Skip to main content

Electrophysiological Effects of Antiepileptic Drugs

  • Chapter
Antiepileptic Drugs

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 74))

Abstract

This chapter will attempt to correlate the anticonvulsant action of antiepileptic agents with the effects of these drugs on electrophysiological parameters. Effects of antiepileptic or anticonvulsant drugs have been determined in neurons showing both normal behavior and abnormal activity due to direct or transsynaptic activation at high frequencies, treatment with different convulsant agents, or localization within or in the vicinity of an epileptogenic focus produced by local lesioning or application of cobalt or penicillin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albertson TE, Peterson SL, Stark LG, Rauschenberger JE (1977) The behavioural and electrical interactions of electrically induced hippocampal seizures and four anticonvulsants. Proc West Pharmacol Soc 20: 165–172

    PubMed  CAS  Google Scholar 

  • Albertson TE, Peterson SL, Stark LG (1978) Effects of phenobarbital and SC-13504 on partially kindled hippocampal seizures in rats. Exp Neurol 61: 270–280

    PubMed  CAS  Google Scholar 

  • Albertson TE, Peterson SL, Stark LG (1980) Anticonvulsant drugs and their antagonism of kindled amygdaloid seizures in rats. Neuropharmacology 19: 643–652

    PubMed  CAS  Google Scholar 

  • Alderdice MT, Trommer BA (1980) Differential effects of the anticonvulsants phenobarbital, ethosuximide and carbamazepine on neuromuscular transmission. J. Pharmacol Exp Ther 215: 92–96

    PubMed  CAS  Google Scholar 

  • Anderson RJ, Raines A (1974) Suppression by diphenylhydantoin of afferent discharges arising in muscle spindles of the triceps surae of the cat. J Pharmacol Exp Ther 191: 290–299

    PubMed  CAS  Google Scholar 

  • Arushanyan EB, Zavyalov AV, Melnichuk PV (1967) Trimethadione effect upon the background activity of intercalary neurons of the spinal cord and their responses to an afferent and suprasegmental stimulation (in Russian). Farmakol Toksikol 30: 655–658

    CAS  Google Scholar 

  • Ayala GF, Johnston DJ (1977) The influences of phenytoin on the fundamental electrical properties of simple neural systems. Epilepsia 18: 299–307

    PubMed  CAS  Google Scholar 

  • Ayala GF, Johnston D, Lin S, Dichter HN ( 1977 a) The mechanism of action of diphenylhydantoin on invertebrate neurons. II. Effects on synaptic mechanisms. Brain Res 121: 259–270

    Google Scholar 

  • Ayala GF, Lin S, Johnston D ( 1977 b) The mechanism of action of diphenylhydantoin on invertebrate neurons. I. Effects on basic membrane properties. Brain Res 121: 245–258

    Google Scholar 

  • Baldino F Jr, Geller HM (1981) Sodium valproate enhancement of γ-aminobutyric acid (GABA) inhibition: electrophysiological evidence for anticonvulsant activity. J Pharmacol Exp Ther 217: 445–450

    CAS  Google Scholar 

  • Banna NR, Jabbur SJ, Saade NE (1974) Antagonism of the spinal action of diazepam by semicarbazide. Br J Pharmacol 51: 101–103

    PubMed  CAS  Google Scholar 

  • Barker JL (1975 a) CNS depressants: effects on post-synaptic pharmacology. Brain Res 92:35–56

    Google Scholar 

  • Barker JL (1975 b) Inhibitory and excitatory effects of CNS depressants on invertebrate synapses. Brain Res 93:77–90

    Google Scholar 

  • Barker JL ( 1975 c) Selective depression of postsynaptic excitation by general anesthetics. In: Fink BR (ed) Molecular mechanisms of anesthesia. Progress in anesthesiology, vol 1. Raven, New York, pp 135–153

    Google Scholar 

  • Barker JL, Gainer H (1973) Pentobarbital: selective depression of excitation postsynaptic potentials. Science 182: 720–722

    PubMed  CAS  Google Scholar 

  • Bazemore RP, Zuckermann EC (1974) On the problem of diphenyl-hydantoin-induced seizures. An experimental approach. Arch Neurol 31: 243–249

    Google Scholar 

  • Besson JM, LeBars D, Oliveras J-L (1978) L’analgesie morphinique: donnees neurobiologiques. Ann Anesthesiol Fr 19: 343–369

    PubMed  Google Scholar 

  • Bernhard CG, Bohm E, Hojeberg S (1955) A new treatment of status epilepticus. Intravenous injections of a local anesthetic (lidocaine). Arch Neurol Psychiatr 74: 208–214

    Google Scholar 

  • Blaustein MP (1968) Barbiturates block sodium and potassium conductance increases in voltage-clamped lobster axons. J Gen Physiol 51: 293–307

    PubMed  CAS  Google Scholar 

  • Blaustein MP (1976) Barbiturates block calcium uptake by stimulated and potassium-depolarized rat sympathetic ganglia. J Pharmacol Exp Ther 196: 80–86

    PubMed  CAS  Google Scholar 

  • Blaustein MP, Ector AC (1975) Barbiturate inhibition of calcium uptake by depolarized nerve terminals in vitro. Mol Pharmacol 11: 369–378

    PubMed  CAS  Google Scholar 

  • Blum B (1964) A differential action of diphenylhydantoin on the motor cortex of the cat. Arch Int Pharmacodyn Ther 149: 45–55

    PubMed  CAS  Google Scholar 

  • Blume HW, Lamour Y, Arnauld E, Layton BS, Renaud LP (1979) Sodium di-n-propylacetate (valproate) action on single neurons in rat cerebral cortex and hippocampus. Brain Res 171: 182–185

    PubMed  CAS  Google Scholar 

  • Bowery NG, Dray A (1976) Barbiturate reversal of amino acid antagonism produced by convulsant agents. Nature 264: 276–278

    PubMed  CAS  Google Scholar 

  • Bowery NG, Dray A (1978) Reversal of the action of amino acid antagonists by barbiturates and other hypnotic drugs. Br J Pharmacol 63: 197–215

    PubMed  CAS  Google Scholar 

  • Braestrup C, Squires RF (1977) Specific benzodiazepine receptors in rat brain characterized by high affinity 3H-diazepam binding. Proc Natl Acad Sci USA 74: 3805–3809

    PubMed  CAS  Google Scholar 

  • Braestrup C, Squires RF (1978) Pharmacological characterization of benzodiazepine receptors in the brain. Eur J Pharmacol 48: 263–270

    PubMed  CAS  Google Scholar 

  • Brooks CMcC, Eccles JC (1947) A study of the effects of anaesthesia and asphyxia on the mono-synaptic pathway through the spinal cord. J Neurophysiol 10: 349 - 360

    PubMed  CAS  Google Scholar 

  • Brooks CMcC, Koizumi K, Siebens AA (1956) Inhibitory action of bulbar and suprabulbar reticular formation on the spinal reflex pathway. Am J Physiol 184: 497–504

    PubMed  CAS  Google Scholar 

  • Capek R, Esplin B (1973) Ethosuximide induced depression of repetitive transmission in the spinal monosynaptic pathway. Pharmacologist 15: 161

    Google Scholar 

  • Capek R, Esplin B (1977) Effects of ethosuximide on transmission of repetitive impulses and apparent rates of transmitter turnover in the spinal monosynaptic pathway. J Pharmacol Exp Ther 201: 320–325

    PubMed  CAS  Google Scholar 

  • Camay L, Grundfest S (1974) Excitable membrane stabilization by diphenylhydantoin and calcium. Neuropharmacology 13: 1097–1108

    Google Scholar 

  • Celesia GG, Booker HE, Sato S (1973) Effects of diazepam on experimentally induced cortical epilepsy and their correlation with drug concentration. EEG Clin Neurophysiol 34: 727

    Google Scholar 

  • Cheymol J, Van Den Driessche J, Allain P, Eben-Moussi E (1967) Diazepam et curarisation. Anesth Analg (Paris) 24: 329–336

    CAS  Google Scholar 

  • Chin JH, Smith CM (1962) Effects of some central nervous system depressants on the phasic and tonic stretch reflex. J Pharmacol Exp Ther 136: 276–283

    PubMed  CAS  Google Scholar 

  • Chin JH, Crankshaw DP, Kendig J J (1974) Changes in the dorsal root potential with diazepam and with analgesics aspirin, nitrous oxide, morphine and meperidine, Neuropharmacology 13: 305–315

    CAS  Google Scholar 

  • Chiu P, Olsen DM, Borys HK, Karler R, Turkanis SA (1979) The influence of cannabidiol and 9-tetrahydrocannabinol on cobalt epilepsy in rats. Epilepsia 20: 365–375

    PubMed  CAS  Google Scholar 

  • Choi DW, Farb DH, Fischbach GD (1977) Chlordiazepoxide selectively augments GABA action in spinal cord cell cultures. Nature 269: 342–344

    CAS  Google Scholar 

  • Clarke G, Hill RG (1972) Effects of a focal penicillin lesion on responses of rabbit cortical neurones to putative neurotransmitters. Br J Pharmacol 44: 435–441

    PubMed  CAS  Google Scholar 

  • Costa E, Guidotti A (1979) Molecular mechanisms in the receptor action of benzodiazepines. Ann Rev Pharmacol Toxicol 19: 531–545

    CAS  Google Scholar 

  • Costa E, Guidotti A, Mao CC ( 1975 a) Evidence for involvement of GABA in the action of benzodiazepines: studies on rat cerebellum. In: Costa E, Greengard P (eds) Mechanisms of action of benzodiazepines. Advances in biochemical psychopharmacology 14. Raven, New York, pp 113–130

    Google Scholar 

  • Costa E, Guidotti A, Mao CC, Suria A (1975 b) New concepts on the mechanism of action of benzodiazepines. Life Sci 17: 167–185

    Google Scholar 

  • Craig CR, Shideman FE (1971) Metabolism and anticonvulsant properties of mephobarbital and phenobarbital in rat brains. J Pharmacol Exp Ther 176: 35–42

    PubMed  CAS  Google Scholar 

  • Crane P, Swanson PD (1970) Diphenylhydantoin and the cations and phosphates of electrically stimulated brain slices. Neurology (Minneap) 20: 1119–1123

    CAS  Google Scholar 

  • Crankshaw DP, Raper C (1970) Mephenesin, methocarbamol, chlordiazepoxide and diazepam: actions on spinal reflexes and ventral root potentials. Br J Pharmacol 38: 148–156

    PubMed  CAS  Google Scholar 

  • Crawford JM (1970) Anaesthetic agents and the chemical sensitivity of corticol neurones. Neuropharmacology 9: 31–46

    PubMed  CAS  Google Scholar 

  • Curtis DR, Game CJA, Johnston GAR, McCulloch RM, MacLachlan RM (1972) Convulsive action of penicillin. Brain Res 43: 242–245

    PubMed  CAS  Google Scholar 

  • Curtis DR, Game CJA, Lodge D (1976) Benzodiazepines and central glycine receptors. Br J Pharmacol 56: 307–311

    PubMed  CAS  Google Scholar 

  • Davenport J, Schwindt PC, Crill WG (1977) Penicillin-induced spinal seizures: selective effects on synaptic transmission. Exp Neurol 56: 132–150

    PubMed  CAS  Google Scholar 

  • David J, Grewal RS (1976) Effect of carbamazepine (Tegretol®) on seizure and EEG patterns in monkeys with alumina-induced focal motor and hippocampal foci. Epilepsia 17: 415–422

    PubMed  CAS  Google Scholar 

  • Davidoff RA (1972 a) Diphenylhydantoin increases spinal presynaptic inhibition. Trans Am Neurol Assoc 97:193–196

    Google Scholar 

  • Davidoff RA (1972 b) Penicillin and presynaptic inhibition in the amphibian spinal cord. Brain Res 36:218–222

    Google Scholar 

  • Davis HL, Johnson DD, Crawford RD (1978) Epileptiform seizures in domestic fowl. IX. Implications of the absence of anticonvulsant activity of ethosuximide in a pharmacological model of epilepsy. Can J Physiol Pharmacol 56: 893–896

    Google Scholar 

  • Deisz RA, Lux HD (1977) Diphenylhydantoin prolongs postsynaptic inhibition and ion-tophoretic GABA action in the crayfish stretch receptor. Neurosci Lett 5: 199–203

    PubMed  CAS  Google Scholar 

  • Delgado-Escueta AV, Horan MP (1980) Phenytoin: biochemical membrane studies. In: Glaser GH, Penry JK, Woodbury DM (eds) Antiepileptic drugs: mechanisms of action. Advances in neurology 27. Raven, New York, pp 377–398

    Google Scholar 

  • De Salva SJ, Oester YT (1960) The effect of central depressants on certain spinal reflexes in the acute high cervical cat. Arch Int Pharmacodyn Ther 124: 255–262

    Google Scholar 

  • De Sousa RC, Grosso A (1973) Effects of diphenylhydantoin on transport processes in frog skin ( Rana ridibunda ). Experientia 29: 1097–1098

    Google Scholar 

  • De Weer P (1980) Phenytoin: blockage of resting sodium channels. In: Glaser GH, Penry JK, Woodbury DM (eds) Antiepileptic drugs: mechanisms of action. Advances in neurology 27. Raven, New York, pp 353–361

    Google Scholar 

  • Dolce G (1969) Uber den antiepileptischen Aktionsmechanismus von 5-Carbamyl-5H-di-benzo (b,f) azepin. Neurophysiologische Untersuchungen an Katzen. Arzneimittelforsch 19: 1257–1262

    PubMed  CAS  Google Scholar 

  • Dow RC, Forfar JC, McQueen JK (1973) The effects of some anticonvulsant drugs on cobalt-induced epilepsy. Epilepsia 14: 203–212

    PubMed  CAS  Google Scholar 

  • Downes H, Williams JK (1969) Effects of a convulsant barbiturate on the spinal monosynaptic pathway. J Pharmacol Exp Ther 168: 283–289

    PubMed  CAS  Google Scholar 

  • Dray A, Straughan DW (1976) Benzodiazepines: GABA and glycine receptors on single neurons in the rat medulla. J Pharm Pharmacol 28: 314–315

    Google Scholar 

  • Dretchen KL, Standaert FG, Raines A (1977) Effects of phenytoin on the cyclic nucleotide system in the motor nerve terminal. Epilepsia 18: 337–348

    PubMed  CAS  Google Scholar 

  • Eccles JC (1946) Synaptic potentials of motoneurons. J Neurophysiol 9: 87–120

    PubMed  CAS  Google Scholar 

  • Eccles JC (1965) Pharmacology of central inhibitory synapses. Br Med Bull 21: 19–25

    PubMed  CAS  Google Scholar 

  • Eccles JC, Krnjevic K (1959) Presynaptic changes associated with post-tetanic potentiation in the spinal cord. J Physiol (Lond) 149: 274–287

    CAS  Google Scholar 

  • Eccles JC, Schmidt R, Willis WD (1963) Pharmacological studies on presynaptic inhibition. J Physiol (Lond) 168: 500–530

    CAS  Google Scholar 

  • Edmonds HL, Stark LG, Hollinger MA (1974) The effects of diphenylhydantoin, phenobarbital, and diazepam on the penicillininduced epileptogenic focus in the rat. Exp Neurol 45: 377–386

    PubMed  CAS  Google Scholar 

  • Elazar Z, Gottesfeld Z (1975) Effect of drug-induced increase of brain GABA levels on penicillin focus. Experientia 31: 671–678

    Google Scholar 

  • Englander RN, Johnson RN, Brickley J J, Hanna GR (1977) Effects of antiepileptic drugs on thalamocortical excitability. Neurology (Minneap) 27: 1134–1139

    CAS  Google Scholar 

  • Esplin DW (1957) Effects of diphenylhydantoin on synaptic transmission in cat spinal cord and stellate ganglion. J Pharmacol Exp Ther 120: 301–323

    PubMed  CAS  Google Scholar 

  • Esplin DW (1963) Criteria for assessing effects of depressant drugs on spinal cord synaptic transmission, with examples of drug selectivity. Arch Int Pharmacodyn Ther 143: 479–497

    CAS  Google Scholar 

  • Esplin DW, Curto EM (1975) Effects of trimethadione on synaptic transmission in the spinal cord; antagonism of trimethadione and pentylenetetrazol. J Pharmacol Exp Ther 121: 457–467

    Google Scholar 

  • Esplin DW, Freston JW (1960) Physiological and pharmacological analysis of spinal cord convulsions. J Pharmacol Exp Ther 130: 68–80

    PubMed  CAS  Google Scholar 

  • Esplin DW, Rosenstein R (1963) Analysis of spinal depressant actions of carbon dioxide and acetazolamide. Arch Int Pharmacodyn Ther 143: 498–513

    CAS  Google Scholar 

  • Esplin DW, Zablocka B (1969) Effects of tetanization on transmitter dynamics. Epilepsia 10: 193–210

    PubMed  CAS  Google Scholar 

  • Esplin DW, Zablocka-Esplin B (1969) Mechanisms of action of convulsants. In: Jasper HH, Ward AA, Pope A (eds) Basic mechanisms of the epilepsies. Little Brown, Boston, pp 167–183

    Google Scholar 

  • Essman WB (1965) Xylocaine induced protection against electrically induced convulsions in mice. Arch Int Pharmacodyn Ther 157: 166–173

    PubMed  CAS  Google Scholar 

  • Evans RH (1979) Potentiation of the effects of GABA by pentobarbitone. Brain Res 171: 113–120

    PubMed  CAS  Google Scholar 

  • Fariello R, Mutani R (1970) Modificazioni dell’attività del focus epilettogeno cortico-motorio da allumina indotte dal sale di sodio dell’acido n-dipropilacetico ( DPA ). Acta Neurol (Napoli) 25: 116–122

    Google Scholar 

  • Faugier-Grimaud S (1978) Action of anticonvulsants on pentylenetetrazol-induced epileptiform activity on invertebrate neurones (Helix apsersa). Neuropharmacology 17: 905–918

    PubMed  CAS  Google Scholar 

  • Fertziger AP, Liuzzi SE, Dunham PB (1971) Diphenylhydantoin (Dilantin): stimulation of potassium influx in lobster axons. Brain Res 33: 592–596

    PubMed  CAS  Google Scholar 

  • Frank GB, Jhamandas K (1970) Effects of general depressant drugs on the electrical responses of isolated slabs of cat cerebral cortex. Br J Pharmacol 39: 707–715

    PubMed  CAS  Google Scholar 

  • Franz DN, Esplin DW (1965) Prevention by diphenylhydantoin of posttetanic enhancement of action potentials in nonmyelinated nerve fibres. Pharmacologist 7: 174

    Google Scholar 

  • Frey H-H (1962) On the anticonvulsant activity of local anaesthetics. Acta Pharmacol Toxicol 19: 205–211

    CAS  Google Scholar 

  • Frey H-H (1969) Determination of the anticonvulsant potency of unmetabolized trimethadione. Acta Pharmacol Toxicol 27: 295–300

    CAS  Google Scholar 

  • Fromm GH (1969) Pharmacological consideration of anticonvulsants. Headache 9: 35–41

    PubMed  CAS  Google Scholar 

  • Fromm GH, Landgren S (1963) Effect of diphenylhydantoin on single cells in the spinal trigeminal nucleus. Neurology (Minneap) 13: 34–37

    CAS  Google Scholar 

  • Fromm GH, Killian JM (1967) Effect of some anticonvulsant drugs on the spinal trigeminal nucleus. Neurology (Minneap) 17: 275–280

    CAS  Google Scholar 

  • Fromm GH, Kohli CM (1972) The role of inhibitory pathways in petit mal epilepsy. Neurology (Minneap) 22: 1012–1020

    CAS  Google Scholar 

  • Fromm GH, Chatta AS, Terrence CF, Glass JD (1981 a) Role of inhibitory mechanisms in trigeminal neuralogia. Neurology 31: 683–687

    Google Scholar 

  • Fromm GH, Glass JD, Chatta AS, Martinez AJ (1981 b) Effect of anticonvulsant drugs on inhibitory and excitatory pathways. Epilepsia 22: 65–73

    Google Scholar 

  • Gallagher BB, Baumel IP (1972) Primidone: biotransformation. In: Vida J A (ed) Anticonvulsants. Academic, New York, pp 11–55

    Google Scholar 

  • Gallagher JP, Inokuchi H, Nakamura J, Shinnick-Gallagher P (1981) Effects of anticonvulsants on excitability and GABA sensitivity of cat dorsal root ganglion cells. Neuropharmacology 20: 427–433

    PubMed  CAS  Google Scholar 

  • Gangloff H, Monnier M (1957) The action of anticonvulsant drugs tested by electrical stimulation of the cortex, diencephalon and rhinencephalon in the unanesthetized rabbit. EEG Clin Neurophysiol 9: 43–58

    CAS  Google Scholar 

  • Gent JP, Phillips NI (1980) Sodium di-n-propylacetate (valproate) potentiates responses to GABA and muscimol on single neurones. Brain Res 197: 275–278

    PubMed  CAS  Google Scholar 

  • Ghelarducci B, Lenzi G, Pompeiano O (1966) A neurophysiological analysis of the postural effects of a benzodiazepine. Arch Int Pharmacodyn Ther 163: 403–421

    CAS  Google Scholar 

  • Goff D, Miller A A, Webster RA (1978) Anticonvulsant drugs and folic acid on the development of epileptic kindling in rats. Br J Pharmacol 64: 406 P

    Google Scholar 

  • Gogerty JH, Gunn CG (1964) Effects of various centrally acting agents on penicillin-induced temporal lobe seizures in cats. Fed Proc 23: 349

    Google Scholar 

  • Goldring JM, Blaustein MP (1980) Barbiturates: physiological effects II. In: Glaser GH, Penry JK, Woodbury DM (eds) Antiepileptic drugs: mechanisms of action. Advances in neurology 27. Raven, New York, pp 523–531

    Google Scholar 

  • Goodman LS, Swinyard EA, Toman JEP (1946 a) Studies on the anticonvulsant properties of diphenylhydantoin. Fed Proc 5: 180

    Google Scholar 

  • Goodman LS, Swinyard EA, Toman JEP (1946 b) Further studies on the anticonvulsant properties of tridione (3,5,5-trimethyloxazollidinedione). Fed Proc 5: 179–180

    Google Scholar 

  • Goodman LS, Toman JEP, Swinyard EA ( 1946 c) The anticonvulsant properties of tridione. Laboratory and clinical investigations. Am J Med 1: 213–228

    Google Scholar 

  • Grossmann W, Jurna I, Nehles J (1974 a) Activation by diphenylthiohydantoin of inhibitory influences on spinal motor activity. Eur J Pharmacol 27: 214–220

    Google Scholar 

  • Grossmann W, Jurna I, Richter D (1974 b) Activating effect of diphenylhydantoin on spinal motoneurones. Neuropharmacology 13: 803–811

    Google Scholar 

  • Grossmann W, Jurna I, Theres C (1974 c) The excitatory effect of diphenylthiohydantoin on spinal reflex activity. Neuropharmacology 13: 813–817

    Google Scholar 

  • Grossmann W, Jurna I, Theres C (1974d) The site of action of the optical isomers of 1-methyl-5-phenyl-5-propyl barbituric acid. Naunyn-Schmiedeberg’s Arch Pharmacol 282: 367–377

    PubMed  CAS  Google Scholar 

  • Guberman A, Gloor P, Sherwin AL (1975) Response of generalized penicillin epilepsy in the cat to ethosuximide and diphenylhydantoin. Neurology (Minneap) 25: 758–764

    CAS  Google Scholar 

  • Guerrero-Figueroa R, Rye MM, Gallant DM (1967) Effects of diazepam on three per second spike and wave discharges. Curr Ther Res 9: 522–535

    PubMed  CAS  Google Scholar 

  • Guerrero-Figueroa R, Rye MM, Guerrero–Figueroa C (1968) Effects of diazepam on secondary subcortical epileptogenic tissues. Curr Ther Res 10: 150–166

    CAS  Google Scholar 

  • Guerrero-Figueroa R, Rye MM, Heath RG (1969) Effects of two benzodiazepine derivates on cortical and subcortical epileptogenic tissues in the cat and monkey. 1. Limbic system structures. Curr Ther Res 11: 27–39

    Google Scholar 

  • Haefely W, Kulcsar A, Mohler H, Pieri L, Pole P, Schaffner R (1975) Possible involvement of GABA in the central actions of benzodiazepines. In: Costa E, Greengard P (eds) Mechanisms of action of benzodiazepines. Advances in biochemical psychopharmacology 14. Raven, New York, pp 131–151

    Google Scholar 

  • Haefely W, Pole P, Schaffner R, Keller HH, Pieri L, Mohler H (1979) Facilitation of GABA-ergic transmission by drugs. In: Krogsgaard-Larsen P, Scheel-Kruger J, Kofod H (eds) GABA–neurotransmitters. Munksgaard, Copenhagen, pp 357–375

    Google Scholar 

  • Halpern LM, Julien RM (1972) Augmentation of cerebellar Purkinje discharge rate after diphenylhydantoin. Epilepsia 13: 377–385

    PubMed  CAS  Google Scholar 

  • Hamilton JT (1967) Muscle relaxant activity of chlordiazepoxide and diazepam. Can J Physiol Pharmacol 45: 191–199

    PubMed  CAS  Google Scholar 

  • Hartmann JF (1966) High sodium content of cortical astrocytes. Electron microscopic evidence. Arch Neurol 15: 633–642

    PubMed  CAS  Google Scholar 

  • Hasbani M, Pincus JH, Lee SH (1974) Diphenylhydantoin and calcium movement in lobster nerves. Arch Neurol 31: 250–254

    PubMed  CAS  Google Scholar 

  • Hauptmann A (1912) Luminal bei Epilepsie. MMW 59: 1907–1909

    Google Scholar 

  • Heinbecker P, Bartley SH (1940) Action of ether and nembutal on the nervous system. J Neurophysiol 3: 219–236

    CAS  Google Scholar 

  • Heinemann U, Lux HD (1973) Effects of diphenylhydantoin on extracellular ( K +) in cat cortex. EEG Clin Neurophysiol 34: 735

    Google Scholar 

  • Hernandez-Peon R (1964) Anticonvulsive action of G 32883. Neuropsychopharmacology 3: 303–311

    Google Scholar 

  • Hernández-Peón R (1965) Central action of G-32883 upon transmission of trigeminal pain impulses. Med Pharmacol Exp 12: 73–80

    Google Scholar 

  • Hernández-Peón R, Rojas-Ramirez J A (1966) Central mechanisms of tranquilizing, anticonvulsant and relaxant actions of Ro 4-5360. Neuropharmacology 5: 263–267

    Google Scholar 

  • Hernández-Peón, Rojas-Ramirez J A, O’Flaherty J J, Mazzuchelli-O’Flaherty AL (1964) An experimental study of the anticonvulsive and relaxant actions of Valium. Neuropharmacology 3: 405–412

    Google Scholar 

  • Hershkowitz N, Raines A (1978) Effects of carbamazepine on muscle spindle discharges. J Pharmacol Exp Ther 204: 581–591

    PubMed  CAS  Google Scholar 

  • Hershkowitz N, Dretchen KL, Raines A (1978) Carbamazepine suppression of post-tetanic potentiation at the neuromuscular junction. J Pharmacol Exp Ther 207: 810–816

    PubMed  CAS  Google Scholar 

  • Herz A, Fuster J (1964) Uber die Wirkung von Barbituraten und Amphetamin auf die Ent-ladungstatigkeit corticaler Neurone. Naunyn-Schmiedebergs Arch Pharmacol 249: 146–161

    CAS  Google Scholar 

  • Holm E, Kelleter, R, Heinemann H, Hamann K-F (1970) Elektrophysiologische Analyse der Wirkun von Carbamazepin auf das Gehirn der Katze. Pharmakopsychiat Neuro-Psychopharmakol 3: 187–200

    CAS  Google Scholar 

  • Honda H, Allen MB (1973) The effect of an iminostilbene derivative (G 32883) on peripheral nerves. J Med Ass Georgia 62: 38–42

    PubMed  CAS  Google Scholar 

  • Hori M, Ito T, Yoshida K, Shimizu M (1979) Effect of anticonvulsants on spiking activity induced by cortical freezing in cats. Epilepsia 20: 25–36

    PubMed  CAS  Google Scholar 

  • Huang L-YM, Barker JL (1980) Pentobarbital: stereospecific actions of (+) and (-)

    Google Scholar 

  • isomers revealed on cultured mammalian neurons. Science 207:195–197

    Google Scholar 

  • Hudson RD, Wolpert MK (1970) Central muscle relaxant effects of diazepam. Neuropharmacology 9: 481–488

    PubMed  CAS  Google Scholar 

  • Iadarola MJ, Gale K (1981) Cellular compartments of GABA in brain and their relationship to anticonvulsant activity. Mol Cell Biochem 39: 305–330

    PubMed  CAS  Google Scholar 

  • Ito T, Hori M, Yoshida K, Shimizu M (1977) Effect of anticonvulsants on thalamic after-discharge in rats and cats. Jpn J Pharmacol 27: 823–831

    PubMed  CAS  Google Scholar 

  • Ito T, Hori M, Yoshida K, Shimizu M (1979) Effect of anticonvulsants on experimental cortical epilepsy induced by tungstic acid gel in rats. Arch Int Pharmacodyn Ther 241: 287–299

    PubMed  CAS  Google Scholar 

  • Johnston D, Ayala GF (1975) Diphenylhydantoin: action of a common anticonvulsant on bursting pacemaker cells in Aplysia. Science 189: 1009–1011

    PubMed  CAS  Google Scholar 

  • Julien RM (1972) Cerebellar involvement in the antiepileptic action of diazepam. Neuropharmacology 11: 683–691

    PubMed  CAS  Google Scholar 

  • Julien RM (1973) Lidocaine in experimental epilepsy: correlation of anticonvulsant effect with blood concentrations. EEG Clin Neurophysiol 34: 639–645

    CAS  Google Scholar 

  • Julien RM (1974) Experimental epilepsy: cerebro-cerebellar interactions and antiepileptic drugs. In: Cooper IS, Riklan M, Snider RS (eds) The cerebellum, epilepsy and behaviour. Plenum, New York, pp 97–117

    Google Scholar 

  • Julien RM, Halpern LM (1970) Stabilization of excitable membrane by chronic administration of diphenylhydantoin. J Pharmacol Exp Ther 175: 206–211

    PubMed  CAS  Google Scholar 

  • Julien RM, Halpern LM (1971) Diphenylhydantoin: evidence for a central action. Life Sci 10: 575–582

    CAS  Google Scholar 

  • Julien RM, Hollister RP (1975) Carbamazepine: mechanisms of action. In: Penry JK, Daly DD (eds) Advances in neurology, vol II. Raven, New York, pp 263–276

    Google Scholar 

  • Julien RM, Laxer KD (1974) Cerebellar responses to penicillin-induced cerebral cortical epileptiform discharge. EEG Clin Neurophysiol 37: 123–132

    CAS  Google Scholar 

  • Kästner I, Klingenberg F, Muller M (1968) Untersuchungen zur zentralnervosen Wirkung des Ethosuximids. Arch Psychiatr Nervenkr 211: 365–376

    PubMed  Google Scholar 

  • Kästner I, Klingenberg F, Muller M (1970) Zur Wirkung des Ethosuximids auf die Kobalt-induzierte „Epilepsie“ der Ratte. Arch Int Pharmacodyn Ther 186: 220–226

    PubMed  Google Scholar 

  • Kao LI, Crill WE ( 1972 a) Penicillin-induced segmental myoclonus. I. Motor responses and intracellular recording from motoneurones. Arch Neurol 26: 156–161

    Google Scholar 

  • Kao LI, Crill WE ( 1972 b) Penicillin-induced segmental myoclonus. II. Membrane properties of cat spinal motoneurones. Arch Neurol 26: 162–168

    Google Scholar 

  • Kawasaki K, Matsushita A (1981) Sensitive depressant effect of benzodiazepines on the crossed extensor reflex in chloralose-anesthetized rats. Life Sci 28: 1391–1398

    PubMed  CAS  Google Scholar 

  • Kerwin RW, Olpe H-R, Schmutz M (1980) The effect of sodium-n-dipropyl acetate on γ-aminobutyric acid-dependent inhibition in the rat cortex and substantia nigra in relation to its anticonvulsant activity. Br J Pharmacol 71: 545–551

    PubMed  CAS  Google Scholar 

  • Kobayashi K, Iwata Y, Mukawa J (1967) Preferential action of Tegretol (G-32883) to limbic seizure -clinical and experimental analyses. No To Shinkei 19: 991–1005

    Google Scholar 

  • Kopeloff LM, Alexander GJ (1972) Mechanism of p-chlorophenylalanine-mediated increase in seizure susceptibility: inhibition by cerebellar ablation. Proc Soc Exp Biol Med 139: 647–651

    PubMed  CAS  Google Scholar 

  • Korey SR (1951) Effect of dilantin and mesantoin on the giant axon of the squid. Proc Soc Exp Biol Med 76: 297–299

    PubMed  CAS  Google Scholar 

  • Krip G, Vazquez AJ (1971) Effects of diphenylhydantoin and cholinergic agents on the neuronally isolated cerebral cortex. EEG Clin Neurophysiol 30: 391–398

    CAS  Google Scholar 

  • Krupp P (1969) The effect of Tegretol® on some elementary neuronal mechanisms. Headache 9: 42–46

    PubMed  CAS  Google Scholar 

  • Krupp P, Bianchi CP, Suarez-Kurtz G (1969) On the local anesthetic effect of barbiturates. J Pharm Pharmacol 21: 763–768

    PubMed  CAS  Google Scholar 

  • LaManna J, Lothman E, Rosenthal M, Somjen G, Younts W (1977) Phenytoin, electric, ionic, and metabolic responses in cortex and spinal cord. Epilepsia 18: 317–329

    PubMed  CAS  Google Scholar 

  • Larrabee MG, Posternak JM (1952) Selective action of anesthetics on synapses and axons in mammalian sympathetic ganglia. J Neurophysiol 15: 91–114

    PubMed  CAS  Google Scholar 

  • Laxer KD, Robertson LT, Julien RM, Dow RS (1980) Phenytoin: relationship between cerebellar function and epileptic discharges. In: Glaser GH, Penry JK, Woodbury DM (eds) Antiepileptic drugs: mechanism of action. Advances in neurology 27. Raven, New York, pp 415–427

    Google Scholar 

  • Leeb-Lundberg F, Snowman A, Olsen RW (1980) Barbiturate receptor sites are coupled to benzodiazepine receptors. Proc Natl Acad Sci USA 77: 7468–7472

    PubMed  CAS  Google Scholar 

  • Lipicky RJ, Gilbert DL, Stillman IM (1972) Diphenylhydantoin inhibition of sodium conductance in squid giant axon. Proc Nat Acad Sci USA 69: 1758–1760

    PubMed  CAS  Google Scholar 

  • Löscher W, Frey H-H (1977) Effect of convulsant and anticonvulsant agents on level and metabolism of γ-aminobutyric acid in mouse brain. Naunyn-Schmiedebergs Arch Pharmacol 296: 263–269

    PubMed  Google Scholar 

  • Lothman EW, Somjen GG (1976) Motor and electrical signs of epileptiform activity induced by penicillin in the spinal cords of decapitate cats. EEG Clin Neurophysiol 41: 237–252

    CAS  Google Scholar 

  • Louis S, Kutt H, McDowell F (1968) Intravenous diphenylhydantoin in experimental seizures. II. Effect on penicillin-induced seizures in the cat. Arch Neurol 18: 472–477

    Google Scholar 

  • Louis S, Kutt H, McDowell F (1971) Modification of experimental seizures and anticonvulsant efficacy by peripheral stimulation. Neurology (Minneap) 21: 329–336

    CAS  Google Scholar 

  • Loyning Y, Oshima T, Yokota T (1964) Site of action of thiamylal sodium on the monosynaptic spinal reflex pathway in cats. Neurophysiol 27: 408–428

    CAS  Google Scholar 

  • MacDonald RL, Barker JL (1979 a) Enhancement of GABA-mediated postsynaptic inhibition in cultured mammalian spinal cord neurons: a common mode of anticonvulsant action. Brain Res 167: 323–336

    Google Scholar 

  • MacDonald RL, Barker JL (1979 b) Anticonvulsant and anesthetic barbiturates: different postsynaptic actions in cultured mammalian neurons. Neurology (Minneap) 29: 432–447

    Google Scholar 

  • MacDonald RL, Bergey GK (1979) Valproic acid augments GABA-mediated postsynaptic inhibition in cultured mammalian neurons. Brain Res 170: 558–562

    PubMed  CAS  Google Scholar 

  • Mandell AJ, Bach LM (1957) Failure of the bulbar inhibitory reticular formation to affect somatic reflex activity in the unanesthetized cat. Am J Physiol 190: 330–332

    PubMed  CAS  Google Scholar 

  • Mareš P, Kolinova M, Fischer J (1977) The influence of pentobarbital upon a cortical epileptogenic focus in rats. Arch Int Pharmacodyn Ther 226: 313–323

    PubMed  Google Scholar 

  • Menétrey D, Decaud-Gasarabwe J, Besson JM (1973) Effects of diazepam on dorsal root potentials induced by cortical paroxysmal activity. Eur J Pharmacol 24: 158–163

    PubMed  Google Scholar 

  • Merritt HH, Putnam TJ (1938) A new series of anticonvulsant drugs tested by experiments on animals. Arch Neurol Psychiatr 39: 1003–1015

    CAS  Google Scholar 

  • Merrit HH, Putnam TJ (1939) Sodium diphenylhydantoinate in treatment of convulsive seizures. Arch Neurol Psychiatr 42: 1053–1058

    Google Scholar 

  • Millichap JG, Woodbury DM, Goodman LS (1959) Mechanism of the anticonvulsant action of acetazoleamide, a carbonic anhydrase inhibitor. J Pharmacol Exp Ther 115: 251–258

    Google Scholar 

  • Miyahara JT, Esplin D, Zablocka B (1966) Differential effects of depressant drugs on presynaptic inhibition. J Pharmacol Exp Ther 154: 119–127

    PubMed  CAS  Google Scholar 

  • Möhler H, Okada T (1977) Benzodiazepine receptor: demonstration in the central nervous system. Science 198: 849–851

    PubMed  Google Scholar 

  • Möhler H, Okada T (1978) Biochemical identification of the site of action of benzodiazepines in human brain by 3H-diazepam binding. Life Sci 22: 985–996

    PubMed  Google Scholar 

  • Morillo A (1962) Effects of benzodiazepines upon amygdala and hippocampus of the cat. Neuropharmacology 1: 353–359

    CAS  Google Scholar 

  • Morillo A, Revzin AM, Knauss T (1962) Physiological mechanisms of action of chlordiazepoxide in cats. Psychopharmacologia (Berlin) 3: 386–394

    CAS  Google Scholar 

  • Morrell F, Bradley W, Ptashne M (1958) Effect of diphenylhydantion on peripheral nerve. Neurology (Minneap) 8: 140–144

    CAS  Google Scholar 

  • Morris HH (1979) Lidocaine: a neglected anticonvulsant? South Med J 72: 1564–1566

    PubMed  Google Scholar 

  • Musgrave FS, Purpura DP (1963) Effects of dilantin on focal epileptogenic activity of cat neocortex. EEG Clin Neurophysiol 15: 923

    Google Scholar 

  • Mutani R, Fariello R (1969) Effetti dell’acido n-dipropilacetico ( Depakine) sull’attivita del focus epilettogeno corticale da cobalto. Riv Patol Nerv Ment 90: 40–49

    Google Scholar 

  • Mutani R, Doriguzzi T,Fariello R, Furlan PM (1968) Azione antiepilettica del sale di sodio dell’acido N-dipropilacetico. Studio sperimentale sul gatto. Riv Patol Nerv Ment 89: 24–33

    Google Scholar 

  • Nagy J, Decsi L (1979) Further studies on the site of action of diazepam: anticonvulsant effect in the rabbit. Neuropharmacology 18: 39–45

    PubMed  CAS  Google Scholar 

  • Nakanishi T, Norris FH Jr (1971) Effect of diazepam on rat spinal reflexes. J Neurol Sci 13: 189–195

    PubMed  CAS  Google Scholar 

  • Narahashi T, Moore JW, Poston RN (1969) Anesthetic blocking of nerve membrane conductances by internal and external applications. J Neurobiol 1: 3–22

    PubMed  CAS  Google Scholar 

  • Narahashi T, Frazier DT, Deguchi T, Cleaves CA, Ernau MC (1971) The active form of pentobarbital in squid giant axons. J Pharmacol Exp Ther 177: 25–34

    PubMed  CAS  Google Scholar 

  • Neuman RS, Frank GB (1977) Effects of diphenylhydantoin and phenobarbital on voltage-clamped myelinated nerve. Can J Physiol Pharmacol 55: 42–47

    PubMed  CAS  Google Scholar 

  • Ngai SH, Tseng DTC, Wang SC (1966) Effect of diazepam and other central nervous system depressants on spinal reflexes in cats: a study of site of action. J Pharmacol Exp Ther 153: 344–351

    CAS  Google Scholar 

  • Nicoll RA (1972) The effects of anaesthetics on synaptic excitation and inhibition in the olfactory bulb. J Physiol (Lond) 223: 803–814

    CAS  Google Scholar 

  • Nicoll RA (1975 a) Pentobarbital: action on frog motoneurons. Brain Res 96:119–123

    Google Scholar 

  • Nicoll RA (1975 b) Presynaptic action of barbiturates in the frog spinal cord. Proc Nat Acad Sci USA 72:1460–1463

    Google Scholar 

  • Nicoll RA (1978) Pentobarbital: differential postsynaptic actions on sympathetic ganglion cells. Science 199: 451–452

    PubMed  CAS  Google Scholar 

  • Nicoll RA, Iwamoto ET (1978) Action of pentobarbital on sympathetic ganglion cells. J Neurophysiol 41: 977–986

    PubMed  CAS  Google Scholar 

  • Nicoll RA, Wojtowicz JM (1980) The effects of pentobarbital and related compounds on frog motoneurons. Brain Res 191: 225–237

    PubMed  CAS  Google Scholar 

  • Nicoll RA, Eccles JC, Oshima T, Rubia I (1975) Prolongation of hippocampal inhibitory postsynaptic potentials by barbiturates. Nature 258: 625–627

    PubMed  CAS  Google Scholar 

  • Obata K, Takeda K (1969) Release of y–aminobutyric acid into the fourth ventricle induced by stimulation of the cat’s cerebellum. J Neurochem 16: 1043–1047

    PubMed  CAS  Google Scholar 

  • Obata K, Ito M, Ochi R, Sato N (1967) Pharmacological properties of the postsynaptic inhibition by Purkinje cell axons and the action of γ-aminobutyric acid on Deiters neurones. Exp Brain Res 4: 43–57

    PubMed  CAS  Google Scholar 

  • Obata K, Takeda K, Shinozaki H (1970) Further study on pharmacological properties of the cerebellar-induced inhibition of Deiter’s neurones. Exp Brain Res 11: 327–342

    PubMed  CAS  Google Scholar 

  • Olds ME, Olds J (1969) Effects of anxiety-relieving drugs on unit discharges in hippocampus, reticular midbrain, and preoptic area in the freely moving rat. Neuropharmacology 8: 87–103

    CAS  Google Scholar 

  • Olsen RW (1981 a) GABA-benzodiazepine-barbiturate receptor interactions. J Neurochem 37:1–13

    Google Scholar 

  • Olsen RW (1981 b) The GABA postsynaptic membrane receptor-ionophore complex. Site of action of convulsant and anticonvulsant drugs. Mol Cell Biochem 39: 261–279

    Google Scholar 

  • Olsen RW, Leeb-Lundberg F (1981) Convulsant and anticonvulsant drug binding sites related to GABA-regulated chloride ion channels. In: Costa E, Di Chiara G, Gessa GL (eds) GABA and benzodiazepine receptors. Advances in biochemical psychopharmacology 26. Raven, New York, pp 93–102

    Google Scholar 

  • Olsen RW, Ticku MK, Van Ness PC, Greenlee D (1978) Effects of drugs on γ-aminobutyric

    Google Scholar 

  • acid receptors, uptake, release and synthesis in vitro. Brain Res 139:277–294

    Google Scholar 

  • Olsen RW, Ticku MK, Greenlee D, Van Nees P (1979) GABA receptor and ionophore binding sites: interaction with various drugs. In: Krogsgaard-Larsen P, Scheel-Krüger J, Kofod H (eds) GABA-neurotransmitters. Munksgaard, Copenhagen, pp 165–178

    Google Scholar 

  • Olsen RW, Leeb-Lundberg F, Napias C (1980) Pictrotoxin and convulsant binding site in mammalian brain. Brain Res Bull [Suppl 2] 5: 217–221

    CAS  Google Scholar 

  • Ostrovskaya RU, Molodavkin GM, Porfiryeva RP, Zubovskaya AM (1975) The mechanism of anticonvulsive action of diazepam (in Russian). Biull Eksp Biol Med 79: 50–53

    CAS  Google Scholar 

  • Ottoson JO (1955) The effect of xylocaine in electric convulsive treatment. Experientia 11: 453–454

    Google Scholar 

  • Peck EJ Jr, Miller AL, Lester BR (1976) Pentobarbital and synaptic high-affinity receptive sites for gamma-aminobutyric acid. Brain Res Bull 1: 595–597

    PubMed  CAS  Google Scholar 

  • Perry JG, McKinney L, De Weer P (1978) The cellular mode of action of the anti-epileptic drug 5,5-diphenylhydantoin. Nature 272: 271–273

    PubMed  CAS  Google Scholar 

  • Petsche H (1972) Zum Nachweis des kortikalen Angriffspunktes des antikonvulsiven Benzodiazepinderivats Clonazepam (Ro 5-4023) Z EEG EMG 3: 145–153

    Google Scholar 

  • Pieri L, Haefely W (1976) The effect of diphenylhydantoin, diazepam and clonazepam on the activity of Purkinje cells in the rat cerebellum. Naunyn-Schmiedebergs Arch Pharmacol 296: 1–4

    PubMed  CAS  Google Scholar 

  • Pincus JH (1972) Diphenylhydantoin and ion flux in lobster nerve. Arch Neurol 26: 4–10

    PubMed  CAS  Google Scholar 

  • Pincus JH (1977) Anticonvulsant actions at a neuromuscular synapse. Neurology (Minneap) 27: 374–375

    Google Scholar 

  • Pincus JH, Yaari Y, Argov Z (1980) Phenytoin: electrophysiological effects at the neuromuscular junction. In: Glaser GH, Penry JK, Woodbury DM (eds) Antiepileptic drugs: mechanisms of action. Advances in neurology 27. Raven, New York, pp 363–376

    Google Scholar 

  • Polc P, Haefely W (1976) Effects of two benzodiazepines, phenobarbitone, and baclofen on synaptic transmission in the cat cuneate nucleus. Naunyn-Schmiedebergs Arch Pharmacol 294–121–131

    Google Scholar 

  • Polc P, Möhler H, Haefely W (1974) The effect of diazepam on spinal cord activities: possible sites and mechanisms of action. Naunyn-Schmiedebergs Arch Pharmacol 284: 319–337

    PubMed  CAS  Google Scholar 

  • Polc P, Laurent J-P, Scherschlicht R, Haefely W (1981) Electrophysiological studies on the specific benzodiazepine antagonist Ro 15-1788. Naunyn-Schmiedebergs Arch Pharmacol 316: 317–325

    PubMed  CAS  Google Scholar 

  • Prince DA (1968) Inhibition in „epileptic“ neurones. Exp Neurol 21: 307–321

    PubMed  CAS  Google Scholar 

  • Prince DA, Wilder BJ (1967) Control mechanisms in cortical epileptogenic foci. „Surround“ inhibition. Arch Neurol 16: 194–202

    PubMed  CAS  Google Scholar 

  • Prince DA, Lux HD, Neher E (1973) Measurement of extracellular potassium activity in cat cortex. Brain Res 50: 489–495

    PubMed  CAS  Google Scholar 

  • Przybyla AC, Wang SC (1968) Locus of central depressant action of idazepam. J Pharmacol Exp Ther 163: 439–447

    PubMed  CAS  Google Scholar 

  • Puro DG, Woodward DJ (1973) Effects of diphenylhydantoin on activity of rat cerebellar Purkinje cells. Neuropharmacology 12: 433–440

    PubMed  CAS  Google Scholar 

  • Raabe W, Gumnit RJ (1977) Anticonvulsant action of diazepam: increase of cortical postsynaptic inhibition. Epilepsia 18: 117–120

    PubMed  CAS  Google Scholar 

  • Raines A, Anderson RJ (1976) Effects of acute cerebellectomy on maximal electroshock seizures and anticonvulsant efficacy of diazepam in the rat. Epilepsia 17: 177–182

    PubMed  CAS  Google Scholar 

  • Raines A, Standaert FG (1966) Pre–and postjunctional effects of diphenylhydantoin at the cat soleus neuromuscular junction. J Pharmacol Exp Ther 153: 361–366

    CAS  Google Scholar 

  • Raines A, Standaert FG (1967) An effect of diphenylhydantoin on posttetanic hyperpolarization of intramedullary nerve terminals. J Pharmacol Exp Ther 156: 591–597

    PubMed  CAS  Google Scholar 

  • Raines A, Standaert FG (1969) Effects of anticonvulsant drugs on nerve terminals. Epilepsia 10: 211–227

    PubMed  CAS  Google Scholar 

  • Raines A, Sohn YJ, Levitt B (1971) Spinal excitatory and depressant effects of sodium di-phenylthiohydantoinate. J Pharmacol Exp Ther 177: 350–359

    PubMed  CAS  Google Scholar 

  • Ransom BR, Barker JL (1975) Pentobarbital modulates transmitter effects on mouse spinal neurones grown in tissue culture. Nature 254: 703–705

    PubMed  CAS  Google Scholar 

  • Ransom BR, Barker JL (1976) Pentobarbital selectively enhances GABA-mediated post-synaptic inhibition in tissue cultured mouse spinal neurons. Brain Res 114: 530–535

    PubMed  CAS  Google Scholar 

  • Richards CD (1972) On the mechanism of barbiturate anaesthesia. J Physiol (Lond) 227: 749–767

    CAS  Google Scholar 

  • Richards CD (1974) The action of general anaesthetics on synaptic transmission within the central nervous system. In: Halsey MJ, Miller RA, Sutton JA (eds) Molecular mechanisms in general anaesthesia. Churchill Livingstone, Edinburgh, pp 90–111

    Google Scholar 

  • Ritchie JM (1975) Mechanism of action of local anesthetic agents and biotoxins. Br J Anaesthesiol 74: 191–198

    Google Scholar 

  • Ritchie JM (1979) A pharmacological approach to the structure of sodium channels in myelinated axons. Ann Rev Neurosci 2: 341–362

    PubMed  CAS  Google Scholar 

  • Ritchie JM, Straub RW (1975) The hyperpolarization which follows activity in mammalian non-medullated fibres. J Physiol (Lond) 136: 80–97

    Google Scholar 

  • Roberts E (1980) Epilepsy and antiepileptic drugs: a speculative synthesis. In: Glaser GH, Penry KJ, Woodbury DM (eds) Antiepileptic drugs: mechanisms of action. Advances in neurology 27. Raven, New York, pp 667–713

    Google Scholar 

  • Roldán E, Radil-Weiss T, Chocholova L (1971) The influence of barbiturates on paroxysmal EEG activity induced by hippocampal and/or thalamic cobalt foci. Psychopharmacologia (Berlin) 19: 273–281

    Google Scholar 

  • Rosenberg P, Bartels E (1967) Drug effects on the spontaneous electrical activity of the squid giant axon. J Pharmacol Exp Ther 155: 532–544

    PubMed  CAS  Google Scholar 

  • Saad SF, El Masry AM, Scott PM (1972) Influence of certain anticonvulsants on the concentration of γ-aminobutyric acid in the cerebral hemispheres of mice. Eur J Pharmacol 17: 386–392

    PubMed  CAS  Google Scholar 

  • Sabelli HC, Diamond BI, May J, Haudala HS (1977) Differential interactions of phenobarbital and pentobarbital with beta-adrenergic mechanisms in vitro and in vivo. Exp Neurol 54: 453–466

    PubMed  CAS  Google Scholar 

  • Salt TE, Tulloch IF, Walter DS (1980) Anti-epileptic properties of sodium valproate in rat amygdaloid kindling. Br J Pharmacol 68: 134 P

    Google Scholar 

  • Sato M, Austin GM, Yai H (1967) Increase in permeability of postsynaptic membrane to potassium produced by Nembutal. Nature 215: 1506–1508

    PubMed  CAS  Google Scholar 

  • Schallek W, Kuehn A (1963) Effects of trimethadione, diphenylhydantoin and chlordiazepoxide on after-discharges in brain of cat. Proc Soc Exp Biol Med 112: 813–817

    PubMed  CAS  Google Scholar 

  • Schallek W, Kuehn A (1965) An action of mogadon on the amygdala of the cat. Med Pharmacol Exp 12: 204–208

    CAS  Google Scholar 

  • Schallek W, Zabransky F, Kuehn A (1964) Effects of benzodiazepines on central nervous system of cat. Arch Int Pharmacodyn Ther 149: 467–483

    PubMed  CAS  Google Scholar 

  • Schallek W, Thomas J, Kuehn A, Zabransky F (1965) Effects of mogadon on responses to stimulation of sciatic nerve, amygdala and hypothalamus of cat. Neuropharmacology 4: 317–326

    CAS  Google Scholar 

  • Schauf CL, Davis FA, Marder J (1974) Effects of carbamazepine on the ionic conductances of myxicola giant axons. J Pharmacol Exp Ther 189: 538–543

    PubMed  CAS  Google Scholar 

  • Schlosser W (1971) Action of diazepam on the spinal cord. Arch Int Pharmacodyn Ther 194: 93–102

    PubMed  CAS  Google Scholar 

  • Schlosser W, Franco S, Sigg EB (1975 a) Differential attenuation of somatovisceral and viscerosomatic reflexes by diazepam, phenobarbital and diphenylhydantoin. Neuropharmacology 14: 525–531

    Google Scholar 

  • Schlosser W, Zavatsky E, Franco S, Sigg EB (1975 b) Analysis of the action of CNS depressant drugs on somato-somatic reflexes in the cat. Neuropharmacology 14: 517–523

    Google Scholar 

  • Schmidt RF (1963) Pharmacological studies on the primary afferent depolarization of the toad spinal cord. Pflügers Arch 277: 325–346

    CAS  Google Scholar 

  • Schmidt RF (1964) The pharmacology of presynaptic inhibition. In: Progress in brain research vol 12, Elsevier, Amsterdam, pp 119–134

    Google Scholar 

  • Schmidt RF (1971) Presynaptic inhibition in the vertebrate central nervous system. Ergeb Physiol 63: 19–101

    Google Scholar 

  • Schmidt RF, Vogel ME, Zimmermann M (1967) Die Wirkung von Diazepam auf prasynaptische Hemmung und andere Riickenmarksreflexe. Naunyn-Schmiedebergs Arch exp Path Pharmakol 258: 69–82

    CAS  Google Scholar 

  • Schmutz M, Olpe H-R, Koella WP (1979) Central actions of valproate sodium. J Pharm Pharmacol 31: 413–414

    PubMed  CAS  Google Scholar 

  • Schoepfle GM (1957) Pentothal block of single nerve fibres and subsequent revival by means of anodal depolarization. Fed Proc 16: 114

    Google Scholar 

  • Scholfield CN (1977) Prolongation of post-synaptic inhibition by barbiturates. Br J Pharmacol 59: 507 P

    Google Scholar 

  • Scholfield CN, Harvey J A (1975) Local anaesthetics and barbiturates: effects on evoked potentials in isolated mammalian cortex. J Pharmacol Exp Ther 195: 522–531

    PubMed  CAS  Google Scholar 

  • Schwarz JR, Vogel W (1977) Diphenylhydantoin: excitability reducing action in single myelinated nerve fibres. Eur J Pharmacol 44: 241–249

    PubMed  CAS  Google Scholar 

  • Seeman P, Chen S, Chau-Wong S, Staiman A (1974) Calcium reversal of nerve blockade by alcohols, anesthetics, tranquilizers and barbiturates. Can J Physiol Pharmacol 52: 526–534

    PubMed  CAS  Google Scholar 

  • Seyama I, Narahashi T (1975) Mechanism of blockade of neuromuscular transmission by pentobarbital. J Pharmacol Exp Ther 192: 95–104

    PubMed  CAS  Google Scholar 

  • Shanes AM (1958) Electrochemical aspects of physiological and pharmacological action in excitable cells. Part I. The resting cell and its alteration by extrinsic factors. Pharmacol Rev 10: 59–164

    PubMed  CAS  Google Scholar 

  • Shapovalov AI (1964) Intracellular microelectrode investigation of effect of anesthetics on transmission of excitation in the spinal cord. Fed Proc 23: T113–T116

    Google Scholar 

  • Sharer L, Kutt H (1971) Intravenous administration of diazepam. Effects on penicillin-induced focal seizures in the cat. Arch Neurol 24: 169–175

    Google Scholar 

  • Sherwin I (1973) Suppressant effects of diphenylhydantoin on the cortical epileptogenic focus. Neurology (Minneap) 23: 274–281

    CAS  Google Scholar 

  • Slater GE, Johnston GD (1978) Sodium valproate increases potassium conductance in Aplysia neurones. Epilepsia 19: 379–384

    PubMed  CAS  Google Scholar 

  • Sohn RS, Ferrendelli JA (1976) Anticonvulsant drug mechanisms. Arch Neurol 33: 626–629

    PubMed  CAS  Google Scholar 

  • Sohn YJ, Levitt B, Raines A (1970) Anticonvulsant properties of diphenylthiohydantoin. Arch Int Pharmacodyn Ther 188: 284–289

    PubMed  CAS  Google Scholar 

  • Somjen G (1943) Effects of anesthetics of spinal cord of mammals. Anesthesiology 28: 135–143

    Google Scholar 

  • Somjen GG (1963) Effect of ether and thiopental on spinal presynaptic terminals. J Pharmacol Exp Ther 140: 396–402

    PubMed  CAS  Google Scholar 

  • Somjen GG, Gill M (1963) The mechanism of the blockade of synaptic transmission in the mammalian spinal cord by diethyl ether and by thiopental. J Pharmacol Exp Ther 140: 19–30

    PubMed  CAS  Google Scholar 

  • Spehlmann R, Colley B (1968) Effect of diazepam (Valium®) on experimental seizures in unanesthetized cat. Neurology (Minneap) 18:52–60 Staiman A, Seeman P (1964) The impulse-blocking concentrations of anesthetics, alcohol, anticonvulsants, barbiturates and narcotics on phrenic and sciatic nerves. Can J Physiol Pharmacol 52: 535–557

    Google Scholar 

  • Steiner FA, Hummel P (1968) Effects of nitrazepam und phenobarbital on hippocampal and lateral geniculate neurones in the cat. Neuropharmacology 7: 61–69

    CAS  Google Scholar 

  • Strasberg P, Krnjevic K, Schwartz S, Elliott KAC (1967) Penetration of blood-brain barrier by γ-aminobutyric acid at sites of freezing. J Neurochem 14: 755–760

    PubMed  CAS  Google Scholar 

  • Stratten WP, Barnes CD (1971) Diazepam and presynaptic inhibition. Neuropharmacology 10: 685–696

    PubMed  CAS  Google Scholar 

  • Straub R (1956) Effects of local anaesthetics on resting potential of myelinated nerve fibres. Experientia 12: 182–187

    PubMed  CAS  Google Scholar 

  • Straughan DW (1974) Convulsant drugs: amino acid antagonism and central inhibition. Neuropharmacology 13: 494–508

    Google Scholar 

  • Strichartz GR (1973) The inhibition of sodium currents in myelinated nerve by quaternary derivatives of lidocaine. J Gen Physiol 62: 37–57

    PubMed  CAS  Google Scholar 

  • Strobos RRJ, Spudis EV (1960) Effects of anticonvulsant drugs on cortical and subcortical seizure discharges in cats. Arch Neurol 2:399–406 Suria A, Costa E (1973) Benzodiazepines and posttetanic potentiation in sympathetic ganglia of the bullfrog. Brain Res 50: 235–239

    Google Scholar 

  • Suria A, Costa E (1974) Diazepam inhibition of post-tetanic potentiation in bull frog sympathetic ganglia: possible role of prostaglandins. J Pharmacol Exp Ther 189: 690–696

    PubMed  CAS  Google Scholar 

  • Suria A, Costa E (1975 a) Action of diazepam, dibutyryl cGMP, and GABA on presynaptic nerve terminals in bull frog sympathetic ganglia. Brain Res 87: 102–106

    Google Scholar 

  • Suria A, Costa E (1975 b) Diazepam depolarization of presynaptic terminals in bullfrog sympathetic ganglia: mediation through GABA? Psychopharmacol Bull 11: 56–57

    Google Scholar 

  • Swanson PD, Crane PO (1970) Diphenylhydantoin and the cations and phosphates of electrically stimulated brain slices. Neurology (Minneap) 20: 1119–1123

    Google Scholar 

  • Swanson PD, Crane PO (1972) Diphenylhydantoin and movement of radioactive sodium into electrically stimulated cerebral slices. Biochem Pharmacol 21: 2829–2905

    Google Scholar 

  • Takeuchi H (1969) Modifications par le phenobarbital des proprietes electriques du neurone a potentiel de membrane stable (neurone geant A Aplysia). CR Soc Biol (Paris) 162: 488–490

    Google Scholar 

  • Takeuchi H, Chalazonitis N (1968) Effects du phenobarbital sur les neurones autoactifs. CR Soc Biol (Paris) 162: 491–493

    CAS  Google Scholar 

  • Tappaz M, Pacheco H (1973) Effects de convulsivants et d’anticonvulsivants sur la capture de GABA14C par les coupes de cerveau de rat. J Pharmacol (Paris) 4: 295–306

    CAS  Google Scholar 

  • Ten Bruggencate G, Engberg I (1971) Iontophoretic studies in Deiters nucleus of the inhibitory actions of GABA and related amino acids and the interactions of strychnine and pictrotoxin. Brain Res 25: 431–448

    PubMed  Google Scholar 

  • Theobald W, Kunz HA (1963) Zur Pharmakologie des Antiepilepticums 5-carbamyl-5H-dibenzo [b.f.] azepin. Arzneimittelforsch 13: 122–125

    PubMed  CAS  Google Scholar 

  • Theobald W, Krupp P, Levin P (1970) Neuropharmacology aspects of the therapeutic action of carbamazepine in trigeminal neuralgia. In: Hassler R, Walker AE (eds) Trigeminal neuralgia: pathogenesis and pathophysiology. Thieme, Stuttgart, pp 107–114

    Google Scholar 

  • Thesleff S (1956) The effect of anesthetic agents on skeletal muscle membrane. Acta Physiol Scand 37: 335–349

    PubMed  CAS  Google Scholar 

  • Ticku MK (1980) Is the picrotoxinin binding site at the GABA synapse a site of action for barbiturates. Brain Res Bull [Suppl 2] 5: 919–923

    CAS  Google Scholar 

  • Ticku MK, Olsen RW (1977) Gamma-aminobutyric acid-stimulated chloride permeability in crayfish muscle. Biochim Biophys Acta 464: 519–529

    PubMed  CAS  Google Scholar 

  • Ticku MK, Olsen RW (1978) Interaction of barbiturates with dihydropicrotoxinin binding sites related to the GABA receptor–ionophore system. Life Sci 22: 1643–1652

    PubMed  CAS  Google Scholar 

  • Toman JEP (1949) The neuropharmacology of antiepileptics. EEG Clin Neurophysiol 1: 33–44

    CAS  Google Scholar 

  • Toman JEP (1952) Neuropharmacology of peripheral nerve. Pharmacol Rev 4: 168–218

    PubMed  CAS  Google Scholar 

  • Toman JEP, Swinyard EA, Goodman LS (1946) Properties of maximal seizures, and their alteration by anticonvulsant drugs and other agents. J Neurophysiol 9: 231–239

    PubMed  CAS  Google Scholar 

  • Tseng T-C, Wang SC (1971 a) Locus of action of centrally acting muscle relaxants, diazepam and tybamate. J Pharmacol Exp Ther 178: 350–360

    Google Scholar 

  • Tseng T-C, Wang SC (1971 b) Locus of central depressant action of some benzodiazepine analogues. Proc Soc Exp Biol Med 137: 526–531

    Google Scholar 

  • Van Dujn H, Beckmann MKF (1975) Dipropylacetic acid (Depakine®) in experimental epilepsy in the alert cat. Epilepsia 16: 83–90

    Google Scholar 

  • Vastola EF, Rosen A (1960) Suppression by anticonvulsants of focal electrical seizures in the neocortex. EEG Clin Neurophysiol 12: 327–332

    CAS  Google Scholar 

  • Vazquez AJ, Diamond BI, Sabelli HC (1975) Differential effects of phenobarbital and pentobarbital on isolated nervous tissue. Epilepsia 16: 601–608

    PubMed  CAS  Google Scholar 

  • Vernadakis A, Parker KK (1980) Drugs and the developing central nervous system. Pharmacol Ther 11: 593–647

    PubMed  CAS  Google Scholar 

  • Vernadakis A, Woodbury DM (1960) Effects of diphenylhydantoin and adrenocortical steroids on free glutamic acid, glutamine, and gamma-aminobutyric acid concentrations of rat cerebral cortex. In: Roberts E, Boxter CF, van Harreveld A, Wiersma CAG, Adey WR, Killam KF (eds) Inhibition in the nervous system and gamma-aminobutyric acid. Pergamon, New York, pp 242–248

    Google Scholar 

  • Voskuyl RA, Ter Keurs HED, Meinardi H (1975) Actions and interactions of dipropylacetate and penicillin on evoked potentials of excised prepiriform cortex of guinea pig. Epilepsia 16: 583–592

    PubMed  CAS  Google Scholar 

  • Watson EL, Woodbury DM (1972) Effects of diphenylhydantoin on active sodium transport in frog skin. J Pharmacol Exp Ther 180: 767–776

    PubMed  CAS  Google Scholar 

  • Weakly JN (1969) Effect of barbiturates on “quantal” synaptic transmission in spinal motoneurones. J Physiol (Lond) 204: 63–77

    CAS  Google Scholar 

  • Weinreich D (1971) Ionic mechanism of post–tetanic potentiation at the neuromuscular junction of the frog. J Physiol (Lond) 212: 431–446

    CAS  Google Scholar 

  • Wikler A (1945) Effects of morphine, nembutal, ether, and eserine on two-neuron and multineuron reflexes in the cat. Proc Soc Exp Biol Med 58: 193–196

    CAS  Google Scholar 

  • Wilson WA, Zbicz KL, Cote IW (1980) Barbiturates: inhibition of sustained firing in Aplysia neurons. In: Glaser GH, Penry JK, Woodbury DM (eds) Antiepileptic drugs: mechanisms of action. Advances in neurology 27. Raven, New York, pp 533–540

    Google Scholar 

  • Withrow CD (1980) Oxazolidinediones. In: Glaser GH, Penry JK, Woodbury DM (eds) Antiepileptic drugs: mechanisms of action. Advances in neurology 27. Raven, New York, pp 577–586

    Google Scholar 

  • Withrow CD, Stout RJ, Barton LJ, Beacham WS, Woodbury DM (1968) Anticonvulsant effects of 5,5-dimethyl-2,4-oxazolid-inedione ( DMO ). J Pharmacol Exp Ther 161: 335–341

    Google Scholar 

  • Woodbury DM (1955) Effect of diphenylhydantoin on electrolytes and radiosodium turnover in brain and other tissues of normal, hyponatremic and postictal rats. J Pharmacol Exp Ther 115: 74–95

    PubMed  CAS  Google Scholar 

  • Woodbury DM (1980) Convulsant drugs: mechanisms of action. In: Glaser GH, Penry JK, Woodbury DM (eds) Antiepileptic drugs: mechanisms of action. Advances in neurology 27. Raven, New York, pp 249–303

    Google Scholar 

  • Woodbury DM, Esplin DW (1959) Neuropharmacology and neurochemistry of anticonvulsant drugs. Proc Assoc Res Nerv Ment Dis 37: 24–56

    CAS  Google Scholar 

  • Woodbury DM, Kemp JW (1970) Some possible mechanisms of action of antiepileptic drugs. Pharmakopsychiat Neuro-Psychopharmakol 3: 201–226

    CAS  Google Scholar 

  • Zakusov VV, Ostrovskaya RV, Markovitch VV, Molodavkin GM, Bulayev VM (1975) Electrophysiological evidence for an inhibitory action of diazepam upon cat brain cortex. Arch Int Pharmacodyn Ther 214: 188–205

    PubMed  CAS  Google Scholar 

  • Zukin SR, Young AB, Snyder SH (1974) Gamma-aminobutyric acid binding to receptor sites in the rat central nervous system. Proc Natl Acad Sci USA 71: 4802–4807

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jurna, I. (1985). Electrophysiological Effects of Antiepileptic Drugs. In: Frey, HH., Janz, D. (eds) Antiepileptic Drugs. Handbook of Experimental Pharmacology, vol 74. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69518-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69518-6_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69520-9

  • Online ISBN: 978-3-642-69518-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics