Skip to main content

Brain Biochemistry in Schizophrenia: An Assessment

  • Chapter
Pathochemical Markers in Major Psychoses

Abstract

In 1896 Emil Kraepelin distinguished “dementia praecox” from the affective psychoses. Shortly afterwards, Bleuler proposed the name “schizophrenia”, and since that time, the beginning of modern biological psychiatry, studies have been performed with the aim of understanding the basic mechanisms of these somatic disturbances (Kraepelin 1919; Bleuler 1923). While genetic factors have indicated a hereditary contribution to the aetiology of schizophrenia (Tsuang 1976), the search for distinct pathophysiological associations with this disease has, until very recently, proved disappointing. Nevertheless, the results of some investigations, particularly in the fields of biochemistry and pharmacology, have provided us with a pointer to the changes at the level of brain chemistry which may underly this disease. This progress has been made with three overlapping approaches:

  1. 1.

    The model psychoses

  2. 2.

    The pharmacology of the antipsychotic drugs

  3. 3.

    Human postmortem brain studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bennett JP, Enna SJ, Bylund DB, Gillin JC, Wyatt RJ, Snyder SH (1979) Neurotransmitter receptors in frontal cortex of schizophrenics. Arch Gen Psychiatry 36: 927–934

    PubMed  CAS  Google Scholar 

  • Bertler A, Carlsson A, Rosengren E (1956) Release by reserpine of catecholamines from rabbits heart. Naturwissenschaften 22: 521

    Article  Google Scholar 

  • Biggins JA, Perry EK, McDermott JR, Smith AI, Perry RH, Edwardson JA (1983) Post mortem levels of thyrotropin-releasing hormone and neurotensin in the amygdala in Alzheimer’s disease, schizophrenia and depression. J Neurol Sei 58: 117–122

    Article  CAS  Google Scholar 

  • Bird ED (1980) A brain tissue resource center to promote research in schizophrenia. In: Baxter C, Melnechuk R (eds) Perspectives in schizophrenia research. Raven, New York

    Google Scholar 

  • Bleuler E (1923) Lehrbuch der Psychiatrie. Springer, Berlin

    Google Scholar 

  • Carenzi A, Gillin JG, Guidotti A, Schwartz MA, Trabucchi M, Wyatt RJ (1975) Dopamine- sensitive adenylate cyclase in human caudate nucleus. A study in control subjects and schizophrenic patients. Arch Gen Psychiatry 32: 1056–1059

    PubMed  CAS  Google Scholar 

  • Carlsson A (1978) Does dopamine have a role in schizophrenia? Biol Psychiatry 13: 3

    PubMed  CAS  Google Scholar 

  • Carruthers B, Dawbarn D, de Quidt M, Emson PC, Hunter J, Reynolds GP (1984) Changes in neuropeptide content of amygdala in schizophrenia. Br J Pharmacol, in press

    Google Scholar 

  • Clow A, Theodorou A, Jenner P, Marsden CD (1980) Changes in rat striatal dopamine turnover and receptor activity during one year’s neuroleptic administration. Eur J Pharmacol 63: 135–144

    Article  PubMed  CAS  Google Scholar 

  • Cross AJ, Crow TJ, Glover V, Lofthouse R, Owen F, Riley GJ (1977) Monoamine oxidase activity in post mortem brains of schizophrenics and controls. Br J Clin Pharmacol 4: 719

    Google Scholar 

  • Cross AJ, Crow TJ, Killpack WS, Longden A, Owen F, Riley GJ (1978) The activities of brain dopamines-ß-hydroxylase and catechol-o-methyl transferase in schizophrenics and controls. Pharmacology 59: 117–121

    CAS  Google Scholar 

  • Cross AJ, Crow TJ, Owen F (1979) The use of ADTN (2-amino-6,7-dihydroxy-1,2,3,4-tetrahy-dronaphthalene) as a ligand for brain dopamine receptors. Br J Pharmacol 64: 87–88

    Google Scholar 

  • Cross A, Crow TJ, Owen F (1980) 3H-cis-Flupenthixol (3H-FPT) binding in post-mortem brains of schizophrenics — evidence for a selective increase in dopamine D-2 receptors. Neuropsychopharmacol 4: 147

    Google Scholar 

  • Crow TJ, Johnstone EC, Longden AJ, Owen F (1978) Dopaminergic mechanisms in schizophrenia: the antipsychotic effect and the disease process. Life Sci 23: 563–568

    Article  PubMed  CAS  Google Scholar 

  • Crow TJ, Owen F, Cross AJ, Ferrier N, Johnstone EC, McCreadie RM, Owens DGC, Poulter M (1981) Neurotransmitter enzymes and receptors in post-mortem brain in schizophrenia: evidence that an increase in D2 dopamine receptors is associated with the type I syndrome. In: Riederer P, Usdin E (eds) Transmitter biochemistry of human brain tissue. Macmillan, London, pp 85–96

    Google Scholar 

  • Emrich HM, Zaudig M, Kissling W, Dirlich G, Zerssen D, von Herz A (1980) Des-tyrosyl-γ-endorphin in schizophrenia: a double blind trial in 13 patients. Pharmacopsychiatry 13: 290

    Article  CAS  Google Scholar 

  • Farley IJ, Price KS, Hornykiewicz O (1978) Monoaminergic systems in the human limbic brain. In: Livingston KE, Hornykiewicz O (eds) Limbic mechanisms. Plenum, New York, pp 333–349

    Google Scholar 

  • Ferrier IN, Roberts GW, Crow TJ, Johnstone EC, Owens DGC, Lee YC, O’Shaughnessy D, Adrian TE, Polak JM, Bloom SR (1983) Reduced cholecystokinin-like and somatostatinlike immunoreactivity in limbic lobe is associated with negative symptoms in schizophrenia. Life Sci 33: 475–482

    Article  PubMed  CAS  Google Scholar 

  • Flor-Henry P (1969) Psychosis and temporal lobe epilepsy: a controlled investigation. Epilepsia 10: 363–395

    Article  PubMed  CAS  Google Scholar 

  • Friedhoff AM, Alpert M (1973) A dopaminergic-cholinergic mechanism in production of psychotic symptoms. Biol Psychiatry 6: 165–169

    PubMed  CAS  Google Scholar 

  • Gattaz WF, Riederer P, Reynolds GP, Gattaz D, Beckmann H (1983) Dopamine and noradrenaline in the cerebrospinal fluid of schizophrenic patients. Psychiatry Res 8: 243–250

    Article  PubMed  CAS  Google Scholar 

  • Gershon S, Hekiman LJ, Floyd A, Hollister LE (1967) α-Methyl-p-tyrosine ( AMT) in schizophrenia. Psychopharmacology (Berlin) 11: 189–194

    Article  CAS  Google Scholar 

  • Hornykiewicz O (1982) Brain catecholamines in schizophrenia — a good case for noradrenaline. Nature 299: 484–486

    Article  PubMed  CAS  Google Scholar 

  • Iversen LL, Reynolds GP, Snyder SH (1983) Pathophysiology of schizophrenia — causal role for dopamine or noradrenaline? Nature 305: 577

    Article  PubMed  CAS  Google Scholar 

  • Janowsky DS, El-Jousef MK, Davis JM (1973a) Provocation of schizophrenic symptoms by intravenous administration of methylphenidate. Arch Gen Psychiatry 28: 185–191

    PubMed  CAS  Google Scholar 

  • Janowsky DS, El-Jousef MK, Davis JM, Sekerke HJ (1973b) Antagonistic effects of physostigmine and methylphenidate in man. Am J Psychiatry 130: 1370–1376

    PubMed  CAS  Google Scholar 

  • Kleinmann JE, Karoum F, Rosenblatt J, Christin Gillin J, Hong J, Bridge TP, Zalcman S, Storch F, Delcarmen R, Wyatt RJ (1981) Catecholamines and peptides in post-mortem schizophrenic brains. In: Perris C, Struwe G, Jansson B (eds) Biological Psychiatry 1981. Elsevier, North Holland pp 711–714

    Google Scholar 

  • Kraepelin E (1919) Dementia Praecox and paraphrenia. Livingstone, Edinburgh

    Google Scholar 

  • Lee T, Seeman P (1980) Elevation of brain neuroleptic/dopamine receptors in schizophrenia. Am J Psychiatry 137: 191–197

    PubMed  CAS  Google Scholar 

  • Lee T, Seeman P, Tourtellotte WW, Farley IJ, Hornykiewicz O (1978) Binding of 3H-neuroleptics and 3H-apomorphine in schizophrenic brains. Nature 274: 897–900

    Article  PubMed  CAS  Google Scholar 

  • Luchins D (1975) The dopamine hypothesis of schizophrenia: a critical analysis. Neuropsychology 1: 365–378

    CAS  Google Scholar 

  • Mackay AVP, Doble A, Bird ED, Spokes EG, Quik M, Iversen LL (1978) 3H-Spiperone binding in normal and schizophrenic post-mortem human brain. Life Sci 23: 527–532

    Google Scholar 

  • Mackay AVP, Iversen LL, Rossor M, Spokes E, Bird E, Arregui A, Creese I, Snyder SH (1982) Increased brain dopamine and dopamine receptors in schizophrenia. Arch Gen Psychiatry 39: 991–997

    PubMed  CAS  Google Scholar 

  • McGeer PL, McGeer EG (1977) Possible changes in striatal and limbic cholinergic system in schizophrenia. Arch Gen Psychiatry 34: 1319

    PubMed  CAS  Google Scholar 

  • Memo M, Kleinman JE, Hanbauer I (1983) Coupling of dopamine Dt recognition sites with adenylate cyclase in nuclei accumbens and caudatus of schizophrenics. Science 221: 1304–1307

    Article  PubMed  CAS  Google Scholar 

  • Nemeroff CB, Youngblood WW, Manberg PJ, Prange AJ, Kizer JS (1983) Regional brain concentrations of neuropeptides in Huntington’s chorea and schizophrenia. Science 221: 972–975

    Article  PubMed  CAS  Google Scholar 

  • Owen F, Crow TJ, Poulter M, Cross AJ, Longden A, Riley GJ (1978) Increased dopamine-receptor sensitivity in schizophrenia. Lancet 2: 223–226

    Article  PubMed  CAS  Google Scholar 

  • Owen F, Cross AJ, Poulter M, Waddington JL (1979) Change in the characteristics of 3H-spiperone binding to rat striatal membranes after acute chlorpromazine administration: effects of buffer washing of membranes. Life Sci 25: 385–390

    Article  PubMed  CAS  Google Scholar 

  • Pecknold JC, Ananth JV, Ban TA, Lehmann HE (1972) The use of methyldopa in schizophrenia: a review and comparative study. Am J Psychiatry 128: 27–31

    Google Scholar 

  • Perry RH, Dockray GJ, Dimaline R, Perry EK, Blessed G, Tomlinson BE (1981) Neuropeptides in Alzheimer’s disease, depression and schizophrenia. A post mortem analysis of vasoactive intestinal peptide and cholecystokinin in cerebral cortex. J Neurol Sci 51 (3): 465–72

    Article  PubMed  CAS  Google Scholar 

  • Perry TL (1982) Normal cerebrospinal fluid and brain glutamate levels in schizophrenia do not support the hypothesis of glutamatergic neuronal dysfunction. Neurosci Lett 28: 81–85

    Article  PubMed  CAS  Google Scholar 

  • Post RM, Fink E, Carpenter WT, Goodwin FK (1975) Cerebrospinal fluid amine metabolites in acute schizophrenia. Arch Gen Psychiatry 32: 1063–1069

    PubMed  CAS  Google Scholar 

  • Reynolds GP (1983) Increased concentrations and lateral asymmetry of amygdala dopamine in schizophrenia. Nature 305: 527–529

    Article  PubMed  CAS  Google Scholar 

  • Reynolds GP, Reynolds LM, Riederer P, Jellinger K, Gabriel E (1980) Dopamine receptors and schizophrenia: drug effect or illness. Lancet 2: 1251

    Article  PubMed  CAS  Google Scholar 

  • Reynolds GP, Riederer P, Jellinger K, Gabriel E (1981a) Dopamine receptors and schizophrenia: the neuroleptic drug problem. Neuropharmacology 20: 1319–1320

    PubMed  CAS  Google Scholar 

  • Reynolds GP, Riederer P, Gabriel E (1981b) Propranolol binding in human brain. Preliminary studies. In: Riederer P, Usdin E (eds) Transmitter biochemistry of human brain tissue. Macmillan, London, pp 105–112

    Google Scholar 

  • Reynolds GP, Rossor MN, Iversen LL (1983) Preliminary studies of human cortical 5-HT2 receptors and their involvement in schizophrenia and neuroleptic drug action. J Neural Transm [Suppl] 18: 273–277

    CAS  Google Scholar 

  • Riederer P (1983) Documentation of biological and procedural variables in human neuroscience. In: Pope A (ed) Human brain dissection. US Dep Health and Human Services, NIH, USA, pp 241–243

    Google Scholar 

  • Riederer P, Jellinger K, Gabriel E (1984) 3H-Spiperone binding to post mortem human putamen in paranoid and nonparanoid schizophrenics. Proceedings of the VII world congress of psychiatry. Plenum in press

    Google Scholar 

  • Seeman P (1980) Brain dopamine receptors. Pharmacol Rev 32: 229–313

    PubMed  CAS  Google Scholar 

  • Seeman P, Lee T(1980) Brain dopamine receptors (D2 and D3 sites) in Parkinson’s disease and schizophrenia. Prog Neuropsychopharmacol 4: 609

    Google Scholar 

  • Shore P, Silver SL, Brodie BB (1955) Interactions of reserpine, serotonin and lysergic acid diethylamine in brain. Science 122: 284

    Article  PubMed  CAS  Google Scholar 

  • Snyder SH (1972) Catecholamines in the brain as mediators of amphetamine psychosis. Arch Gen Psychiatry 27: 169–178

    PubMed  CAS  Google Scholar 

  • Terenius L, Wahlstrom A, Lindstrom L, Widerlov E (1976) Increased CSF levels of endorphines in chronic psychosis. Neurosci Lett 3: 157

    Article  PubMed  CAS  Google Scholar 

  • Tsuang MT (1976) Genetic factors in schizophrenia. In: Grenell RG, Gabay S (eds) Biological foundations of psychiatry. Raven, New York, pp 633–644

    Google Scholar 

  • Walinder J, Skott A, Carlsson A, Ross BE (1976) Potentation by methyltyrosine of thioridazine effects in chronic schizophrenics. Arch Gen Psychiatry 33: 501

    PubMed  CAS  Google Scholar 

  • Whitaker PM, Crow TJ, Ferrier IN (1981) Tritiated LSD binding in frontal cortex in schizophrenia. Arch Gen Psychiatry 38: 278–280

    PubMed  CAS  Google Scholar 

  • Wise CD, Stein L (1973) Dopamines-β-hydroxylase deficits in the brain of schizophrenic patients. Science 181: 344–347

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Riederer, P., Reynolds, G.P. (1985). Brain Biochemistry in Schizophrenia: An Assessment. In: Beckmann, H., Riederer, P. (eds) Pathochemical Markers in Major Psychoses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69743-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69743-2_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69745-6

  • Online ISBN: 978-3-642-69743-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics