Skip to main content

Valproic Acid

  • Chapter
Antiepileptic Drugs

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 74))

Abstract

Valproic acid was first synthesized by Burton in 1881. There were no reported investigations into its anticonvulsant properties until 1963, when Meunier et al. noted that several compounds dissolved in valproic acid protected mice and rab-bits from pentylenetetrazol-induced seizures. Valproic acid is the trivial name for 2-propylpentanoic acid (also called n-dipropylacetic acid). As a simple branched-chain carboxylic acid it differs markedly in structure from other antiepileptic drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdul-Ghani AS, Coutinho-Netto J, Druce D, Bradford HF (1981) Effects of anticonvulsants on the in vivo and in vitro release of GABA. Biochem Pharmacol 30: 363–368

    PubMed  CAS  Google Scholar 

  • Alary J, Cantin D, Coeur A, Carraz G (1972) Dosage de l’acide dipropylacetique et du di-propylacetamide par chromatographic gaz-liquide. Bull Trav Soc Pharm Lyon 16: 53–64

    CAS  Google Scholar 

  • Albertson TE, Peterson SL, Stark LG (1980) Anticonvulsant drugs and their antagonism of kindled amygdaloid seizures in rats. Neuropharmacology 19: 643–652

    PubMed  CAS  Google Scholar 

  • Aly MI, Abdel-Latif AA (1980) Studies on distribution and metabolism of valproate in rat brain, liver, and kidney. Neurochem Res 5: 1231–1242

    PubMed  CAS  Google Scholar 

  • Anlezark G, Horton RW, Meldrum BS, Sawaya MCB (1976) Anticonvulsant action of ethanolamine-O-sulphate and di-n-propylacetate and the metabolism of Îł-aminobutyric acid (GABA) in mice with audiogenic seizures. Biochem Pharmacol 25: 413–417

    PubMed  CAS  Google Scholar 

  • Balazs R, Machiyama Y, Hammond BJ, Julian T, Richter D (1970) The operation of the y-aminobutyrate bypath of the tricarboxyclic acid cycle in brain tissue in vitro. Biochem J 116: 445–467

    PubMed  CAS  Google Scholar 

  • Borchert HH, Schuster S, Pfeifer S (1980) Metabolische Wechselwirkungen von Valproinsäure. Pharmazie 34: 313–314

    PubMed  CAS  Google Scholar 

  • Braun SL, Tausch A, Vogt W, Jakob K, Knedel M (1981) Evaluation of a new valproic acid enzyme immunoassay and comparison with a capillary gas-chromatographic method. Clin Chem 27: 169–172

    PubMed  CAS  Google Scholar 

  • Carraz G, Fiorina S (1967) Activation de la formation d’anti corps par le systeme reticuloendothelial. Ann Biol Clin (Paris) 76: 187

    Google Scholar 

  • Carraz G, Fau R, Chateau R, Bonnin J (1964) Communication a propos des premiers essais cliniques sur l’activite anti-epileptique de lacide n-dipropylacetique (sel de Na). Ann Med Psychol 122: 577–585

    CAS  Google Scholar 

  • Carraz G, BĂ©riel H, Luu-Duc H, Lebreton S (1965) Approches dans la pharmacodynamics biochimique de la structure N-dipropylacetique. Therapie 20: 419–426

    PubMed  CAS  Google Scholar 

  • Carraz G, Eymard P, Benel H, Lebreton S, Biotard M (1970) Structure dipropylacetique et potentialisation de l’immunite. J Pharmacol (Paris) 1: 313–322

    Google Scholar 

  • Cavazutti GB (1975) Prevention of febrile convulsions with dipropylacetate (Depakine). Epilepsia 16: 647–648

    Google Scholar 

  • Chapman AG, Riley K, Evans MC, Meldrum BS (1982) Acute effects of sodium valproate and γ–vinyl GABA on regional amino acid metabolism in the rat brain: incorporation of 2-(14C)glucose into amino acids. Neurochem Res 7: 1089–1105

    PubMed  CAS  Google Scholar 

  • Collier HOJ (1974) The concept of the quasi-abstinence effect and its use in the investigation of dependence mechanisms. Pharmacology 11: 58–61

    PubMed  CAS  Google Scholar 

  • Conine DL, Majors KR, Lehrer S, Becker BA (1976) Acute toxicity of sodium 2-propylpentenoate, a compound whose toxicity decreases as animal size increases. Toxicol Appl Pharmacol 37: 144

    Google Scholar 

  • Costall B, Naylor RJ, Owen RT (1978) GABAminergic and serotonergic modulation of the antidyskinetic effects of tiaproide and oxiperomide in the model using 2–(N,N-di-propyl)amino-5,6-dihydroxytetralin. Eur J Pharmacol 49: 407–413

    PubMed  CAS  Google Scholar 

  • Cowan A (1980) Interactional studies with sodium valproate and naloxone. Ann Neurol 7: 388

    PubMed  CAS  Google Scholar 

  • Cowan A (1981) RX 366–M, a new chemical tool in the analysis of the quasi-morphine withdrawal syndrome. Fed Proc 40: 1497–1501

    PubMed  CAS  Google Scholar 

  • Cowan A, Watson T (1978) Lysergic acid diethylamide antagonizes shaking induced in rats by five chemically different compounds. Psychopharmacology 57: 43–46

    PubMed  CAS  Google Scholar 

  • Curtis DR, Johnston GAR (1974) Amino acid transmitters in the mammalian central nervous system. Ergeb Physiol 69: 97–188

    PubMed  CAS  Google Scholar 

  • Curtis DR, Watkins JC (1963) Acidic amino acids with strong excitatory actions on mammalian neurones. J Physiol (Lond) 166: 1–14

    CAS  Google Scholar 

  • De Boer T, Metselaar HJ, Bruinvels J (1977) Suppression of GABA-induced abstinence behaviour in naive rats by morphine and bicuculline. Life Sci 20: 933–942

    PubMed  Google Scholar 

  • De Boer T, Bartels K, Metselaar HJ, Bruinvels J (1980) Di-n-propylacetate-induced abstinence behaviour as a possible correlate of increased GABA-ergic activity in the rat. Psychopharmacology 71: 257–267

    PubMed  Google Scholar 

  • De Souza Queiroz ML, Mullen PW (1980) The effects of phenytoin, 5-(para-hydroxyphenyl)-5-phenylhydantoin, and valproic acid on humoral immunity in mice. Int J Immuno-pharmacol 2: 224–225

    Google Scholar 

  • Diaz J, Shields WD (1978) Chronic administration of dipropylacetate early in life: effects on brain development and behavior. Ann Neurol 4: 198

    Google Scholar 

  • Dickinson RG, Harland RC, Ilias AM, Rodgers RM, Kaufman SN, Lynn RK, Gerber N (1979) Disposition of valproic acid in the rat: dose-dependent metabolism, distribution, enterohepatic recirculation and choleretic effect. J Pharmacol Exp Ther 211: 583–595

    PubMed  CAS  Google Scholar 

  • Dickinson RG, Taylor SM, Kaufman SN, Rodgers RM, Lynn RL, Gerber N, Baughman WL (1980) Nonlinear elimination and choleretic effect of valproic acid in the monkey. J Pharmacol Exp Ther 213: 38–48

    PubMed  CAS  Google Scholar 

  • Dijkhuis IC, Vervloet E (1974) Rapid determination of the antiepileptic drug di-H-propylacetic acid in serum. Pharm Weekblad [Sci] 109: 42–45

    CAS  Google Scholar 

  • Donniah P, Buchanan N (1981) Serum sodium valproate assays: comparison between EMIT and GLC methodologies. Med J Aust 1: 192

    PubMed  CAS  Google Scholar 

  • Emson PC (1976) Effects of chronic treatment with amino-oxyacetic acid or sodium n-dipropylacetate on brain GABA levels and the development and regression of cobalt epileptic foci in rats. J Neurochem 27: 1489–1494

    PubMed  CAS  Google Scholar 

  • Espir MLE, Benton P, Will E, Hayes MJ, Walker G (1976) Sodium valproate (epilim) - some clinical and pharmacological aspects. In: Legg NJ (ed) Clinical and pharmacological aspects of sodium valproate (epilim) in the treatment of epilepsy. MCS Consultants, Tunbrigde Wells, pp 145–151

    Google Scholar 

  • Eymard P, Simiand J, Teoule R, Polverelli M, Werbenec JP, Broil M (1971) Etude de la repartition et de la resorption de dipropylacetate de sodium marque au 14C chez le rat. J Pharmacol (Paris) 2: 359–368

    Google Scholar 

  • Fariello R, Mutani R (1970) Modificazioni dell’attivita del focus epilettogeno corticomotorio da allumina indotte dal sale di sodo dell’acido n-dipropilacetico ( DPA ). Acta Neurol (Napoli) 25: 116–122

    Google Scholar 

  • Ferrandes B, Eymard P (1973) Methode rapide de analyse quantitative du dipropylacetate de sodium dans le serum ou le plasma. Ann Pharm Fr 31: 279–282

    PubMed  CAS  Google Scholar 

  • Ferrandes B, Eymard P (1977) Metabolism of valproate sodium in rabbit, rat, dog, and man. Epilepsia 18: 169–182

    PubMed  CAS  Google Scholar 

  • Fowler LJ, Beckford J, John RA (1975) An analysis of the kinetics of the inhibition of rabbit brain Îł-aminobutyrate aminotransferase by sodium n-dipropylacetate and some other simple carboxylie acids. Biochem Pharmacol 24: 1267–1270

    PubMed  CAS  Google Scholar 

  • Frey HH, Loscher W (1976) Di-n-propylacetic acid - profile of anticonvulsant activity in mice. Arzneimittelforsch 26: 299–301

    PubMed  CAS  Google Scholar 

  • Frey HH, Loscher W (1978) Distribution of valproate across the interface between blood and cerebrospinal fluid. Neuropharmacology 17: 637–642

    PubMed  CAS  Google Scholar 

  • Frey HH, Loscher W, Reiche R, Schultz D (1983) Anticonvulsant potency of common antiepileptic drugs in the gerbil. Pharmacology 27: 330–335

    PubMed  CAS  Google Scholar 

  • Godin Y, Heiner L, Mark J, Mandel P (1969) Effects of di-n-propylacetate, an anticonvulsive compound, on GABA metabolism. J Neurochem 16: 869–873

    PubMed  CAS  Google Scholar 

  • Goldberg MA, Todoroff T (1980) Brain binding of anticonvulsants: carbamazepine and valproic acid. Neurology 30: 826–831

    PubMed  CAS  Google Scholar 

  • Goldstein DB (1979) Sodium bromide and sodium valproate: effective suppressants of ethanol withdrawal reactions in mice. J Pharmacol Exp Ther 208: 223–227

    PubMed  CAS  Google Scholar 

  • Gugler R, Von Unruh GE (1980) Clinical pharmacokinetics of valproic acid. Clin Pharmacokinet 5: 67–83

    PubMed  CAS  Google Scholar 

  • Gugler R, Schell A, Eichelbaum M, Froscher W, Schulz HU (1977) Disposition of valproic acid in man. Eur J Clin Pharmacol 12: 125–132

    PubMed  CAS  Google Scholar 

  • Harding GFA, Herrick CE, Jeavons PM (1978) A controlled study of the effect of sodium valproate on photosensitive epilepsy and its prognosis. Epilepsia 19: 555–565

    PubMed  CAS  Google Scholar 

  • Harvey PKP, Bradford HF, Davison AN (1975) The inhibitory effect of sodium n-dipropylacetate on the degradative enzymes of the GABA shunt. FEBS Lett 52: 251–254

    PubMed  CAS  Google Scholar 

  • Heinemeyer G, Gundlach J (1981) Modification of valproic acid metabolism by phenobar-bital and cloflbrate. Naunyn-Schmiedebergs Arch Pharmacol 316: [Suppl 1] R4

    Google Scholar 

  • Hillbom ME (1975) The prevention of ethanol withdrawal seizures in rats by dipropylacetate. Neuropharmacology 14: 755–761

    PubMed  CAS  Google Scholar 

  • Horton RW, Anlezark GM, Sawaya MCB, Meldrum BS (1977) Monoamine and GABA metabolism and the anticonvulsant action of di-n-propylacetate and ethanolamine-O- sulphate. Eur J Pharmacol 41: 387–397

    PubMed  CAS  Google Scholar 

  • Hulshof JAM, Schobben F, Van Der Kleijn E (1977) The interactions of 2-propyl pentanoate with phenobarbital and with phenytoin in rat. Pharm Weekblad [Sci] 112: 326–329

    CAS  Google Scholar 

  • Hurd RW, Wilder BJ, Van Rinsvelt HA (1983) Valproate, birth defects, and zinc. Lancet 11: 181

    Google Scholar 

  • Hwang EC, Van Woert MH (1979) Effect of valproic acid on serotonin metabolism. Neuropharmacology 18: 391–397

    PubMed  CAS  Google Scholar 

  • Iadarola MJ, Gale K (1979) Dissociation between drug–induced increases in nerve terminal

    Google Scholar 

  • and non-nerve terminal pools of GABA in vivo. Eur J Pharmacol 59:125–129

    Google Scholar 

  • Iadarola MJ, Raines A, Gale K (1979) Differential effects of n-diprophylacetate and amino-oxyacetic acid on γ–aminobutyric acid levels in discrete areas of rat brain. J Neurochem 33: 1119–1123

    PubMed  CAS  Google Scholar 

  • Jaekeen J, Corbeel L, Carchon H, Casaer P, Eeckels R, Eggermon E (1977) Dipropylacetate (valproate) and glycine metabolism. Lancet 11: 617

    Google Scholar 

  • Jeavons PM (1984) Non-dose related side effects of valproate. Epilepsia 25 [Suppl. I]: 50–55

    Google Scholar 

  • Jordan BJ, Shillingford JS, Steed KP (1976) Preliminary observations on the protein-binding and enzyme-inducing properties of sodium valproate (epilim). In: Legg ( NJ (ed) Clinical and pharmacological aspects of sodium valproate (epilim) in the treatment of epilepsy. MCS Consultants, Tunbridge Wells, pp 112–118

    Google Scholar 

  • Julien RM, Fowler GW (1977) A comparative study of the efficacy of newer antiepileptic drugs on experimentally-induced febrile convulsions. Neuropharmacology 16: 719–724

    PubMed  CAS  Google Scholar 

  • Jung MJ (1978) In vivo biochemistry of GABA transaminase inhibition. In: Seiler N, Jung MJ, Koch-Weser J (eds) Enzyme-activated irreversible inhibitors. Elsevier, Amsterdam, pp 135–148

    Google Scholar 

  • Kapetanovic IM, Kupferberg HJ (1980) Inhibition of microsomal phenobarbital metabolism by valproic acid. Fed Proc 39: 1099

    Google Scholar 

  • Kerwin RW, Olpe HR, Schmutz M (1980) The effect of sodium-n-dipropyl acetate on Îł-aminobutyric acid dependent inhibition in the rat cortex and substantia nigra in relation to its anticonvulsant activity. Br J Pharmacol 71: 545–551

    PubMed  CAS  Google Scholar 

  • Kingsley E, Tweedale R, Tolman KG (1980) Hepatotoxicity of sodium valproate and other anticonvulsants in rat hepatocyte cultures. Epilepsia 21. 699–704

    PubMed  CAS  Google Scholar 

  • Klotz U (1977) Pharmacokinetic studies with valproic acid in man. Arzneimittelforsch 27: 1085–1088

    PubMed  CAS  Google Scholar 

  • Klotz U, Antonin KH (1977) Pharmacokinetics and bioavailability of di-n-propylacetate (sodium valproate) in man. Clin Pharmacol Ther 21: 736–743

    PubMed  CAS  Google Scholar 

  • Koch KM, Ludwick BT, Levy RH (1981) Phenytoin-valproic acid interaction in rhesus monkey. Epilepsia 22: 19–25

    PubMed  CAS  Google Scholar 

  • Kochen W, Scheffner H (1980) On unsaturated metabolites of the valproic acid (VPA) in serum of epileptic children. In: Johannessen SI, Morselli PL, Pippenger CE, Richens A, Schmidt D, Meinardi H (eds) Antiepileptic therapy: advances in drug monitoring. Raven, New York, pp 111–117

    Google Scholar 

  • Kochen W, Imbeck H, Jakobs C (1977) Untersuchungen iiber die Ausscheidung von Metaboliten der Valproinsaure im Urin der Ratte und des Menschen. Arzneimittelforsch 27: 1090–1099

    PubMed  CAS  Google Scholar 

  • Krall RL, Penry JK, White BG, Kupferberg HJ, Swinyard EA (1978) Antiepileptic drug development. II. Anticonvulsant drug screening. Epilepsia 19: 409–428

    Google Scholar 

  • Krogsgaard-Larsen P (1980) Inhibitors of the GABA uptake systems. Mol Cell Biochem 31: 105–121

    PubMed  CAS  Google Scholar 

  • Kuhara T, Matsumoto I (1974) Metabolism of branched medium chain length fatty acid. I. Oxidation of sodium dipropylacetate in rats. Biomed Mass Spectrom 1: 291–294

    Google Scholar 

  • Kukino K, Deguchi T (1977) Effects of sodium dipropylacetate on Îł-aminobutyric acid and biogenic amines in rat brain. Chem Pharm Bull (Tokyo) 25: 2257–2262

    CAS  Google Scholar 

  • Kulig BM, Gonzales-Portal C, Somoza E, DeFeudis FV (1977) Effect of di-n-propylacetate on the “binding” of GABA to a synaptosome-enriched fraction of rat cerebral cortex. Psychopharmacology 53: 255–257

    PubMed  CAS  Google Scholar 

  • Kupferberg HJ (1980) Sodium valproate. In: Glaser GH, Penry JK, Woodbury DM (eds) Antiepileptic drugs: mechanism of action. Raven, New York, pp 643–654

    Google Scholar 

  • Kuruvilla A, Uretsky NJ (1981) Effect of sodium valproate on motor function regulated by the activation of GABA receptors. Psychopharmacology 72: 167–172

    PubMed  CAS  Google Scholar 

  • Lacolle JY, Ferrandes B, Eymard P (1978) Profile of anticonvulsant activity of sodium valproate. Role of GABA. In: Meinardi H, Rowan AJ (eds) Advances in epileptology. Psychology, pharmacotherapy and new diagnosic approaches. Swets and Zeitlinger, Amsterdam, pp 162–167

    Google Scholar 

  • Lal H, Shearman GT (1980) Effect of valproic acid on anxiety-related behaviours in the rat. Brain Res Bull 5: [Suppl 2] 575–577

    CAS  Google Scholar 

  • Lautin A, Angrist B, Stanley M, Gershon S, Heckl K, Karobath M (1980) Sodium valproate in schizophrenia: some biochemical correlates. Br J Psychiatr 137: 240–244

    CAS  Google Scholar 

  • Lebreton S, Carraz G, Beriel H, Meunier H (1964) Proprietes pharmacodynamiques de l’acide N-dipropylacetique. Therapie 19: 457–467

    PubMed  CAS  Google Scholar 

  • Leviel V, Naquet R (1977) A study of the action of valproic acid on the kindling effect. Epilepsia 18: 229–234

    PubMed  CAS  Google Scholar 

  • Levy RH (1980) CSF and plasma pharmacokinetics: relationship to mechanisms of action as exemplified by valproic acid in monkey. In: Lockard JS, Ward AA (eds) Epilepsy: a window to brain mechanisms. Raven, New York, pp 191–200

    Google Scholar 

  • Levy RH, Koch KM (1982) Drug interactions with valproic acid. Drugs 24: 543–556

    PubMed  CAS  Google Scholar 

  • Lockard JS, Levy RH (1976) Valproic acid: reversibly acting drug? Epilepsia 17: 477–479

    PubMed  CAS  Google Scholar 

  • Löscher W (1977) Rapid determination of valproate sodium in serum by gas chromatography. Epilepsia 18: 225–227

    PubMed  Google Scholar 

  • Löscher W (1978) Serum protein binding and pharmacokinetics of valproate in man, dog, rat, and mouse. J Pharmacol Exp Ther 204: 255–261

    PubMed  Google Scholar 

  • Löscher W (1979 a) 3-Mercaptopropionic acid: convulsant properties, effects on enzymes of the Îł-aminobutyrate system in mouse brain and antagonism by certain anticonvulsant drugs, aminooxyacetic acid and gabaculine. Biochem Pharmacol 28:1397–1407

    Google Scholar 

  • Löscher W (1979 b) GABA in plasma and cerebrospinal fluid of different species. Effects of Îł-acetylenic GABA, Îł-vinyl GABA and sodium valproate. J Neurochem 32: 1587–1591

    Google Scholar 

  • Löscher W (1979 c) A comparative study of the protein binding of anticonvulsant drugs in serum of dog and man. J Pharmacol Exp Ther 208:429–435

    Google Scholar 

  • Löscher W (1980 a) A comparative study of the pharmacology of inhibitors of GABA-metabolism. Naunyn-Schmiedebergs Arch Pharmacol 315:119–128

    Google Scholar 

  • Löscher W (1980 b) Effect of inhibitors of GABA transaminase on the synthesis, binding, uptake, and metabolism of GABA. J Neurochem 34:1603–1608

    Google Scholar 

  • Löscher W (1981 a) Concentration of metabolites of valproic acid in plasma of epileptic patients. Epilepsia 22:169–179

    Google Scholar 

  • Löscher W (1981 b) Correlation between alterations in brain GABA metabolism and seizure excitability following administration of GABA aminotransferase inhibitors and valproic acid - a re-evaluation. Neurochem Int 3:397–404

    Google Scholar 

  • Löscher W (1981 c) Valproate induced changes in GABA metabolism at the subcellular level. Biochem Pharmacol 30:1364–1366

    Google Scholar 

  • Löscher W (1981 d) Zum Wirkungsmechanismus der Antiepileptika. Tierexperimentelle Befunde zur Bedeutung von Neurotransmittern. Nervenarzt 52: 61–67

    Google Scholar 

  • Löscher W (1981 e) Plasma levels of valproic acid and its metabolites during continued

    Google Scholar 

  • treatment in dogs. J Vet Pharmacol Ther 4:111–119

    Google Scholar 

  • Löscher W (1981 f) Anticonvulsant activity of metabolites of valproic acid. Arch Int Pharmacodyn Ther 249:158–163

    Google Scholar 

  • Löscher W (1982 a) GABA in plasma, CSF and brain of dogs during acute and chronic treatment with Îł-acetylenic GABA and valproic acid. In: Okada Y, Roberts E (eds) Problems in GABA research. From brain to bacteria. Excerpta Medica, Amsterdam, pp 102–109

    Google Scholar 

  • Löscher W (1982 b) Cardiovascular effects of GABA, GABA aminotransferase inhibitors and valproic acid following systemic administration in rats, cats, and dogs. Arch Int Pharmacodyn Ther 257: 32–58

    Google Scholar 

  • Löscher W (1983) Alterations in CSF GABA levels and seizure susceptibility developing during repeated administration of pentetrazole in dogs. Effects of Îł-acetylenic GABA, valproic acid and phenobarbital. Neurochem Int 5: 405–412

    PubMed  Google Scholar 

  • Löscher W, Esenwein H (1978) Pharmacokinetics of sodium valproate in dog and mouse. Arzneimittelforsch 28: 782–787

    PubMed  Google Scholar 

  • Löscher W, Frey HH (1977 a) Effect of convulsant and anticonvulsant agents on level and metabolism of Îł-aminobutyric acid in mouse brain. Naunyn-Schmiedebergs Arch Pharmacol 296: 263–269

    Google Scholar 

  • Löscher W, Frey HH (1977 b) Zum Wirkungsmechanismus von Valproinsaure. Arzneimittelforsch 28: 1081–1082

    Google Scholar 

  • Löscher W, Gobel W (1978) Consecutive gas chromatographic determination of phenytoin, phenobarbital, primidone, phenylethylmalondiamide, carbamazepine, trimethadione, dimethadione, ethosuximide, and valproate from the sam serum specimen. Epilepsia 21: 611–615

    Google Scholar 

  • Löscher W, Nau H (1982) Valproic acid: metabolite concentrations in plasma and brain, anticonvulsant activity, and effects on GABA metabolism during subacute treatment in mice. Arch Int Pharmacodyn Ther 257: 20–31

    PubMed  Google Scholar 

  • Löscher W, Schmidt D (1980) Increase of human plasma GABA by sodium valproate. Epilepsia 21: 611–615

    PubMed  Google Scholar 

  • Löscher W, Schmidt D (1981) Plasma GABA levels in neurological patients under treatment with valproic acid. Life Sci 28: 2383–2388

    Google Scholar 

  • Löscher W, Siemens H (1984) Valproic acid increases Îł-aminobutyric acid in CSF of epileptic children. Lancet 11: 225

    Google Scholar 

  • Löscher W, Bohme G, Schafer H, Kochen W (1981) Effect of metabolites of valproic acid on the metabolism of GABA in brain and brain nerve endings. Neuropharmacology 20: 1187–1192

    PubMed  Google Scholar 

  • Löscher W, Frey HH, Reiche R, Schultz D (1983) High anticonvulsant potency of GABA-mimetic drugs in gerbils with genetically determined epilepsy. J Pharmacol Exp Ther 226: 839–844

    PubMed  Google Scholar 

  • Loskota WJ, Lomax P, Rich ST (1974) The gerbil as a model for the study of the epilepsies. Epilepsia 15: 109–119

    PubMed  CAS  Google Scholar 

  • Lust WD, Kupferberg HJ, Passonneau JV, Penry JK (1976) On the mechanism of action of sodium valproate: the relationship of GABA and cyclic GMP in anticonvulsant activity. In: Legg NJ (ed) Clinical and pharmacological aspects of sodium valproate (epilim) in the treatment of epilepsy. MCS Consultants, Tunbrigde Wells, pp 123–129

    Google Scholar 

  • Lust WD, Kupferberg HJ, Yonekawa WD, Penry JK, Passoneau JV, Wheaton AB (1978) Changes in brain metabolites induced by convulsants or electroshock: effects of anticonvulsant agents. Molec Pharmacol 14: 347–356

    CAS  Google Scholar 

  • Marcus RJ, Winters WD, Hultin E (1976) Neuropharmacological effects induced by butanol, 4-hydroxybutyrate, 4-mercaptobutyric acid, thiolactone, tetrahydrofuran, pyrrolidone, 2-deoxy-d-glucose and related substances in the rat. Neuropharmacology 15: 229–238

    Google Scholar 

  • Martinek Z, Arbeiter E (1980) Beitrag zur antikonvulsiven Wirkung von Dipropylessigsäure ( DPA) bei Hunden. Kleintier-Praxis 25: 275–280

    Google Scholar 

  • McCandless DW, Feussner GK, Lust WD, Passoneau JV (1979) Metabolite levels in brain following experimental seizures: the effects of isoniazid and sodium valproate in cerebellar and cerebral cortical layers. J Neurochem 32: 755–760

    PubMed  CAS  Google Scholar 

  • Meijer JW, Hessing-Brand L (1973) Determination of lower fatty acids, particularly the anti-epileptic dipropyl-acetic acid, in biological materials by means of micro diffusion and gas chromatography. Clin Chim Acta 43: 215–222

    PubMed  CAS  Google Scholar 

  • Meldrum B (1978) Neurotransmitters and epilepsy. In: Legg NJ (ed) Neurotransmitter systems and their clinical disorders. Academic, London, pp 167–181

    Google Scholar 

  • Meldrum B (1979) Convulsant drugs, anticonvulsants and GABA-mediated neuronal inhibition. In: Krogsgaard-Larsen P, Scheel-KrĂĽger J, Kofod H (eds) GABA-neurotransmitters. Munksgaard, Copenhagen, pp 309–405

    Google Scholar 

  • Meldrum BS, Anlezark GM, Ashton CG, Horton RW, Sawaya CB (1977) Neurotransmitters and anticonvulsant drug action. In: Majkowski J (ed) Epilepsy. ILEA, Warsaw, pp 139–153

    Google Scholar 

  • Merits I (1977) Metabolic fate of valproate sodium in dog, rat, rabbit, monkey, and human. Epilepsia 18: 289–290

    Google Scholar 

  • Mesdjian E, Valli M, Bruguerolle B, Jadot G, Bouyard P, Mandel P (1980) Phenobarbitone and sodium valproate interaction: an experimental study. Prog Neuropsychopharmacol 4: 247–252

    PubMed  CAS  Google Scholar 

  • Meunier H, Carraz G, Meunier Y, Eymard P, Aimard M (1963) PropriĂ©tĂ©s pharmacodynamiques de l’acide n-dipropylacetique. ler memoire: propriĂ©tĂ©s antiepileptiques. ThĂ©rapie 18: 435–438

    PubMed  CAS  Google Scholar 

  • Misslin R, Ropartz P, Mandel P (1972) Effets du di n-propylacetate sur l’activite spontanee et conditionee de la souris. CR Seances Acad Sci (III.) 275: 1279–1281

    CAS  Google Scholar 

  • Mortensen PB, Kolvraa S, Christensen E (1980) Inhibition of the glycine cleavage system: hyperglycinemia and hyperglycinuria caused by valproic acid. Epilepsia 21: 563–569

    PubMed  CAS  Google Scholar 

  • Nagao T, Ohshimo T, Mitsunobo K, Sato M, Otsuki S (1979) Cerebrospinal fluid monoamine metabolites and cyclic nucleotides in chronic schizophrenic patients with tardive dyskinesia or drug-induced tremor. Biol Psychiatry 14: 509–523

    PubMed  CAS  Google Scholar 

  • Nau H, Löscher W (1982) Valproic acid: brain and plasma levels of the drug and its metabolites, anticonvulsant effects and GABA metabolism in the mouse. J Pharmacol Exp Ther 220: 654–659

    PubMed  CAS  Google Scholar 

  • Nau H, Wittfoht W, Schäfer H, Jakobs C, Rating D, Helge H (1981 a) Valproic acid and several metabolites: quantitative determination in serum, urine, breast milk and tissues by gas chromatography-mass spectrometry using selected ion monitoring. J Chromatogr 226: 69–78

    Google Scholar 

  • Nau H, Rating D, Koch S, Hauser I, Helge H (1981 b) Valproic acid and its metabolites: placental transfer, neonatal pharmacokinetics, transfer via mother’s milk and clinical status in neonates of epileptic mothers. J Pharmacol Exp Ther 219: 768–777

    Google Scholar 

  • Nau H, Zierer R, Spielmann H, Neubert D, Gansau C (1981 c) A new model for embryotoxicity testing: teratogenicity and pharmacokinetics of valproic acid following constantrate administration in the mouse human therapeutic drug and metabolite concentrations. Life Sci 29: 2803–2814

    Google Scholar 

  • Noble EP, Gillies R, Vigran R, Mandel P (1976) The modification of the ethanol withdrawal syndrome in rats by di-n-propylacetate. Psychopharmacology 46: 127–131

    CAS  Google Scholar 

  • Noebels JL, Sidman RL (1979) Inherited epilepsy: spike wave and focal motor seizures in the mutant mouse tottering. Science 204: 1334–1336

    PubMed  CAS  Google Scholar 

  • Noronha MJ, Bevan PLT (1976) A literature review of unwanted effects with epilim. In: Legg NJ (ed) Clinical and pharmacological aspects of sodium valproate (epilim) in the treatment of epilepsy. MCS Consultants, Tunbridge Wells, pp 61–65

    Google Scholar 

  • Nutt J, Williams A, Plotkin C, Eng N, Ziegler M, Calne DB (1979) Treatment of Parkinson’s disease with sodium valproate: clinical, pharmacological and biochemical observations. Can J Neurol Sci 6: 337–343

    PubMed  CAS  Google Scholar 

  • Oelkers W, Stoffels G, Schafer H, Reith H (1977) Zur enteralen Resorption von Valproinsäure. Arzneimittelforsch 27: 1088–1090

    PubMed  CAS  Google Scholar 

  • O’Leary TD, Sansom LN (1981) Interaction between phenytoin, 5-(p-hydroxyphenyl)-5-phenylhydantoin and valproate in the rat. J Pharmacol Exp Ther 216: 613–616

    PubMed  Google Scholar 

  • Olsen RW, Ticku MK, Greenlee D, Van Ness P (1979) GABA receptor and ionophore binding sites: interaction with various drugs. In: Krogsgaard-Larsen P, Scheel-KrĂĽger J, Kofod H (eds) GABA-neurotransmitters. Munksgaard, Copenhagen, pp 165–178

    Google Scholar 

  • Parker PH, Helinek GL, Gishan FK, Greene HL (1981) Recurrent pancreatitis induced by valproic acid. A case report and review of the literature. Gastroenterology 80: 826–828

    Google Scholar 

  • Patel BC, Crosset P, Klawans HL (1975) Failure of increased brain Îł-aminobutyric acid levels to influence amphetamine-induced stereotyped behavior. Res Commun Chem Pathol Pharmacol 12: 635–643

    PubMed  CAS  Google Scholar 

  • Patry G, Naquet R (1971) Action de l’acide dipropylacetique chez le Papio papio photosensible. Can J Physiol Pharmacol 49: 568–572

    PubMed  CAS  Google Scholar 

  • Patsalos PN, Lascelles PT (1977) Effect of sodium valproate on plasma protein binding of diphenylhydantoin. J Neurol Neurosurg Psychiatr 40: 570–574

    PubMed  CAS  Google Scholar 

  • Perry T, Hansen S (1978) Biochemical effects in man and rat of three drugs which can increase brain GABA content. J Neurochem 30: 679–684

    PubMed  CAS  Google Scholar 

  • Phillips NI, Fowler LJ (1982) The effects of sodium valproate on Îł-aminobutyrate metabolism and behavior in naive and ethanolamine-O-sulphate pretreated rats and mice. Biochem Pharmacol 31: 2257–2261

    PubMed  CAS  Google Scholar 

  • Pillen E (1973) Case report on file. Labaz, Paris

    Google Scholar 

  • Pinder RM, Brogden RN, Speight TM, Avery GS (1977) Sodium valproate: a review of its pharmacological properties and therapeutic efficacy in epilepsy. Drugs 13: 81–123

    PubMed  CAS  Google Scholar 

  • Rotiroli D, Palella B, Losi E, Nistico G, Caputi AP (1982) Evidence that a GABAergic mechanism influences the development of DOCA-salthypertension in the rat. Eur J Pharmacol 83: 153–154

    Google Scholar 

  • Sarhan S, Seiler N (1979) Metabolic inhibitors and subcellular distribution of GABA. J Neurosci Res 4: 399–421

    PubMed  CAS  Google Scholar 

  • Schafer H, Liihrs R (1978) Metabolite pattern of valproic acid. Part I: Gas chromatographic determination of the valproic acid metabolite artifacts, heptanone-3, 4-and 5-hydroxyvalproic acid lactone. Arzneimittelforsch 28: 657–662

    CAS  Google Scholar 

  • Schäfer H, LĂĽhrs R, Reith H (1980) Chemistry, pharmacokinetics, and biological activity of some metabolites of valproic acid. In: Johannessen SI, Morselli PL, Pippenger CE, Richens A, Schmidt D, Meinardi H (eds) Antiepileptic therapy: advances in drug monitoring. Raven, New York, pp 103–110

    Google Scholar 

  • Schechter PJ, Tranier Y, Grove J (1978) Effect of n-dipropylacetate on amino acid concentrations in mouse brain: correlations with anti-convulsant activity. J Neurochem 3: 1325–1327

    Google Scholar 

  • Schmidt D (1976) Salivary concentrations of antiepileptic drugs. Lancet 11: 639

    Google Scholar 

  • Schnitger G (1984) Versuche an Ratten zur gastroenteralen Resorption von Valproinsäure. Dissertation, Freie Universitat Berlin, Fachbereich Veterinarmedizin

    Google Scholar 

  • Schobben F, Van Der Kleijn E (1974 a) Determination of sodium di-n-propylacetate in plasma by gas-liquid chromatography. Pharm Weekblad [Sci] 109: 30–33

    Google Scholar 

  • Schobben F, Van Der Kleijn E (1974 b) Pharmacokinetics of distribution and elimination of sodium di-n-propylacetate in mouse and dog. Pharm Weekblad [Sci] 109: 33–41

    Google Scholar 

  • Schobben F, Van Der Kleijn E, Vree TB (1980) Therapeutic monitoring of valproic acid. Ther Drug Monit 2: 61–67

    PubMed  CAS  Google Scholar 

  • Schultz D (1983) Versuche mit einfachen tierexperimentellen Modellen der Petitmal Epilepsien. Dissertation, Freie Universitat Berlin, Fachbereich Veterinarmedizin

    Google Scholar 

  • Schwarcz R, Bennett JP, Coyle JT (1977) Inhibitors of GABA metabolism: implications for Huntington’s disease. Ann Neurol 2: 299–303

    PubMed  CAS  Google Scholar 

  • Shuto K, Nishigaki T (1970) The pharmacological studies on sodium dipropylacetate anticonvulsant activities and general pharmacological actions (in Japanese). Pharmacometrics 4: 937–949

    CAS  Google Scholar 

  • Similae S, Von Wendt L, Linna SL, Saukkonen AL, Huhtaniemi I (1979) Dipropylacetate and hyperglycemia. Neuropaediatrie 1: 158–160

    Google Scholar 

  • Similae S, Von Wendt L, Linna SL (1980) Dipropylacetate and aminoaciduria. J Neurol Sci 45: 83–86

    Google Scholar 

  • Simler S, Randrianarisoa H, Lehmann A, Mandel P (1968) Effets du di-n-propylacetate surles crises audiogenes de la souris. J Physiol (Paris) 60: 547

    Google Scholar 

  • Simler S, Ciesielski L, Maitre M, Randrianarisoa H, Mandel P (1973) Effect of sodium n-dipropylacetate on audiogenic seizures and brain Îł-aminobutyric acid level. Biochem Pharmacol 22: 1701–1708

    PubMed  CAS  Google Scholar 

  • Simler S, Gensburger C, Ciesielski L, Mandel P (1978) Time course of the increase in GABA level in different mice brain regions following n-dipropylacetate treatment. Commun Psychopharmacol 2: 123–130

    PubMed  CAS  Google Scholar 

  • Simler S, Ciesielski L, Klein M, Gobaille S, Mandel P (1981) Sur le mecanisme d’action d’un anticonvulsivant, le dipropylacetate de sodium. C R Soc Biol (Paris) 175: 114–119

    CAS  Google Scholar 

  • Simon D, Penry JK (1975) Sodium di-n-propylacetate ( DPA) in the treatment of epilepsy. Epilepsia 16: 549–573

    Google Scholar 

  • Snead OC (1978) Gamma-hydroxybutyrate in the monkey. I. Electroencephalographic, behavioral, and pharmacokinetic studies. Neurology 28: 636–642

    PubMed  CAS  Google Scholar 

  • Sutor AH, Jesdinky-Buscher C (1974) Coagulation changes caused by dipropylacetic acid. Med Welt 25: 447–448

    PubMed  CAS  Google Scholar 

  • Swanson BN, Harland RC, Dickinson RG, Gerber N (1978) Excretion of valproic acid into semen of rabbits and man. Epilepsia 19: 541–546

    PubMed  CAS  Google Scholar 

  • Swinyard EA (1964) The pharmacology of dipropylacetic acid sodium with special emphasis on its effects on the central nervous system. University of Utah, College of Pharmacy, Salt Lake City, Utah, pp 1–25

    Google Scholar 

  • Swinyard EA (1969) Laboratory evaluation of antiepileptic drugs. Review of laboratory methods. Epilepsia 10: 107–119

    PubMed  CAS  Google Scholar 

  • Taberner PV, Charington CB, Unwin JW (1980) Effects of GAD and GABA–T inhibitors on GABA metabolism in vivo. Brain Res Bull 5 [Suppl 2]: 621–625

    CAS  Google Scholar 

  • Ticku MK, Davis WC (1981) Effect of valproic acid on (3H)diazepam and (3H)dihydroxypicrotoxinin binding sites at the benzodiazepine-GABA receptor-ionophore complex. Brain Res 223: 218–222

    PubMed  CAS  Google Scholar 

  • Ticku MK, Olsen RW (1978) Interaction of barbiturates with dihydropicrotoxinin binding sites related to the GABA receptor-ionophore system. Life Sci 22: 1643–1652

    PubMed  CAS  Google Scholar 

  • Turner AJ, Whittle SR (1980) Sodium valproate, GABA and epilepsy. Trends Pharmacol Sci 1: 257–260

    Google Scholar 

  • Vadja FJ, Donnan GA, Phillips J, Bladin PF (1981) Human brain, plasma, and cerebro-spinal fluid concentration of sodium valproate after 72 hours of therapy. Neurology 31: 486–487

    Google Scholar 

  • Van Der Laan JW, De Boer T, Bruinvels J (1979) Di-n-propylacetate and GABA degradation. Peferential inhibition of succinic semialdehyde dehydrogenase and indirect inhibition of GABA-transaminase. J Neurochem 32: 1769–1780

    Google Scholar 

  • Van Der Laan JW, Jakobs AWC, Bruin vels J (1980) Effects of branched-chain fatty acids on GABA-degradation and behavior: further evidence for a role of GABA in quasi-morphine abstinence behavior. Pharmacol Biochem Behav 13: 843–849

    PubMed  Google Scholar 

  • Van Duijn, Beckmann MKF (1975) Dipropylacetic acid (depakine) in experimental epilepsy in the alert cat. Epilepsia 16: 83–88

    PubMed  Google Scholar 

  • Vree TB, Damsma J, Van Der Kleijn E (1977) Increase of the clearance of 2-propyl pentenoate in dogs undergoing concomitant administration of phenobarbital and 3-methyl cholanthrene. Pharm Weekblad [Sci] 112: 316–319

    CAS  Google Scholar 

  • Wada J A (1977) Pharmacological prophylaxis in the kindling model of epilepsy. Arch Neurol 34: 389–395

    PubMed  CAS  Google Scholar 

  • Walters JR, Lakoski JM, Eng N, Waszcak BL (1979) Effect of muscimol, AOAA and Na valproate on the activity of dopamine neurons and dopamine synthesis. In: Krogsgaard-Larsen P, Scheel-KrĂĽger J, Kofod H (eds) GABA-neurotransmitters. Munksgaard, Copenhagen, pp 118–134

    Google Scholar 

  • Weissman D, Simler S, Ciesielski L, Mandel P (1978) Variations de la teneur en GABA de certaines zones du cerveau de la souris sous l’effet de l’acide propyl-2-pentène-2 oique. C R Soc Biol (Paris) 172: 707–712

    CAS  Google Scholar 

  • Werman R, Davidoff A, Aprison MH (1968) Inhibitory actions of glycine on spinal neurons in the cat. J Neurophysiol 31:81–87 Whittle BA (1976) Pre–clinical teratological studies on sodium valproate (epilim) and other anticonvulsants. In: Legg NJ (ed) Clinical and pharmacological aspects of sodium valproate (epilim) in the treatment of epilepsy. MCS Consultants Tunbridge Wells, pp 105–110

    Google Scholar 

  • Whittle SR, Turner AJ (1978) Effects of the anticonvulsant sodium valproate on Îł-aminobutyrate and aldehyde metabolism in ox brain. J Neurochem 31: 1453–1459

    PubMed  CAS  Google Scholar 

  • Whittle SR, Turner AJ (1982) Effects of anticonvulsants on the formation of Îł-hydroxybutyrate from Îł-aminobutyrate in rat brain. J Neurochim 38: 848–851

    CAS  Google Scholar 

  • Wilensky AJ (1980) Antiepileptic drugs in the central nervous system. In: Lockard JS, Ward AA (eds) Epilepsy: a window to brain mechanisms. Raven, New York, pp 201–213

    Google Scholar 

  • Wittfoht W, Nau H, Rating D, Helge H (1982) 13C-labeled valproic acid pulse dosing during steady state antiepileptic therapy for pharmacokinetic studies during pregnancy. In: Schmidt HL, Forstel H, Heinzinger K (eds) Stable isotopes. Elsevier, Amsterdam, pp 265–270

    Google Scholar 

  • Wood JD, Russell MP, Kurylo E, Newstead JD (1979) Stability of synaptosomal GABA levels and their use in determining the in vivo effects of drugs: convulsant agents. J Neurochem 33: 61–68

    PubMed  CAS  Google Scholar 

  • Woodbury DM (1972) Applications to drug evaluation. In: Purpura DP, Penry JK, Tower D, Woodbury DM, Walter R (eds) Experimental models of epilepsy. Raven, New York, pp 557–583

    Google Scholar 

  • Worms P, Lloyd KG (1981) Functional alterations of GABA synapses in relation to seizures. In: Morselli PL, Lloyd KG, Loscher W, Meldrum BS, Reynolds EH (eds) Neurotransmitters, seizures, and epilepsy. Raven, New York, pp 37–46

    Google Scholar 

  • Wulff K, Flachs H, Wiirtz-Jorgensen A, Gram L (1977) Clinical pharmacological aspects of valproate sodium. Epilepsia 18: 149–157

    PubMed  CAS  Google Scholar 

  • Zimmer R, Teelken AW, Gundiirewa M, Räther E, Cramer H (1980) Effect of sodium-valproate on CSF GABA, cAMP, cGMP and homovanillic acid levels in man. Brain Res Bull 5 [Suppl 2]: 585–588

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Löscher, W. (1985). Valproic Acid. In: Frey, HH., Janz, D. (eds) Antiepileptic Drugs. Handbook of Experimental Pharmacology, vol 74. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69518-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69518-6_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69520-9

  • Online ISBN: 978-3-642-69518-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics