Skip to main content

Metabolism of Vascular and Luminal Glutamine by Intestinal Mucosa in Vivo

  • Conference paper
Glutamine Metabolism in Mammalian Tissues

Abstract

Studies over the last 15 years have revealed that the small intestine is a major site for the metabolism of circulating glutamine in most animal species examined, including man. Because of the quantitative importance of glutamine as a vehicle for transporting nitrogen among tissues, the small intestine is now seen to play a significant role in processing the waste nitrogen from other organs. Meanwhile, oxidation of the glutamine carbon provides an important source of energy for the epithelial cells of the intestinal mucosa, where glutamine utilization is largely localized. Glutamine has emerged as a quantitatively more important respira¬tory fuel than glucose in this tissue. Also, it is now apparent that the small intestine is more than a site for digestion and absorption of dietary ingredients; it also serves some vital metabolic functions for the whole organism. Neptune’s work in 1965 [23], showing that glutamine was vigorously oxidized to C02 by incubated ileal tissue from several laboratory animal species, appears to be the first reported indication that glutamine may be a preferred substrate for intestine. These studies seem to have attracted little attention, however, perhaps because the conditions employed in vitro were not easily related to conditions in vivo. More direct clues emerged from arteriovenous difference measurements across the nonhepatic splanchnic organs of dogs [1, 7, 14], sheep [49], rats [2], and man [9], studies that revealed an uptake of circulating glutamine by the combined organs drained by the hepatic portal vein — the stomach, small and large intestine, cecum, spleen, and pancreas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Addae SK, Lotspeich WD (1968) Relation between glutamine utilization and production in metabolic acidosis. Am J Physiol 215: 269–277

    PubMed  CAS  Google Scholar 

  2. Aikawa T, Matsutaka H, Yamamoto H, Okuda T, Ishikawa E, Kawano T, Matsumura E (1973) Gluconeogenesis and amino acid metabolism. II. Interorganal relations and roles of glutamine and alanine in the amino acid metabolism of fasted rats. J Biochem (Tokyo) 74: 1003–1017

    CAS  Google Scholar 

  3. Anderson NG, Hanson PJ (1983) Arteriovenous differences for amino acids across control and acid-secreting rat stomach in vivo. Biochem J 210: 451–455

    PubMed  CAS  Google Scholar 

  4. Anderson NM, Bennett FI, Alleyne GAO (1976) Ammonia production by the small intestine of the rat. Biochim Biophys Acta 437: 238–243

    Article  CAS  Google Scholar 

  5. Budohoski L, Challis RAJ, Newsholme EA (1982) Effects of starvation on the maximal activities of some glycolytic and citric acid-cycle enzymes and glutaminase in mucosa of the small intestine of the rat. Biochem J 206: 169–172

    PubMed  CAS  Google Scholar 

  6. Cheng H, Leblond CP (1974) Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine: V. Unitarian theory of the origin of the four epithelial cell types. Am J Anat 141: 537–562

    Article  PubMed  CAS  Google Scholar 

  7. Elwyn DH, Parikh HC, Shoemaker WC (1968) Amino acid movements between gut, liver, and periphery in unanesthetized dogs. Am J Physiol 215: 1260–1275

    PubMed  CAS  Google Scholar 

  8. Featherston WR, Rogers QR, Freedland RA (1973) Relative importance of kidney and liver in synthesis of arginine by the rat. Am J Physiol 224: 127–129

    PubMed  CAS  Google Scholar 

  9. Feiig P, Wahren J, Karl I, Cerasi E, Luft R, Kipnis DM (1973) Glutamine and glutamate metabolism in normal and diabetic subjects. Diabetes 22: 573–576

    Google Scholar 

  10. Fine A (1982) The effects of chronic metabolic acidosis on liver and muscle glutamine metabolism in the dog in vivo. Biochem J 202: 271–273

    PubMed  CAS  Google Scholar 

  11. Hanson PJ, Parsons DS (1977) Metabolism and transport of glutamine and glucose in vascularly perfused small intestine of rat. Biochem J 166: 509–519

    PubMed  CAS  Google Scholar 

  12. Henslee JG, Jones ME (1982) Ornithine synthesis from glutamate in rat small intestinal mucosa. Arch Biochem Biophys 219: 186–197

    Article  PubMed  CAS  Google Scholar 

  13. Herzfeld A, Raper SM (1976) Enzymes of ornithine metabolism in adult and developing rat intestine. Biochim Biophys Acta 428: 600–610

    Article  PubMed  CAS  Google Scholar 

  14. Hills AG, Reid EL, Kerr WD (1972) Circulatory transport of L-glutamine in fasted mammals: cellular sources of urine ammonia. Am J Physiol 223: 1470–1476

    PubMed  CAS  Google Scholar 

  15. Ishikawa E (1976) The regulation of uptake and output of amino acids by rat tissues. Adv Enzyme Regul 14: 117–136

    Article  PubMed  CAS  Google Scholar 

  16. Knox WE, Horowitz ML, Friedell GH (1969) The proportionality of glutaminase content to growth rate and morphology of rat neoplasms. Cancer Res 29: 669–680

    PubMed  CAS  Google Scholar 

  17. Kovacevic Z, Morris HP (1972) The role of glutamine in the oxidative metabolism of malignant cells. Cancer Res 32: 326–333

    PubMed  CAS  Google Scholar 

  18. Krebs HA (1972) Some aspects of the regulation of fuel supply in omniverous animals. Adv. Enzyme Regul 10: 397–420

    Article  PubMed  CAS  Google Scholar 

  19. Krebs HA, Baverel G, Lund P (1980) Effect of bicarbonate on glutamine metabolism. Int J Biochem 12: 69–73

    Article  PubMed  CAS  Google Scholar 

  20. Love AHG, Mitchell TG, Neptune EM Jr. (1965) Transport of sodium and water by rabbit ileum, in vitro and in vivo. Nature (London) 206: 1158

    Article  CAS  Google Scholar 

  21. Lund P, Watford M (1976) Glutamine as a precursor of urea. In: Grisolia S, Bäguena R, Mayor F (eds) The urea cycle. Wiley, New York, pp 479–488

    Google Scholar 

  22. Matsutaka H, Aikawa T, Yamamoto H, Ishikawa E (1973) Gluconeogenesis and amino acid metabolism. III. Uptake of glutamine and output of alanine and ammonia by non-hepatic splanchnic organs of fasted rats and their metabolic significance. J Biochem 74: 1019–1029

    PubMed  CAS  Google Scholar 

  23. Neptune EM Jr (1965) Respiration and oxidation of various substrates by ileum in vitro. Am J Physiol 209: 329–332

    PubMed  CAS  Google Scholar 

  24. Pinkus LM, Berkowitz JM (1980) Utilization of glutamine by canine pancreas in vivo and acinar cells in vitro. Fed Proc 39: 1902

    Google Scholar 

  25. Pinkus LM, Windmueller HG (1977) Phosphate-dependent glutaminase of small intestine: localization and role in intestinal glutamine metabolism. Arch Biochem Biophys 182: 506–517

    Article  PubMed  CAS  Google Scholar 

  26. Pitts RF, Pilkington LA, MacLeod MB, Leal-Pinto E (1972) Metabolism of glutamine by the intact functioning kidney of the dog: studies in metabolic acidosis and alkalosis. J Clin Invest 51: 557–565

    Article  PubMed  CAS  Google Scholar 

  27. Riklis E, Quastel JH (1958) Effects of cations on sugar absorption by isolated surviving guinea pig intestine. Can J Biochem Physiol 36: 347–362

    Article  PubMed  CAS  Google Scholar 

  28. Ross BD, Hems R, Krebs HA (1967) The rate of gluconeogenesis from various precursors in the perfused rat liver. Biochem J 102: 942 - 951

    PubMed  CAS  Google Scholar 

  29. Schröck H, Goldstein L (1981) Interorgan relationships for glutamine metabolism in normal and acidotic rats. Am J Physiol 240: E519–E525

    PubMed  Google Scholar 

  30. Sevdalian DA, Ozand PT, Zielke HR (1980) Increase in glutaminase activity during the growth cycle of cultured human diploid fibroblasts. Enzyme 25: 142–144

    PubMed  CAS  Google Scholar 

  31. Squires EJ, Brosnan JT (1983) Measurements of the turnover rate of glutamine in normal and acidotic rats. Biochem J 210: 277–280

    PubMed  CAS  Google Scholar 

  32. Uchiyama C, Mori M, Tatibana M (1981) Subcellular localization and properties of N-acetylglutamate synthase in rat small intestinal mucosa. J Biochem (Tokyo) 89: 1777–1786

    CAS  Google Scholar 

  33. Wakabayashi Y, Henslee JG, Jones ME (1983) Pyrroline-5-carboxylate synthesis from glutamate by rat intestinal mucosa: subcellular localization and temperature stability. J Biol Chem 258: 3873–3882

    PubMed  CAS  Google Scholar 

  34. Wakabayashi Y, Jones ME (1983) Pyrroline-5-carboxylate synthesis from glutamate by rat intestinal mucosa. J Biol Chem 258: 3865–3872

    PubMed  CAS  Google Scholar 

  35. Watford M, Lund P, Krebs HA (1979) Isolation and metabolic characteristics of rat and chicken enterocytes. Biochem J 178: 589–596

    PubMed  CAS  Google Scholar 

  36. Weber FL Jr, Veach GL (1979) The importance of the small intestine in gut ammonium production in the fasting dog. Gastroenterology 77: 235–240

    PubMed  Google Scholar 

  37. Windmueller HG (1980) Enterohepatic aspects of glutamine metabolism. In: Mora J, Palacios R (eds) Glutamine: metabolism, enzymology, and regulation. Academic Press, London New York, pp 235–257

    Google Scholar 

  38. Windmueller HG (1982) Glutamine utilization by the small intestine. In: Meister A (ed) Advances in enzymology, vol 53. Wiley, New York, pp 201–237

    Google Scholar 

  39. Windmueller HG, Spaeth AE (1972) Fat transport and lymph and plasma lipoprotein biosynthesis by isolated intestine. J Lipid Res 13: 92–105

    PubMed  CAS  Google Scholar 

  40. Windmueller HG, Spaeth AE (1974) Uptake and metabolism of plasma glutamine by the small intestine. J Biol Chem 249: 5070–5079

    PubMed  CAS  Google Scholar 

  41. Windmueller HG, Spaeth AE (1975) Intestinal metabolism of glutamine and glutamate from the lumen as compared to glutamine from blood. Arch Biochem Biophys 171: 662–672

    Article  PubMed  CAS  Google Scholar 

  42. Windmueller HG, Spaeth AE (1976) Metabolism of absorbed aspartate, asparagine and arginine by rat small intestine in vivo. Arch Biochem Biophys 175: 670–676

    Article  PubMed  CAS  Google Scholar 

  43. Windmueller HG, Spaeth AE (1978) Identification of ketone bodies and glutamine as the major respiratory fuels in vivo for postabsorptive rat small intestine. J Biol Chem 253: 69–76

    PubMed  CAS  Google Scholar 

  44. Windmueller HG, Spaeth AE (1980) Respiratory fuels and nitrogen metabolism in vivo in small intestine of fed rats: quantitative importance of glutamine, glutamate, and aspartate. J Biol Chem 255: 107–112

    PubMed  CAS  Google Scholar 

  45. Windmueller HG, Spaeth AE (1981) Source and fate of circulating citrulline. Am J Physiol 241: E473–E480

    PubMed  CAS  Google Scholar 

  46. Windmueller HG, Spaeth AE (1981) Vascular autoperfusion of rat small intestine in situ. In: Jakoby, WB (ed) Detoxication and drug metabolism: conjugation and related systems. Academic Press, London New York, pp 120–129

    Chapter  Google Scholar 

  47. Windmueller HG, Spaeth AE (1984) Vascular perfusion of rat small intestine for permeation and metabolism studies. In: Csáky TZ (ed) Pharmacology of intestinal permeation. Handbook of experimental pharmacology). Springer, Berlin Heidelberg New York (in press)

    Google Scholar 

  48. Windmueller HG, Spaeth AE, Ganóte CE (1970) Vascular perfusion of isolated rat gut: norepinephrine and glucocorticoid requirement. Am J Physiol 218: 197–204

    PubMed  CAS  Google Scholar 

  49. Wolff JE, Bergman EN, Williams HH (1972) Net metabolism of plasma amino acids by liver and portal-drained viscera of fed sheep. Am J Physiol 223: 438–446

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer- Verlag Berlin Heidelberg

About this paper

Cite this paper

Windmueller, H.G. (1984). Metabolism of Vascular and Luminal Glutamine by Intestinal Mucosa in Vivo. In: Häussinger, D., Sies, H. (eds) Glutamine Metabolism in Mammalian Tissues. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69754-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69754-8_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69756-2

  • Online ISBN: 978-3-642-69754-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics