Skip to main content

Animal Experimental Methods in the Study of Antiepileptic Drugs

  • Chapter
Antiepileptic Drugs

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 74))

Abstract

Animal experiments with antiepileptic drugs serve a variety of purposes. First, they are used for screening newly synthesized chemical compounds before these are investigated in patients; i.e., animals are used at an early stage to provide information which is more or less reliable, on whether a new agent is able to combat, with adequate efficacy, potency, and duration of action, the most important symptom of epilepsy, the seizure. In a more advanced phase of the screening procedure, animal experiments, usually of a more complex nature, are used to test the possible specific efficacies of new compounds against distinct forms of seizures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adams WB, Parnas I, Levitan IB (1980) Mechanism of long-lasting synaptic inhibition in Aplysia neurons R 15. J Neurophysiol 44: 1148–1160

    PubMed  CAS  Google Scholar 

  • Ajmone-Marsan C (1969) Acute effects of topical epileptogenic agents, in: Jasper HH, Ward A A, Pope A (eds) Basic mechanisms of epilepsies. Little Brown, Boston, pp 299–319

    Google Scholar 

  • Ajmone-Marsan C (1972) Focal electrical stimulation. In: Purpura DP, Penry JK, Woodbury DM, Tower DB, Walter RD (eds) Experimental models of epilepsy - a manual for the laboratory worker. Raven, New York, pp 147–172

    Google Scholar 

  • Ajmone-Marsan C, Marossero F (1950) Electrocorticographic and electrochordographic study of the convulsions induced by cardiazol: some observations on the combined action of CNS excitants. Electroencephalogr Clin Neurophysiol 2: 133–142

    PubMed  CAS  Google Scholar 

  • Andersen P (1978) Long-lasting facilitation of synaptic transmission. In: Function of the septo-hippocampal system. CIBA-Foundation Symposium 58, Elsevier, Amsterdam, pp 87–102

    Google Scholar 

  • Andersen P, Sundberg SH, Sveen O, Wigstrom H (1977) Specific long-lasting potentiation of synaptic transmission in hippocampal slices. Nature 266: 736–737

    PubMed  CAS  Google Scholar 

  • Andy OJ, Akert K (1953) Electrographic and behavioral changes during seizures induced by stimulation of ammonsformation in the cat and monkey. Electroencephalogr Clin Neurophysiol [Suppl] 111: 48

    Google Scholar 

  • Ayala GF, Matsumoto H, Gumnit RJ (1970) Excitability changes and inhibitory mechanisms in neocortical neurons during seizures. J Neurophysiol 33: 73–85

    PubMed  CAS  Google Scholar 

  • Barker JL, Smith TG (1978) Electrophysiological studies of molluscan neurons generating pacemaker potential activity. In: Chalozonitis N, Boisson M (eds) Abnormal neuronal discharges. Raven, New York, pp 359–387

    Google Scholar 

  • Bircher RP, Kanai T, Wang SC (1962) Intravenous, cortical and intraventricular dose-effect relationship of pentylenetetrazol, picrotoxin and deslanoside in dogs. Electroence-phalogr Clin Neurophysiol 14: 256267

    Google Scholar 

  • Blum B, Liban E (I960) Experimental basotemporal epilepsy in the cat: discrete epileptogenic lesions produced in the hippocampus or amygdaloid by tungstic acid. Neurology 10: 546–554

    Google Scholar 

  • Blum B, Magnes J, Bental E, Liban E (1961) Electroencephalographic studies in cats with experimentally produced hippocampal epilepsy. Electroencephalogr Clin Neurophysiol 13: 340–353

    PubMed  CAS  Google Scholar 

  • Brierley JB, Horton RW, Meldrum BS (1972) Physiological observations during prolonged epileptic seizures in primates and their relation to subsequent brain damage. J Physiol (Cambridge) 222: 69P–70 P

    CAS  Google Scholar 

  • Brooks VB, Asanuma H (1962) Action of tetanus toxin in the cerebral cortex. Science 137: 674–676

    PubMed  CAS  Google Scholar 

  • Burns BD (1951) Some properties of isolated cerebral cortex in the unanaesthetized cat. J Physiol (Lond) 112: 156–175

    CAS  Google Scholar 

  • Cain DP (1981) Kindling: recent studies and new directions. In: Wada JA (ed) Kindling 2. Raven, New York, pp 49–62

    Google Scholar 

  • Carrea R, Lanari A (1962) Chronic effect of tetanus toxin applied locally to the cerebral cortex of the dog. Science 137: 342–343

    PubMed  CAS  Google Scholar 

  • Chusid JG, Kopeloff LM (1962) Epileptogenic effects of pure metals implanted in motor cortex of monkeys. J Appl Physiol 17: 696–700

    Google Scholar 

  • Chusid JG, Kopeloff LM (1969) Use of chronic irritative foci in laboratory evaluation of anti-epileptic drugs. Epilepsia 10: 239–262

    PubMed  CAS  Google Scholar 

  • Colasanti BK, Hartman ER, Craig CR (1974) Electrocorticogram and behavioral correlates during the development of chronic cobalt experimental epilepsy in the rat. Epilepsia 15: 361–373

    PubMed  CAS  Google Scholar 

  • Collins RL (1972) Audiogenic seizures. In: Purpura DP, Penry JK, Woodbury DM, Tower DB, Walter RD (eds) Experimental models of epilepsy - a manual for the laboratory worker. Raven, New York, pp 347–372

    Google Scholar 

  • Consroe P, Picchioni A, Chin L (1979) Audiogenic seizure susceptible rats. Fed Proc 38: 2411–2416

    PubMed  CAS  Google Scholar 

  • Curtis DR, Duggan AW, Felix D, Johnston GAR (1970 a) GABA, bicuculline, and central inhibition. Nature 226: 1222–1224

    Google Scholar 

  • Curtis DR, Duggan AW, Felix D, Johnston GAR (1970 b) Bicuculline and central GABA receptors. Nature 228: 676–677

    Google Scholar 

  • Daly DD (1973) Circadian cycles and seizures. In: Brazier (ed) Epilepsy, its phenomena in man. Academic, New York, pp 215–233

    Google Scholar 

  • David J, Grewal RS (1978) A simplified technique for producing aluminium hydroxide-induced chronic focal seizures in monkeys. Indian J Exp Biol 16: 96–99

    CAS  Google Scholar 

  • Delgado JMR, Sevillano M (1961) Evolution of repeated hippocampal seizures in the cat. Electroencephalogr Clin Neurophysiol 13: 722–733

    Google Scholar 

  • Dice LR (1935) Inheritance of waltzing and of epilepsy in mice of the genus Peromyscus. J Mammol 16–25–35

    Google Scholar 

  • Dichter M, Spencer WA (1969) Penicillin-induced interictal discharges from the cat hippo-campus. II. Mechanisms underlying origin and restriction. J Neurophysiol 32: 663–687

    Google Scholar 

  • Dichter M, Herman C, Selzer M (1973) Penicillin epilepsy in isolated islands of hippocampus. Electroencephalogr Clin Neurophysiol 34: 631–638

    PubMed  CAS  Google Scholar 

  • Dow RS, Fernandez-Guardiola A, Manni E (1962) The production of cobalt experimental epilepsy in the rat. Electroencephalogr Clin Neurophysiol 14: 399–407

    PubMed  CAS  Google Scholar 

  • Echlin FA (1954) Acetylcholine, supersensitivity and focal cortical seizures in chronically neuronally isolated and partially isolated cerebral cortex. Electroencephalogr Clin Neurophysiol 6: 690

    Google Scholar 

  • Echlin FA (1959) The supersensitivity of chronically “isolated” cerebral cortex as a mech-anism in focal epilepsy. Electroencephalogr Clin Neurophysiol 11: 697–722

    PubMed  CAS  Google Scholar 

  • Escueta AV, Davidson D, Hartwig G, Reilly E (1974) The freezing lesion. II. Potassium transport within nerve terminals isolated from epileptogenic foci. Brain Res 78: 223–237

    Google Scholar 

  • Esplin DW (1972) Synaptic system models. In: Purpura DP, Penry JK, Woodbury DM, Tower DB, Walter RD (eds) Experimental models of epilepsy - a manual for the laboratory worker. Raven, New York, pp 223–248

    Google Scholar 

  • Faugier S, Willows AOD (1973) Behavioral and nerve cell membrane effects of an epileptic agent ( Metrazol) in a mollusk. Brain Res 52: 243–260

    Google Scholar 

  • Ferguson JH, Cornblath DR (1974) Acetylcholine epilepsy: modification of DC shift in chronically undercut cat cortex. Electroencephalogr Clin Neurophysiol 36: 113–122

    PubMed  CAS  Google Scholar 

  • Fischer J, Holubar J, Malik V (1967) A new method of producing chronic epileptogenic cortical foci in rats. Physiologia Bohemoslovaca 16: 272–277

    PubMed  CAS  Google Scholar 

  • Fisher RS, Prince DA (1977) Spike-wave rhythms in cat cortex induced by parenteral penicillin. I. Electroencephalographic features. Electroencephalogr Clin Neurophysiol 42: 608–624

    Google Scholar 

  • Frazier WT, Kandel ER, Kupfermann I, Waziri R, Coggeshall RE (1967) Morphological and functional properties of identified neurons in the abdominal ganglion of Aplysia californica. J Neurophysiol 30: 1288–1351

    Google Scholar 

  • French JD, Gernandt BE, Livingston RB (1956) Regional differences in seizure susceptibility in monkey cortex. Arch Neurol Psychiat 75: 260–274

    CAS  Google Scholar 

  • Frenk H, Urea G, Liebeskind JC (1978) Epileptic properties of leucine- and methionine- enkephalin: comparison with morphine and reversibility by naloxone. Brain Res 147: 327–337

    PubMed  CAS  Google Scholar 

  • Fromm GH, Killian JM (1967) Effect of some anticonvulsant drugs on the spinal trige¬minal nucleus. Neurology 17: 275–280

    PubMed  CAS  Google Scholar 

  • Fromm GH, Glass JD, Chattha AS, Martinez AJ, Silverman M (1980) Antiabsence drugs and inhibitory pathways. Neurology 30: 126–131

    PubMed  CAS  Google Scholar 

  • Fromm GH, Glass JD, Chattha AS, Martinez AJ (1981) Effect of anticonvulsant drugs on inhibitory and excitatory pathways. Epilepsia 22: 65–73

    PubMed  CAS  Google Scholar 

  • Gibbs FA, Gibbs EL (1936) The convulsive threshold of various parts of the cat’s brain. Arch Neurol Psychiatr 35: 109–116

    Google Scholar 

  • Gilbert ME, Cain DP (1982) A developmental study of kindling in the rat. Dev Brain Res 2: 321–328

    Google Scholar 

  • Gloor P, Testa G (1974) Generalized penicillin epilepsy in the cat: effects of intracarotid and intra vertebral pentylenetrazol and amobarbital injections. Electroencephalogr Clin Neurophysiol 36: 499–515

    PubMed  CAS  Google Scholar 

  • Gloor P, Quesney LF, Zumstein H (1977) Pathophysiology of generalized penicillin epilepsy in the cat: the role of cortical and subcortical structures. II. Topical application of penicillin to the cerebral cortex and to subcortical structures. Electroencephalogr Clin Neurophysiol 43: 79–94

    Google Scholar 

  • Goddard GV (1967) Development of epileptic seizures through brain stimulation at low intensity. Nature 214: 1020–1021

    PubMed  CAS  Google Scholar 

  • Goddard GV, Mclntyre DC, Leech CK (1969) A permanent change in brain function resulting from daily electrical stimulation. Exp Neurol 25: 295–330

    PubMed  CAS  Google Scholar 

  • Gottesfeld Z, Elazar Z (1975) GABA synthesis and uptake in penicillin focus. Brain Res 84: 346–350

    PubMed  CAS  Google Scholar 

  • Gutnick MJ, Duijn H van, Citri N (1976) Relative convulsant potencies of structural analogues of penicillin. Brain Res 114: 139–143

    PubMed  CAS  Google Scholar 

  • Hahn F, Oberdorf A (1962) Vergleichende Untersuchungen iiber die Krampfwirkung von Bemegrid, Pentetrazol und Pikrotoxin. Arch Int Pharmacodyn Ther 135: 9–30

    Google Scholar 

  • Halberg F (1955) Twenty-four-hour periodic susceptibility to audiogenic convulsions in several stocks of mice. Fed Proc 14: 67–88

    Google Scholar 

  • Hall CS (1947) Genetic differences in fatal audiogenic seizures. J Hered 38:2-6 Hanna GR, Stalmaster RM (1973) Cortical epileptic lesions produced by freezing. Neurology 23: 918–925

    Google Scholar 

  • Henjyoji EY, Dow RS (1965) Cobalt-induced seizures in the cat. Electroencephalogr Clin Neurophysiol 19: 152–161

    PubMed  CAS  Google Scholar 

  • Hildebrandt F (1926) Pentamethylenetetrazol (Cardiazol®). Arch Exp Pathol Pharmakol 116: 100–109

    CAS  Google Scholar 

  • Hughes JR (1959 a) Studies on the supracallosal mesial cortex of unanesthetized, conscious mammals. I. Cat. A. Movements elicited by electrical stimulation. Electroencephalogr Clin Neurophysiol 11: 447–458

    Google Scholar 

  • Hughes JR (1959 b) Studies on the supracallosal mesial cortex of unanesthetized, conscious mammals. I. Cat. B. Electrical activity. Electroencephalogr Clin Neurophysiol 11: 459–469

    Google Scholar 

  • Hughes JR, Mazurowski J A (1962) Studies on the supracallosal mesial cortex of unanesthetized, conscious mammals. II. Monkey. A. Movements elicited by electrical stimulation. Electroencephalogr Clin Neurophysiol 14: 477–485

    Google Scholar 

  • Hughes JR, Mazurowski J A (1964) Studies on the supracallosal mesial cortex of unanesthetized, conscious mammals. II. Monkey. D. Vertex sharp waves and epileptiform activity. Electroencephalogr Clin Neurophysiol 16: 561–574

    Google Scholar 

  • Hunter J, Jasper HH (1949) Effects of thalamic stimulation in unanesthetized animals. Electroencephalogr Clin Neurophysiol 1: 305–324

    PubMed  CAS  Google Scholar 

  • Janz D (1962) The grand mal epilepsies and the sleeping-waking cylce. Epilepsia 3: 69–109

    PubMed  CAS  Google Scholar 

  • Janz D (1975) Types of epilepsy and types of sleepers. In: Hara T, Wada T (eds) Circadian rhythm and epilepsy. The Japanese branch of ILAE, pp 5-–2. Available from: Natl. Musashi Res. Inst, for Mental and Nervous Diseases, 2620 Ogawa-higashi, Kodaira, Tokyo

    Google Scholar 

  • Julien RM, Fowler GW, Danielson MG (1975) The effects of antiepileptic drugs on estro-gen-induced electrographic spike-wave discharge. J Pharmacol Exp Ther 193: 647–656

    PubMed  CAS  Google Scholar 

  • Kaada BR (1951) Somato-motor, autonomic and electrocorticographic responses to electrical stimulation of “rhinencephalic” and other structures in primates, cat and dog. Acta Physiol Scand 231:[Suppl] 83: 1–285

    Google Scholar 

  • Kandel ER (1976) Cellular basis of behavior. An introduction to behavioral neurobiology. Freeman, San Francisco Killam EK (1979) Photomyoclonic seizures in the baboon Papio papio. Fed Proc 38: 2429–2433

    Google Scholar 

  • Klee MR, Faber DS, Heiss W-D (1973) Strychnine- and pentylenetetrazol-induced changes of excitability in Aplysia neurons. Science 179: 1133–11363

    PubMed  CAS  Google Scholar 

  • Koella WP ( 1980 a) Laboratory approaches to new antiepileptic drugs. In: Robb P (ed) Epilepsy updated: causes and treatment. Symposia Specialists, Miami, pp 71–84

    Google Scholar 

  • Koella WP ( 1980 b) Preclinical development of antiepileptic drugs. In: Wada, JA, Penry JK (eds) Advances in epileptology. The Xth Epilepsy International Symposium. Raven, New York, pp 289–294

    Google Scholar 

  • Koella WP, Schmutz M (1981) Preclinical development of new antiepileptic drugs - the present and the future. In: Dam M, Gram L, Penry JK (eds) Advances in epileptology. Xllth Epilepsy International Symposium. Raven, New York, pp 7–12

    Google Scholar 

  • Kopeloff LM (1960) Experimental epilepsy in the mouse. Proc Soc Exp Biol Med 104: 500–504

    PubMed  CAS  Google Scholar 

  • Kopeloff LM, Barrera SE, Kopeloff N (1941/1942) Recurrent convulsive seizures in animals produced by immunologic and chemical means. Am J Psychiatry 98: 881–902

    Google Scholar 

  • Kopeloff LM, Chusid JG, Kopeloff N (1955) Epilepsy in Macaca mulatta after cortical orintracerebral alumina. Arch Neurol Psychiatr 74: 523–526

    CAS  Google Scholar 

  • Krall RL, Penry JK, White BG, Kupferberg H-J, Swinyard EA (1978) Antiepileptic drug development: II. Anticonvulsant drug screening. Epilepsia 19: 409–428

    Google Scholar 

  • Kreindler A, Steriade M (1963) Functional differentiation within the amygdaloid complex inferred from peculiarities of epileptic afterdischarges. Electroencephalogr Clin Neurophysiol 15: 811–826

    PubMed  CAS  Google Scholar 

  • Krushinsky LV, Molodkina LN, Fless DA, Dobrokhotova LP, Steshenko AP, Semiokhina AF, Zorina ZA, Romanova LB (1970) The functional state of the brain during sonic stimulation. In: Welch BL, Welch AS (eds) Physiological effects of noise. Plenum, New York, pp 159–183

    Google Scholar 

  • Leclercq B, Segal M (1965) An investigation of centers susceptible to mechanically and electrically induced afterdischarge in the cat brain. Can J Physiol Pharmacol 43: 491–507

    PubMed  CAS  Google Scholar 

  • Lewin E (1972) The production of epileptogenic cortical foci in experimental animals by freezing. In: Purpura DP, Penry JK, Woodbury DM, Tower DB, Walter RD (eds) Experimental models of epilepsy - a manual for the laboratory worker. Raven, New York, pp 37–49

    Google Scholar 

  • Liberson WT, Akert K (1953) Observations on electrical activity of the hippocampus, thalamus, striatum, and cortex under resting conditions and during experimental seizure states in guinea pigs. Electroencephalogr Clin Neurophysiol 5: 320

    Google Scholar 

  • Liberson WT, Akert K (1955) Hippocampal seizure states in guinea pig. Electroencephalogr Clin Neurophysiol 7: 211–222

    PubMed  CAS  Google Scholar 

  • Liberson WT, Cadilhac JG (1953 a) Further observation on DC potentials during electrically induced seizure discharge activity in guinea pig. Electroencephalogr Clin Neuro-physiol 5: 320

    Google Scholar 

  • Liberson WT, Cadilhac JG (1953 b) Further studies of hippocampal seizure states. Electro-encephalogr Clin Neurophysiol. [Suppl] 111: 42

    Google Scholar 

  • Lloyd DPC (1949) Post-tetanic potentiation of response in mono-synaptic reflex pathways of the spinal cord. J Gen Physiol 33: 147–190

    PubMed  CAS  Google Scholar 

  • Lockard JS, Barensten RI (1967) Behavioral experimental epilepsy in monkeys. I. Clinical seizure recording apparatus and initial data. Electroencephalogr Clin Neurophysiol 22: 482–486

    Google Scholar 

  • Longo VG, Chiavarelli S (1962) Neuropharmacological analysis of strychnine-like drugs. In: Paton WDM (ed). Pharmacological analysis of central nervous action. Proceedings of the first international pharmacological meeting. Pergamon, Oxford, pp 189–198

    Google Scholar 

  • MacLean PD (1954) The limbic system and its hippocampal formation. Studies in animals and their possible application to man. J Neurosurg 11: 29–44

    PubMed  CAS  Google Scholar 

  • Marcus EM (1972) Experimental models of petit mal epilepsy. In: Purpura DP, Penry JK, Woodbury DM, Tower DB, Walter RD (eds) Experimental models of epilepsy - a manual for the laboratory worker. Raven, New York, pp 113–146

    Google Scholar 

  • Marcus EM, Watson CW (1964) Bilateral “epileptogenic” foci in cat cerebral cortex: mechanisms of interaction in the intact, the bilateral cortical callosal and a diencephalic preparation. Electroencephalogr Clin Neurophysiol 17: 454

    Google Scholar 

  • Marcus EM, Watson CW (1966) Bilateral synchronous spike wave electrographic patterns in the cat. Arch Neurol 14: 601–610

    PubMed  CAS  Google Scholar 

  • Marcus EM, Watson CW (1968) Symmetrical epileptogenic foci in monkey cerebral cortex. Arch Neurol 19: 99–116

    PubMed  CAS  Google Scholar 

  • Marcus EM, Watson CW, Simon SA (1968) An experimental model of some varieties of petit mal epilepsy: electrical-behavioral correlations of acute bilateral epileptogenic foci in cerebral cortex. Epilepsia 9: 233–248

    PubMed  CAS  Google Scholar 

  • Mares P (1973) Bioelectrical activity of an epileptogenic focus in rat neocortex. Brain Res 56: 203–213

    PubMed  CAS  Google Scholar 

  • Matsumoto H, Ayala GF, Gumnit RJ (1969) Neuronal behavior and triggering mechanism in cortical epileptic focus. J Neurophysiol 32: 688–703

    PubMed  CAS  Google Scholar 

  • Mayanagi Y, Walker AE (1974) Experimental temporal lobe epilepsy. Brain 97: 423–446

    PubMed  CAS  Google Scholar 

  • Meldrum BS, Horton RW (1971) Convulsive effects of 4-deoxypyridoxine and of bicucul- line in photosensitive baboons (Papio papio) and in rhesus monkeys ( Macaca mulatto ). Brain Res 35: 419–436

    Google Scholar 

  • Mellanby J, George G, Robinson A, Thompson P (1977) Epileptiform syndrome in rats produced by injecting tetanus toxin into the hippocampus. J Neurol Neurosurg Psychiatry 40: 404–414

    PubMed  CAS  Google Scholar 

  • Mirsky IA, Elgart S, Aring CD (1943) Sonogenic convulsions in rats and mice: I. control studies. J Comp Psychol 35: 249–253

    Google Scholar 

  • Moody WJ, Futamachi KJ, Prince DA (1974) Extracellular potassium activity during epileptogenesis. Exp Neurol 42: 248–263

    PubMed  CAS  Google Scholar 

  • Morrell F (1959) Experimental focal epilepsy in animals. Arch Neurol 1: 141–147

    PubMed  CAS  Google Scholar 

  • Morrell F (I960) Secondary epileptogenic lesions. Epilepsia 1:538–560

    Google Scholar 

  • Morrell F (1961) Microelectrode studies in chronic epileptic foci. Epilepsia 2: 81–88

    PubMed  CAS  Google Scholar 

  • Morrell F (1973) Goddard’s kindling phenomenon: a new model of the “mirror focus”. In: Sabelli HC (ed) Chemical modulation of the brain function. Raven, New York, pp 207–223

    Google Scholar 

  • Morrell F (1978) Aspects of experimental epilepsy. In: Wada JA (ed) Modern perspectives in epilepsy. Eden, Montreal, pp 24–75

    Google Scholar 

  • Morrell F, Florenz A (1958) Modification of the freezing technique for producing experimental epileptogenic lesions. Electroencephalogr Clin Neurophysiol 10: 187

    Google Scholar 

  • Morrell F, Tsuru N (1976) Kindling in the frog: development of spontaneous epileptiform activity. Electroencephalogr Clin Neurophysiol 40: 1–11

    PubMed  CAS  Google Scholar 

  • Mutani R (1967) Cobalt experimental hippocampal epilepsy. Epilepsia 8: 223–240

    PubMed  CAS  Google Scholar 

  • Nie V, Ettlinger G (1974) Ablation of the primary inferotemporal epileptogenic focus in rhesus monkeys with independent secondary spike discharges. Brain Res 69: 149–152

    PubMed  CAS  Google Scholar 

  • Nims LF, Marshall C, Nielsen A (1941) Effect of local freezing on the electrical activity of the cerebral cortex. Yale J Biol Med 13: 477–484

    PubMed  CAS  Google Scholar 

  • Noebels JL (1979) Analysis of inherited epilepsy using single locus mutations in mice. Fed Proc 38: 2405–2410

    PubMed  CAS  Google Scholar 

  • O’Connor MJ, Lewis DV (1974) Recurrent seizures induced by potassium in the penicillin treated hippocampus. Electroencephalogr Clin Neurophysiol 36: 337–345

    PubMed  Google Scholar 

  • Openchowski P (1883) Sur Taction localisee du froid applique a la surface de la region corticale du cerveau. C R Soc Biol (Paris) 35: 38–43

    Google Scholar 

  • Partridge LD (1975) Pentylenetetrazol-induced bursting activity in the absence of a negative conductance characteristic. Brain Res 94: 161–166

    PubMed  CAS  Google Scholar 

  • Passouant P (1977) Influence des etats de vigilance sur les epilepsies. In: Koella WP, Levin P (eds) Sleep 1976. Proceedings of 3rd European Congress on sleep research. Karger, Basel, pp 57–65

    Google Scholar 

  • Payan HM, Conard JR (1973) Cobalt experimental epilepsy in various strains of rat. Epilepsia 14: 415–421

    PubMed  CAS  Google Scholar 

  • Payan HM, Conard JR (1974) Cobalt-induced epilepsy in rats. A study in biochemical sub-stances. Arch Pathol 97: 170–172

    Google Scholar 

  • Petsche H, Muller-Paschinger IB, Pockberger H, Prohaska O, Rappelsberger P, Vollmer R (1978) Depth profiles of electrocortical activities and cortical architectonis. In: Brazier MAB, Petsche H (eds) Architectonics of the cerebral cortex. Raven, New York, pp 257–280

    Google Scholar 

  • Phillis JW (1968) Acetylcholine release from the cerebral cortex. Its role in cortical arousal. Brain Res 7: 378–389

    PubMed  CAS  Google Scholar 

  • Pinel JPJ (1981) Spontaneous kindled motor seizures in rats. In: Wada J A (ed) Kindling 2. Raven, New York, pp 179–181

    Google Scholar 

  • Pinel JPJ, Mucha RF, Phillips AG (1975) Spontaneous seizures generated in rats by kindling: a preliminary report. Physiol Psychology 3: 127–129

    Google Scholar 

  • Pinsky C, Burns BD (1962) Production of epileptiform afterdischarges in cat’s cerebral cortex. J Neurophysiol 25: 359–379

    PubMed  CAS  Google Scholar 

  • Pope A, Morris A A, Jasper HH, Elliot KAC, Penfield W (1947) Histochemical and action potential studies on epileptogenic areas of cerebral cortex in man and the monkey. Res Publ Assoc Res Nerv Ment Dis 26: 218–227

    CAS  Google Scholar 

  • Post RM (1981) Lidocaine-kindled limbic seizures: behavioral implications. In: Wada J A (ed) Kindling 2. Raven, New York, pp 149–157

    Google Scholar 

  • Post RM, Kopanda RT, Black KE (1976) Progressive effects of cocaine on behavior and central amine metabolism in rhesus monkeys: relationship to kindling and psychosis. Biol Psychiatry 11: 403–419

    PubMed  CAS  Google Scholar 

  • Prince DA (1969) Microelectrode studies of penicillin foci. In: Jasper HH, Ward AA, Pope A (eds) Basic mechanism of epilepsies. Little Brown, Boston, pp 320–328

    Google Scholar 

  • Prince DA (1972) Topical convulsant drugs and metabolic antagonists. In: Purpura DP, Penry JK, Woodbury DM, Tower DB, Walter RD (eds) Experimental models of epilepsy - a manual for the laboratory worker. Raven, New York, pp 51–83

    Google Scholar 

  • Prince DA, Gutnick MJ (1972) Neuronal activities in epileptogenic foci of immature cortex. Brain Res 45: 455–468

    PubMed  CAS  Google Scholar 

  • Purpura DP, Penry JK, Woodbury DM, Tower DB, Walter RD (1972) Experimental models of epilepsy - a manual for the laboratory worker. Raven, New York

    Google Scholar 

  • Racine RJ, Burnham WM, Gartner JG, Levitan D (1973) Rates of motor seizure development in rats subjected to electrical brain stimulation: strain and interstimulation interval effects. Electroencephalogr Clin Neurophysiol 35: 553–556

    PubMed  CAS  Google Scholar 

  • Radouco-Thomas C, Frommel E, Radouco-Thomas S (1955) Medication antiepileptique et activite cholinesterasique. Helv Physiol Pharmacol Acta 13: 1–13

    PubMed  CAS  Google Scholar 

  • Reichenthal E, Hocherman S (1977) The critical cortical area for development of penicillin- induced epilepsy. Electroencephalogr Clin Neurophysiol 42: 248–251

    PubMed  CAS  Google Scholar 

  • Renshaw B, Forbes A, Morison BR (1940) Activity of isocortex and hippocampus. Electrical studies with micro-electrodes. J Neurophysiol 3: 74–105

    Google Scholar 

  • Roldan E, Radil-Weiss T, Chocholova L (1970) Paroxysmal activity of hippocampal and thalamic epileptogenic foci and induced or spontaneous changes of vigilance. Exp Neurol 29: 121–130

    PubMed  CAS  Google Scholar 

  • Roldan E, Radil-Weiss T, Chocholova L (1971 a) Sleep cycle in rats with paroxysmal foci. Int J Neurosci 2: 179–182

    Google Scholar 

  • Roldan E, Radil-Weiss T, Chocholova L (1971 b) Epileptic electroencephalographic activity induced by cobalt foci in the dorsal hippocampus and/or thalamus. Int J Neurosci 2: 293–300

    Google Scholar 

  • Rosenblueth A, Cannon WB (1941/1942) Cortical responses to electric stimulation. Am J Physiol 135: 690–741

    Google Scholar 

  • Sawa M, Marnyama N, Kaji S (1963) Intracellular potential during electrically induced sei-zures. Electroencephalogr Clin Neurophysiol 15: 209–220

    PubMed  CAS  Google Scholar 

  • Schlesinger K, Boggan W, Freedman DX (1965) Genetics of audiogenic seizures: I. Relation to brain serotonin and norepinephrine in mice. Life Sci 4: 2345–2351

    Google Scholar 

  • Schlesinger K, Boggan W, Freedman DX (1968) Genetics of audiogenic seizures: II. Effects of pharmacological manipulation of brain serotonin, norepinephrine and gamma- aminobutyric acid. Life Sci 7: 437–447

    Google Scholar 

  • Schlesinger K, Boggan W, Freedman DX (1970) Genetics of audiogenic seizures: III. Time response relationships between drug administration and seizure susceptibility. Life Sci 9: 721–729

    Google Scholar 

  • Schmidt KF (1924) Uber den Imin-Rest. Ber Dtsch Chem Ges 57: 704–706

    Google Scholar 

  • Schmutz M, Klebs K, Koella WP (1980) A chronic petit mal model. In: Wada JA, Penry JK (eds) Advances in epileptology: the Xth epilepsy international symposium. Raven, New York, pp 311–314

    Google Scholar 

  • Schmutz M, Biirki H, Koella WP (1981) Electrically induced hippocampal afterdischarge in the freely moving cat: an animal model of focal (possibly temporal lobe) epilepsy. In: Dam M, Gram L, Penry JK (eds) Advances in epileptology: Xllth epilepsy international symposium. Raven, New York, pp 59–65

    Google Scholar 

  • Schneider A, Epstein B (1931) The effects of local freezing of the central nervous system ofthecat. Arch Neurol Psychiatr 25: 1264–1270

    Google Scholar 

  • Segal M, Leclercq B (1965) Threshold studies and isolimital mapping of electrically elicited afterdischarge in the cat brain. Can J Physiol Pharmacol 43: 685–697

    Google Scholar 

  • Seyfried TN (1979) Audiogenic seizures in mice. Fed Proc 38: 2399–2404

    PubMed  CAS  Google Scholar 

  • Smith TG Jr, Purpura DP (1960) Electrophysiological studies on epileptogenic lesion of cat cortex. Electroencephalogr Clin Neurophysiol 12: 59–82

    PubMed  Google Scholar 

  • Speckmann E-J, Caspers H (1973) Paroxysmal depolarization and changes in action potentials induced by pentylenetetrazol in isolated neurons of Helix pomatia. Epilepsia 14: 397–408

    PubMed  CAS  Google Scholar 

  • Stalmaster RM, Hanna GR (1972) Epileptic phenomena of cortical freezing in the cat: per-sistent multifocal effects of discrete superficial lesions. Epilepsia 13: 313–324

    PubMed  CAS  Google Scholar 

  • Stone WE (1957) The role of acetylcholine in brain metabolism and function. Am J Phys Med 36: 222–255

    PubMed  CAS  Google Scholar 

  • Stone WE (1972) Systemic chemical convulsants and metabolic derangements. In: Purpura DP, Penry JK, Woodbury DM, Tower DB, Walter RD (eds) Experimental models of epilepsy - a manual for the laboratory worker. Raven, New York, pp 407–432

    Google Scholar 

  • Stone WE, Tews JK, Mitchell EN (1960) Chemical concomitants of convulsive activity in the cerebrum. Neurology 10: 241–248

    PubMed  CAS  Google Scholar 

  • Straw RN, Mitchell CL (1966) A study on the duration of cortical afterdischarge in the cat. Electroencephalogr Clin Neurophysiol 21: 54–58

    PubMed  CAS  Google Scholar 

  • Stumpf C (1962) Pharmakologische Methoden. In: Stumpf C, Petsche H (eds) Handbuch der experimentellen Pharmakologie. Vol XVI/7. Springer, Berlin p 1–105

    Google Scholar 

  • Swinyard EA (1969) Laboratory evaluation of antiepileptic drugs. Epilepsia 10: 107–119

    PubMed  CAS  Google Scholar 

  • Swinyard EA (1972) Electrically induced convulsions. In: Purpura DP, Penry JK, Woodbury DM, Tower DB, Walter RD (eds) Experimental models of epilepsy - a manual for the laboratory worker. Raven, New York, pp 433–458

    Google Scholar 

  • Swinyard EA, Brown WC, Goodman LS (1952) Comparative assays of antiepileptic drugs in mice and rats. J Pharmacol Exp Ther 106: 319–330

    PubMed  CAS  Google Scholar 

  • Szirmai I, Molnar M, Czopf J, Borsics K (1977) Spreading epileptiform discharges and cortical regional blood flow in rabbits. Electroencephalogr Clin Neurophysiol 42: 238–247

    PubMed  CAS  Google Scholar 

  • Urea G, Frenk H, Liebeskind JC, Taylor AN (1977) Morphine and enkephalin: analgesic and epileptic properties. Science 197: 83–86

    Google Scholar 

  • Van Gelder NM, Courtois A (1972) Close correlation between changing content of specific amino acids in epileptogenic cortex of cats, and severity of epilepsy. Brain Res 43: 477–484

    PubMed  Google Scholar 

  • Velasco M, Velasco F, Estrada-Villanueva F, Olivera A (1973) Alumina cream-induced focal motor epilepsy in cats. Part I. Lesion size and temporal course. Epilepsia 14: 3–14

    Google Scholar 

  • Velasco M, Velasco F, Cepeda C, Almanza X, Estrada-Villanueva F (1977) Alumina cream induced focal motor epilepsy in cats. I. Wakefulness-sleep modulation of cortical paroxysmal EEG spikes. Electroencephalogr Clin Neurophysiol 43: 59–66

    Google Scholar 

  • Vollmer R, Petsche H, Prohaska O, Rappelsberger P, Kaiser A (1974) Kreisende kortikale Potentialfelder beim epileptischen Anfall. Experientia 30: 156–157

    PubMed  CAS  Google Scholar 

  • Vollmer R, Szirmai IG, Rappelsberger P (1979) Zur Ausbreitung von Azetylcholin-indu-zierten Anfallen. EEG/EMG 10: 123–131

    CAS  Google Scholar 

  • Wada J, Cornelius L (1960) Functional alterations of deep structures in cats and chronic initiative lesions. Arch Neurol 3: 425–447

    PubMed  CAS  Google Scholar 

  • Wada J A, Osawa T (1976) Spontaneous recurrent seizure state induced by daily electric amygdaloid stimulation in Senegalese baboons ( Papiopapio ). Neurology 26: 273–286

    Google Scholar 

  • Wada J A, Sato M (1974) Generalized convulsive seizure induced by daily electrical stimulation of the amygdala in cats: correlative electrographic and behavioral features. Neurology 24: 565–574

    PubMed  CAS  Google Scholar 

  • Wada J A, Sato M (1975) The generalized convulsive seizure state induced by daily electrical stimulation of the amygdala in split brain cats. Epilepsia 16: 417–430

    PubMed  CAS  Google Scholar 

  • Wada J A, Sato M, McCaughran J A Jr (1975) Cortical electrographic correlates of convulsive seizure development induced by daily electrical stimulation of the amygdala in rats and cats. Folia Psychiatr Neurol Jpn 29: 329–339

    PubMed  CAS  Google Scholar 

  • Walker AE, Johnson HC, Kollros J J (1945) Penicillin convulsions. The convulsive effects of penicillin applied to the cortex of monkey and man. Surg Gynecol Obstet 81: 692–701

    Google Scholar 

  • Walker AE, Poggio GF, Andy OJ (1956) Structural spread of cortically-induced epileptic discharges. Neurology 6: 616–626

    PubMed  Google Scholar 

  • Ward AA (1969) The epileptic neuron: chronic foci in animals and man. In: Jasper HH, Ward AA, Pope A (eds) Basic mechanisms of the epilepsies. Little Brown, Boston, pp 263–288

    Google Scholar 

  • Ward AA (1972) Topical convulsant metals. In: Purpura DP, Penry JK, Woodbury DM, Tower DB, Walter RD (eds) Experimental models of epilepsy - a manual for the laboratory worker. Raven, New York, pp 13–35

    Google Scholar 

  • Wilder BJ (1972) Projection phenomena and secondary epileptogenesis - mirror foci. In: Purpura DP, Penry JK, Woodbury DM, Tower DB, Walter RD (eds) Experimental models of epilepsy - a manual for the laboratory worker. Raven, New York, pp 85–111

    Google Scholar 

  • Wilder BJ, Schmidt RP (1965) Propagation of epileptic discharge from chronic neocortical foci in monkeys. Epilepsia 6: 297–309

    PubMed  CAS  Google Scholar 

  • Wilder BJ, King RL, Schmidt RP (1969) Cortical and subcortical secondary epileptogenesis. Neurology 19: 643–652

    PubMed  CAS  Google Scholar 

  • Willmore LJ, Sypert GW, Munson JB, Hurd RW (1978) Chronic focal epileptiform discharges induced by injection of iron into rat and cat cortex. Science 200: 1501–1503

    PubMed  CAS  Google Scholar 

  • Wilson WA, Wachtel H (1974) Negative resistance characteristic essential for the maintainance of slow oscillation in bursting neurons. Science 186: 932–934

    PubMed  CAS  Google Scholar 

  • Wilson WA, Wachtel H (1978) Prolonged inhibition in burst firing neurons; synaptic inactivation of the slow regenerative inward current. Science 202: 772–775

    PubMed  CAS  Google Scholar 

  • Woodbury DM (1972) Applications to drug evaluations. In: Purpura DP, Penry JK, Woodbury DM, Tower DB, Walter RD (eds) Experimental models of epilepsy - a manual for the laboratory worker. Raven, New York, pp 557–583

    Google Scholar 

  • Woodbury DM, Kemp JW (1977) Basic mechanisms of seizures: neurophysiological and biochemical etiology. In: Shagass C, Gershon S, Friedkoff AJ (eds) Psychopathology and brain dysfunction. Raven, New York, pp 149–182

    Google Scholar 

  • Wyler AR (1974) Epileptic neurons during sleep and wakefulness. Exp Neurol 42: 593–608

    PubMed  CAS  Google Scholar 

  • Wyler AR (1978) Single unit analysis of “mirror foci” in chronic epileptic monkeys. Brain Res 150: 201–204

    PubMed  CAS  Google Scholar 

  • Wyler AR, Fetz EE, Ward AA (1973) Spontaneous firing patterns of epileptic neurons in the monkey motor cortex. Exp Neurol 40: 567–585

    PubMed  CAS  Google Scholar 

  • Wyler AR, Fetz EE, Ward A A Jr (1975) Firing patterns of epileptic and normal neurons in the chronic alumina focus in undrugged monkeys during different behavioral states. Brain Res 98: 1–20

    PubMed  CAS  Google Scholar 

References

  • Dunham NW, Miya TS (1957) A note on a simple apparatus for detecting neurological deficit in rats and mice. J Am Pharm Assoc 46: 208–209

    CAS  Google Scholar 

  • Irwin S (1968) Comprehensive observational assessment: a systematic, quantitative procedure for assessing the behavioral and physiological state of the mouse. Psychophar- macology (Berlin) 13: 222–257

    CAS  Google Scholar 

  • Lockard JS (1980) A primate model of clinical epilepsy: mechanism of action through quantification of the therapeutic effects. In: Lockard JS, Ward AA (eds) Epilepsy: a window to brain mechanisms. Raven, New York, pp 11–49

    Google Scholar 

  • Swinyard EA (1972) Assay of antiepileptic drug activity in experimental animals: standard tests. In: Mercier J (ed) Anticonvulsant drugs. International encyclopedia of pharmacology and therapeutics. Pergamon, Oxford, pp 47–653

    Google Scholar 

  • Swinyard EA, Brown WC, Goodman LS (1952) Comparative assays of antiepileptic drugs in mice and rats. J Pharmacol Exp Ther 106: 319–330

    PubMed  CAS  Google Scholar 

  • Woodbury DM (1980) Convulsant drugs: mechanisms of action. In: Glaser GH, Penry JK, Woodbury DM (eds) Antiepileptic drugs: mechanisms of action. Raven, New York, pp 249–303

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Koella, W.P., Gladding, G.D., Kupferberg, H.J., Swinyard, E.A. (1985). Animal Experimental Methods in the Study of Antiepileptic Drugs. In: Frey, HH., Janz, D. (eds) Antiepileptic Drugs. Handbook of Experimental Pharmacology, vol 74. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69518-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69518-6_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69520-9

  • Online ISBN: 978-3-642-69518-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics