.

    Google Scholar 

  • Piqueux, A. (1976a) Polarization variations induced by high hydrostatic pressures in the isolated frog skin as related to the effects on passive ionic permeability and active Na+ transport. J. Exp. Biol. 64, 587–602.

    Google Scholar 

  • Pequeux, A. (1976b) Effects of pH changes on the frog skin electrical potential difference and on the potential variations induced by high hydrostatic pressures. Comp. Biochem. Physiol. 55A, 103–108.

    Google Scholar 

  • Paqueux, A., Gilles, R. (1978) Effects of high hydrostatic pressures on the activity of the membrane AT Pases of some organs implicated in hydromineral regulation. Comp. Biochem. Physiol. 59B, 207–212.

    Google Scholar 

  • Pfeiler, E. (1978) Effects of hydrostatic pressure on (Na++K+)-AT Pase 2+ and Mg -AT Pase in gills of marine teleost fish. J. Exp. Zool. 205, 393–402.

    Google Scholar 

  • R.D. (1980) Mechanisms of resorption and deposition of calcium in the carapace of the crab Cavoinus maenas. J. Exp. Biol. 88, 205–218.

    Google Scholar 

  • R.D., Bekman, M.Y., Shelton, M.G., Brauer, R.W., Shvetzov, S.G.(1984a) The effects of changes in hydrostatic pressure on Na transport in gammarid amphipods from Lake Baikal. J. Exp. Zool. 232(2). In press.

    Google Scholar 

  • R.D., Dillaman, R.D., Shelton, M.G., Brauer, R.W.(1985) Effects of pressure on growth. In: Wenner, E.(ed) Crustacean Issues 2: Crustacean growth. AA. Balkema Publ., Rotterdam. In press. R.D., Shelton, M.G. (1982) Effects of hydrostatic pressure on Na transport in the freshwater crayfish, Pvocambavus olavkii. Comp. Biochem. Physiol. 71A, 271–276.

    Google Scholar 

  • R.D., Sidelyova, V.G., Brauer, R.W., Galazii, G.I. (1984b) Effects of pressure on oxygen consumption in cottid fish from Lake Baikal. Experientia 40, 771–773.

    Article  Google Scholar 

  • Silvius, J.R., McElhaney, R.N. (1980) Membrane lipid physical state and modulation of the activity in Acholeplasma laidlawii B. Proc. Natl. Acad. Sci. USA 77, 1255–1259.

    Google Scholar 

  • Sinensky, M., Pinkerton, F., Sutherland, E., Simon F.R. (1979) Rate limitation of (Na+ + K+bstimulated adenosinetriphosphatase by membrane acyl chain ordering. Proc. Natl. Acad. Sci. USA 76, 4893–4897.

    Google Scholar 

  • Wann, K.T., Macdonald, A.G. (1980) The effects of pressure on excitable cells. Comp. Biochem. Physiol. 66A, 1–12.

    Google Scholar 

  • Yorio, T., Torres, S., Tarapoom, N. (1983) Alteration in membrane permeability by diacylglycerol and phosphatidylcholine containing arachidonic acid. Lipids 18, 96–99.

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann, A.M., Zimmerman, S. (1976) Influences of hydrostatic pressure on biological system. In: Lambertsen C.J.(ed) Underwater Physiology vol. V. FASEB, Bethesda Md. pp. 381–396.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Roer, R.D., Pequeux, A.J.R. (1985). Effects of Hydrostatic Pressure on Ionic and Osmotic Regulation. In: Péqueux, A.J.R., Gilles, R. (eds) High Pressure Effects on Selected Biological Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70618-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70618-9_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-15630-7

  • Online ISBN: 978-3-642-70618-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics