Skip to main content

Classical Transmitters and Neuromodulators

  • Conference paper
Transmitter Molecules in the Brain

Part of the book series: Basic and Clinical Aspects of Neuroscience ((BASIC,volume 2))

Abstract

In the mammalian brain information transfer occurs through the release of chemical messengers or transmitter substances at synapses. For several years it was believed that each neurone contained and released only one chemical transmitter (the so-called Dale’s Principle) but it is now known that each branch of a neurone may release several different substances which can influence synaptic transmission. As recently as 1970, only ten substances, acetylcholine, some amino acids and monoamines were thought to be involved in chemical transmission. In 1987 this number exceeds 50, with the discovery in nerve cells of a number of peptides with potential chemical messenger function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barchas JD, Akil H, Elliott GR, Holman RB, Watson SJ (1978) Behavioural neurochemistry: neuroregulators and behavioural states. Science 200: 964–973

    Article  PubMed  CAS  Google Scholar 

  2. Bjorklund A, Hokfelt T (1984) Handbook of chemical neuroanatomy. Vol 2 Classical transmitters in the CNS, Part 1. Elsevier, Amsterdam

    Google Scholar 

  3. Bloom FE, Battenberg E, Rossier J, Ling N, Guillemin R (1978) Neurons containing β endorphin in rat brain exist separately from those containing encephalin: immunocytochemical studies. Proc Nat Acad Sci USA 75: 1591–1595

    Article  PubMed  CAS  Google Scholar 

  4. Braitman DJ, Auker CR, Carpenter DO (1980) Thyrotropin-releasing hormone has multiple actions in cortex. Brain Res 194: 244–248

    Article  PubMed  CAS  Google Scholar 

  5. Chesselet M-F (1984) Presynaptic regulation of neurotransmitter release in the brain. Neuroscience 12: 347–375

    Article  PubMed  CAS  Google Scholar 

  6. Cuello AC, Priestley JV, Sofroniew MV (1983) Immunocytochemistry and neurobiology. QJ Exp Physiol 68: 545–578

    CAS  Google Scholar 

  7. Dale HH (1935) Pharmacology and nerve-endings. Proc R Soc Med 28: 319–332

    PubMed  CAS  Google Scholar 

  8. De Feudis FV, Mandel P (1981) (eds) Advances in biochemical psychopharmacology. Vol 29 Amino acid neurotransmitters. Raven, New York

    Google Scholar 

  9. Eccles JC, Fatt P, Koketsu K (1954) Cholinergic and inhibitory synapses in a pathway from motor-axon collaterals to motoneurons. J Physiol (Lond) 126: 524–562

    CAS  Google Scholar 

  10. Eckenstein F (1985) Antibodies to acetylcholine at last. Nature 318: 236

    Article  PubMed  CAS  Google Scholar 

  11. Elliott GR, Barchas JD (1979) Neuroregulators: neurotransmitters and neuromodulators. Behav Brain Sci 2: 423–424

    Article  Google Scholar 

  12. Florey E (1967) Neurotransmitters and modulators in the animal kingdom. Fed Proc 26: 1164–1178

    PubMed  CAS  Google Scholar 

  13. Foote S, Bloom FE, Aston-Jones G (1983) Nucleus locus coeruleus: new evidence of anatomical and physiological specificity. Physiol Rev 63: 844–914

    PubMed  CAS  Google Scholar 

  14. Fuxe K, Agnati LF, Kalia M, Goldstein M, Andersson K, Harfstrand A (1985) Dopaminergic systems in the brain and pituitary. In: Fluckiger E, Muller EE, Thorner HO (eds) Basic and clinical aspects of neuroscience. Springer, Berlin Heidelberg New York Tokyo, pp 11–25

    Google Scholar 

  15. Hokfelt T, Fuxe K, Goldstein M, Johansson O (1973) Evidence for adrenaline neurons in the rat brain. Acta Physiol Scand 89: 286–288

    Article  PubMed  CAS  Google Scholar 

  16. Hughes J, Smith TW, Kosterlitz HW, Fothergill LA, Morgan BA, Morris HR (1975) Identification of two related pentapeptides from the brain with potent opiate agonist activity. Nature 258: 577–579

    Article  PubMed  CAS  Google Scholar 

  17. Iversen LL, Bloom FE (1972) Studies of the uptake of [3H] GABA and [3H] glycine in slices and homogenates of rat brain and spinal cord by electron microscopic autoradiography. Brain Res 41: 131–143

    Article  PubMed  CAS  Google Scholar 

  18. Katz B (1966) Nerve, muscle and synapse. McGraw-Hill, New York

    Google Scholar 

  19. Lundberg JM and Hokfelt T (1985) Co-existence of peptides and classical neurotransmitters. In: Bousfield D, (ed) Neurotransmitters in action. Elsevier, Amsterdam.

    Google Scholar 

  20. McLennan H (1963) Synaptic transmission. Saunders, Philadelphia

    Google Scholar 

  21. Schubert P, Lee K, Kreutzberg GW (1982) Neuronal release of adenosine derivatives and modulation of signal processing in the CNS. In: Buijs RM, Pevet P, Swaab DF (eds) Progress in brain research, vol 55. Elsevier, Amsterdam, pp 225–238

    Google Scholar 

  22. Shepherd GM (1983) Neurobiology. Oxford University Press, Oxford

    Google Scholar 

  23. Snyder SH (1980) Brain peptides as neurotransmitters. Science 209: 976–983

    Article  PubMed  CAS  Google Scholar 

  24. Steinbusch HWM (1981) Distribution of serotonin-immunoreactivity in the central nervous system of the rat–cell bodies and terminals. Neuroscience 6: 557–618

    Article  PubMed  CAS  Google Scholar 

  25. Thierry AM, Stinus L, Blanc G, Glowinski J (1973) Some evidence for the existence of dopaminergic neurons in the rat cortex. Brain Res 50: 230–234

    Article  PubMed  CAS  Google Scholar 

  26. Vogt M (1954) Concentration of sympathin in different parts of central nervous system under normal conditions and after administration of drugs. J Physiol (Lond) 123: 451–481

    CAS  Google Scholar 

  27. Watanabe T, Taguchi Y, Shiosaka S, Tanaka J, Kubota H, Terano Y, Tohyama M, Wada H (1984) Distribution of the histaminergic neuron system in the central nervous system of rats; a fluorescent immunohistochemical analysis with histidine decarboxylase as a marker. Brain Res 295: 13–25

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

McQueen, J.K. (1987). Classical Transmitters and Neuromodulators. In: Transmitter Molecules in the Brain. Basic and Clinical Aspects of Neuroscience, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69950-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69950-4_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-13701-6

  • Online ISBN: 978-3-642-69950-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics