Skip to main content

Hepatic Disposition and Elimination of Biliary Contrast Media

  • Chapter
Radiocontrast Agents

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 73))

Abstract

A variety of iodinated organic compounds are used clinically for oral cholecystography and for intravenous cholangiography. The specific physiologic and biochemical factors responsible for establishing the preference of these contrast media (CM) for hepatic elimination are not well established. Much of the early information concerning these organic compounds used as CM has been published [1]. In addition several more recent review articles have appeared [2–6]. However, during the past few years, a significant amount of new information has been reported about the mechanism of hepatic transport of many of these biliary CM. In addition, strides have been made in our understanding of hepatic and biliary physiology. The purpose of this chapter is to provide a general discussion of hepatic and biliary physiology and to summarize the more recent information concerning the pharmacology and hepatic disposition of biliary CM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Knoefel PK (1971) Radiocontrast agents, vols 1 and 2. International encyclopedia of pharmacology and therapeutics. Pergamon, New York

    Google Scholar 

  2. Berk RN, Loeb PM, Goldberger LE (1974) Oral cholecystography with iopanoic acid. N Engl J Med 290:204–210

    PubMed  CAS  Google Scholar 

  3. Berk RN, Loeb PM (1976) Pharmacology and physiology of the biliary radiographic contrast materials. Sem Roentgenol 11:147–157

    CAS  Google Scholar 

  4. Loeb PM, Berk RN (1977) Biliary contrast materials. In: Berk RN, Clemett AR (eds) Radiology of the gallbladder and bile ducts. Saunders, Philadelphia, pp 71–100

    Google Scholar 

  5. Berk RN, Loeb PM (1977) Contrast materials for oral cholecystography. In: Miller RE, Skucas J (eds) Radiographic contrast agents. University Park Press, Baltimore, pp 195–222

    Google Scholar 

  6. Berk RN, Loeb PM, Ellzey BA (1977) Contrast materials for intravenous cholangiography. In: Miller RE, Skucas J (eds) Radiographic contrast agents. University Park Press, Baltimore, pp 223–250

    Google Scholar 

  7. Kessel RG, Kardon RH (1979) Tissue and organs: a text-atlas of scanning electron microscopy. Freeman, San Francisco

    Google Scholar 

  8. Elias H, Sherrick JC (1969) Morphology of the liver. Academic, New York

    Google Scholar 

  9. Miyai K, Abraham J, Linthicum SM, Wagner R (1976) Scanning electron microscopy of hepatic ultrastructure. Lab Invest 35:369–376

    PubMed  CAS  Google Scholar 

  10. Rappaport AM (1958) The structural and functional unit in the human liver (liver acinus). Anat Rec 130:673–690

    PubMed  CAS  Google Scholar 

  11. Rappaport AM (1963) Acinar units and the pathophysiology of the liver. In: Rouiller (ed) The liver: morphology, biochemistry, physiology, vol 1. Academic, New York, pp 265–328

    Google Scholar 

  12. Rappaport AM, Borowy ZJ, Lougheed WM, Lotto WN (1954) Subdivision of hexagonal liver lobules into a structural and functional unit. Anat Rec 119:11–34

    PubMed  CAS  Google Scholar 

  13. Mall FP (1906) A study of the structural unit of the liver. Am J Anat 5:227–308

    Google Scholar 

  14. Elias H (1952) The geometry of the cell shape and the adaptive evolution of the liver. J Morphology 91:377–405

    Google Scholar 

  15. Motta P, Fumagalli G (1975) Structure of rat bile canaliculi as revealed by scanning electron microscopy. Anat Rec 182:499–513

    PubMed  CAS  Google Scholar 

  16. Numchausky VA, Layden TJ, Boyer JL (1977) Effects of chronic choleretic infusions of bile acids on the membrane of the bile canaliculus. Lab Invest 36:259–267

    Google Scholar 

  17. Katsumi M, Richardson A, Mayr W, Javitt N (1977) Subcellular pathology of rat liver in cholestasis and choleresis induced by bile salts. Lab Invest 36:249–258

    Google Scholar 

  18. Grisham JW, Nopanitaya W, Compango J, Nagel AEH (1975) Scanning electron microscopy of normal rat liver: surface structure of its cell and tissue components. Am J Anat 144:295–322

    PubMed  CAS  Google Scholar 

  19. Porter KR, Bonneville MA (1964) An introduction to the fine structure of cells and tissues. Lea and Febiger, Philadelphia

    Google Scholar 

  20. Palade GE (1953) An electron microscope study of the mitochondrial structure. J Histochem Cytochem 1:188–211

    PubMed  CAS  Google Scholar 

  21. Palade GE, Siekevitz P (1956) Liver microsomes; an integrated morphological and biochemical study. J Biophys Biochem Cytol 2:171–200

    PubMed  CAS  Google Scholar 

  22. Fawcett DW (1955) Observations on the cytology and electron microscopy of hepatic cells. J Natl Cancer Inst 15:1475–1503

    PubMed  CAS  Google Scholar 

  23. Novikoff AB, Essner E (1960) The liver cell. Am J Med 29:102–131

    PubMed  CAS  Google Scholar 

  24. Ashford TP, Porter KR (1962) Cytoplasmic components in hepatic cell lysosomes. J Cell Biol 12:198–200

    PubMed  CAS  Google Scholar 

  25. Mueller JC, Jones AL, Long JA (1972) Topographic and subcellular anatomy of the guinea pig gallbladder. Gastroenterology 63:856–868

    PubMed  CAS  Google Scholar 

  26. Wheeler HO (1968) Water and electrolytes in bile. In: Code CF (ed) Handbook of physiology, sect 6, alimentary canal. Am Physiology Soc, Washington, D.C., pp 2409–2431

    Google Scholar 

  27. Barnhart JL, Combes B (1975) Characteristics common to choleretic increments of bile induced by theophylline, glucagon and SQ 20009 in the dog. Proc Soc Exp Biol Med 150:591–596

    PubMed  CAS  Google Scholar 

  28. Cook DL, Lawler CA, Calvin LD, Green DM (1952) Mechanism of bile formation. Am J Physiol 171:62–74

    PubMed  CAS  Google Scholar 

  29. Rheinhold JG, Wilson DW (1934) The acid-base composition of hepatic bile. Am J Physiol 107:378–387

    Google Scholar 

  30. Scratcherd T (1965) Electrolyte composition and control of biliary secretion in the cat and rabbit. In: Taylor W (ed) The biliary system. Blackwell, Oxford, pp 515–529

    Google Scholar 

  31. Thureborn E (1962) Human hepatic bile. Composition changes due to altered enterohepatic circulation. Acta Chir Scand [Suppl] 303:1–63

    Google Scholar 

  32. Klaassen CD (1971) Does bile acid secretion determine canalicular bile production in rats? Am J Physiol 220:667–673

    PubMed  CAS  Google Scholar 

  33. Wheeler HO, Ramos OL (1960) Determinants of the flow and composition of bile in the unanesthetized dog during constant infusions of sodium taurocholate. J Clin Invest 39:161–170

    PubMed  CAS  Google Scholar 

  34. Harrison FA (1962) Bile secretion in the sheep. J Physiol 162:212–224

    PubMed  CAS  Google Scholar 

  35. Preisig R, Cooper HC, Wheeler HO (1962) The relationship between taurocholate secretion rate and bile production in the unanesthetized dog during cholenergic blockade and during secretin administration. J Clin Invest 41:1152–1162

    PubMed  CAS  Google Scholar 

  36. Forker EL (1977) Mechanisms of hepatic bile formation. Ann Rev Physiol 39:323–347

    CAS  Google Scholar 

  37. Barnhart JL, Berk RN, Combes B (1980) Changes in bile flow and composition induced by radiographic contrast materials. Invest Radiol 15:5116–5121

    Google Scholar 

  38. Erlinger S, Dhumeaux D (1974) Mechanisms and control of bile water and electrolytes. Gastroenterology 66:281–304

    PubMed  CAS  Google Scholar 

  39. Berk RN, Loeb PM, Cobo-Frenkel A, Barnhart JL (1976) Saturation kinetics and choleretic effects of iodoxamate and iodipamide. An Experimental study in dogs. Radiology 119:529–535

    PubMed  CAS  Google Scholar 

  40. Barnhart JL, Combes B (1978) Characterization of SC 2644-induced choleresis in the dog. Evidence for canalicular bicarbonate secretion. J Pharmacol Exp Ther 206:190–197

    PubMed  CAS  Google Scholar 

  41. Klaassen CD (1972) Species differences in the choleretic response to bile salts. J Physiol 224:259–269

    PubMed  CAS  Google Scholar 

  42. Cornelius CE (1976) Rates of choleresis in various species. Digestive Dis 21:426–428

    CAS  Google Scholar 

  43. Boyer JL, Bloomer JR (1974) Canalicular bile secretion in man. Studies utilizing the biliary clearance of (14-C) mannitol. J Clin Invest 54:773–781

    PubMed  CAS  Google Scholar 

  44. Boyer JL (1971) Canalicular bile formation in the isolated perfused rat liver. Am J Physiol 221:1156–1163

    PubMed  CAS  Google Scholar 

  45. Erlinger S, Dhumeaux D, Berthelot P, Durmot M (1970) Effect of inhibitors of sodium transport on bile formation in the rabbit. Am J Physiol 219:416–422

    PubMed  CAS  Google Scholar 

  46. King JE, Schoenfield LG (1971) Choleresis induced by sodium taurocholate in isolated hamster liver. J Clin Invest 50:2305–2312

    PubMed  CAS  Google Scholar 

  47. Barnhart JL, Combes B (1978) Erythritol and mannitol clearance with taurocholate and secretin-induced cholereses. Am J Physiol 234:E146–E156

    PubMed  CAS  Google Scholar 

  48. Wheeler HO, Ross ED, Bradley SE (1968) Canalicular bile production in dogs. Am J Physiol 214:866–874

    PubMed  CAS  Google Scholar 

  49. Balabaud CP, Kron KA, Gumucio JJ (1977) The assessment of the bile salt nonde-pendent fraction of canalicular bile water in the rat. J Lab Clin Med 89:393–399

    PubMed  CAS  Google Scholar 

  50. Baker AL, Word RAB, Moosa AR, Boyer JL (1979) Sodium taurocholate modifies the bile acid independent fraction of canalicular flow in the rhesus monkey. J Clin Invest 64:312–320

    PubMed  CAS  Google Scholar 

  51. Frizzell R, Field M, Schultz S (1979) Sodium-coupled chloride transport by epithelial tissues. Am J Physiol 236:F1–F8

    PubMed  CAS  Google Scholar 

  52. Diamond JM (1971) Standing-gradient model of fluid transport in epithelia. Fed Proc 30:6–13

    PubMed  CAS  Google Scholar 

  53. Sweadner K, Goldin S (1980) Active transport of sodium and potassium ions: mechanism, function, and regulation. N Engl J Med 302:777–783

    PubMed  CAS  Google Scholar 

  54. Layden TM, Boyer JL (1976) The effect of thyroid hormone on bile salt-independent bile flow and Na+,K+-ATPase activity in liver plasma membranes enriched in bile canaliculi. J Clin Invest 57:1009–1018

    PubMed  CAS  Google Scholar 

  55. Reichen J, Paumgartner G (1977) Relationship between bile flow and Na+,K + -adenosine-triphosphotase in liver plasma membranes enriched in bile canaliculi. J Clin Invest 60:429–434

    PubMed  CAS  Google Scholar 

  56. Sneller M, Crawford S, Miner PB Jr (1980) Dissociation of bile salt independent bile flow (BSIBF) and hepatic (Na+-K+)ATPase activity induced by spironolactone and canrenone. Gastroenterology 79:1055

    Google Scholar 

  57. Preisig R, Cooper HL, Wheeler HO (1962) The relationship between taurocholate secretion rate and bile production in the unanesthetized dog during cholinergic blockage and during secretin administration. J Clin Invest 41:1152–1162

    PubMed  CAS  Google Scholar 

  58. Forker EL (1967) Two sites of bile formation as determined by mannitol and erythritol clearance in the guinea pig. J Clin Invest 46:1189–1195

    PubMed  CAS  Google Scholar 

  59. Wheeler HO, Mancusi-Ungaro PL (1967) Role of bile ducts during secretin choleresis in dogs. Am J Physiol 210:1153–1159

    Google Scholar 

  60. Nicholls RJ (1979) Biliary mannitol clearance and bile salt output before and during secretin choleresis in the dog. Gastroenterology 76:983–987

    PubMed  CAS  Google Scholar 

  61. Fisher MM, Phillips MJ (1979) Cytoskeleton of the hepatocyte. In: Popper H, Schaffner F (eds) Progress in liver diseases, vol VI. Grune and Stratton, New York, pp 105–121

    Google Scholar 

  62. Brenner SL, Korn ED (1979) Substoichiometric concentrations of cytochalasin D inhibit actin polymerization. Additional evidence for an F-actin trendmill. J Biol Chem 254:9982–9985

    PubMed  CAS  Google Scholar 

  63. Dubin M, Maurice M, Feldmann G, Erlinger S (1978) Phalloidin-induced cholestasis in the rat: relation to changes in microfilaments. Gastroenterology 75:450–455

    PubMed  CAS  Google Scholar 

  64. Erlinger S (1980) Microfilaments, microtubules, and their role in the pathophysiology of cholestasis. The American Association for the Study of Liver Disease. Postgraduate course “Cholestasis. Update on pathophysiology, diagnosis and management,” 1980

    Google Scholar 

  65. Stein O, Sanger L, Stein Y (1974) Colchicine-induced inhibition of lipoprotein and protein secretion into the serum and lack of interference with secretion of biliary phospholipids and cholesterol by the rat liver in vivo. J Cell Biol 62:90–103

    PubMed  CAS  Google Scholar 

  66. Gregory DH, Vlahcevic ZR, Prugh MF, Swell L (1978) Mechanism of secretion of biliary lipids: role of microtubular system in hepatocellular transport of biliary lipids in the rat. Gastroenterology 74:93–100

    PubMed  CAS  Google Scholar 

  67. Wilkinson GR, Shand DG (1975) A physiological approach to hepatic drug clearance. Clin Pharmacol Therap 18:377–390

    CAS  Google Scholar 

  68. Keiding S, Andreasen PB (1979) Hepatic clearance measurements and pharmacokinetics. Pharmacology 19:105–110

    PubMed  CAS  Google Scholar 

  69. Rane A, Wilkinson GR, Shand DG (1977) Prediction of hepatic extraction ratio from in vitro measurement of intrinsic clearance. J Pharmacol Exp Ther 200:420–424

    PubMed  CAS  Google Scholar 

  70. Hoppe JO, Archer S (1951) Aryl triiodo alkanoic acid derivatives as cholecystographic media. Fed Proc 10:310

    Google Scholar 

  71. Wise RE (1962) Intravenous cholangiography. Thomas, Springfield

    Google Scholar 

  72. Levine WG (1978) Biliary excretion of drugs and other xenobiotics. Ann Rev Pharmacol Toxicol 18:81–96

    CAS  Google Scholar 

  73. Lasser EC (1966) Pharmacodynamics of biliary contrast media. Radiol Clin North Am4:511–519

    Google Scholar 

  74. Janes JO, Dietschy JM, Berk RN, Loeb PM, Barnhart JL (1979) Determination of the rate of intestinal absorption of oral cholecystographic agents in the dog jejunum. Gastroenterology 76:970–977

    PubMed  CAS  Google Scholar 

  75. Janes JO, Berk RN, Barnhart JL (1980) Observations on the intestinal absorption of intact Telepaque glucuronide. Gastroint Radiol 5:83–84

    Google Scholar 

  76. Cooke WJ, Cooke L (1977) Biliary excretion of iopanoate glucuronide by the rat. Drug Metab Dispos 5:368–376

    PubMed  CAS  Google Scholar 

  77. Hogben CAM, Tocco DJ, Brodie BB, Schanker LS (1959) On the mechanism of the intestinal absorption of drugs. J Pharmacol Exp Ther 125:275–282

    PubMed  CAS  Google Scholar 

  78. Jollow DJ, Brodie BB (1972) Mechanisms of drug absorption and of drug solution. Pharmacology 8:21–32

    PubMed  CAS  Google Scholar 

  79. Wilson FA, Dietschy JM (1972) Characterization of bile acid absorption across the unstirred water layer and brush border of the rat jejunum. J Clin Invest 51:3015–3025

    PubMed  CAS  Google Scholar 

  80. Goldberger LE, Berk RN, Lang JH, Loeb PM (1974) Biopharmaceutical factors influencing intestinal absorption of iopanoic acid. Invest Radiol 9:16–23

    PubMed  CAS  Google Scholar 

  81. Taketa RM, Berk RN, Lang JH, Lasser EC, Dunn CR (1972) The effect of pH on the intestinal absorption of Telepaque. Am J Roentgenol 114:767–722

    CAS  Google Scholar 

  82. Nelson JA, Moss AA, Golbert HI, Benet LZ, Amberg J (1973) Gastrointestinal absorption of iopanoic acid. Invest Radiol 8:1–8

    PubMed  CAS  Google Scholar 

  83. Fordtran JA, Locklear TW (1966) Ionic content of small bowel fluid. Am J Dig Dis 11:503–521

    PubMed  CAS  Google Scholar 

  84. Carey MC, Small DM (1972) Micelle formation by bile salts: physical, chemical and thermodynamic considerations. Arch Intern Med 130:506–525

    PubMed  CAS  Google Scholar 

  85. Go VA, Hofmann AF, Summerskil WH (1970) Pancreozymin bioassay in man based on pancreatic enzyme secretion: potency of specific amino acids and other digestive products. J Clin Invest 49:1558–1564

    PubMed  CAS  Google Scholar 

  86. Ertran A, Brooks FP, Ostrow JD, Arvan DA, Williams CN, Cerda JJ (1971) Effect of jejunal amino acid perfusion of exogenous cholecystokinin on the exocrine pancreatic and biliary secretions in man. Gastroenterology 61:686–692

    Google Scholar 

  87. Evens G, Schroer C, Koehler PR (1971) Importance of contrast absorption in evaluation of nonvisualized gallbladder. Radiology 98:365–372

    PubMed  CAS  Google Scholar 

  88. Westergaard H, Dietschy JM (1974) Delineation of the dimensions and permeability characteristics of the two major diffusion barriers to passive mucosal uptake in the rabbit intestine. J Clin Invest 54:718–732

    PubMed  CAS  Google Scholar 

  89. Wilson FA, Dietschy JM (1974) The intestinal unstirred layer: its surface area and effect on active transport kinetics. Biochim Biophys Acta 363:112–126

    PubMed  CAS  Google Scholar 

  90. Dietschy JM, Westergaard H (1975) The effect of unstirred water layers on various transport processes in the intestine. In: Csaky TZ (ed) Intestinal absorption and malabsorption. Raven, New York, p 197

    Google Scholar 

  91. Dietschy JM, Sallee VL, Wilson FA (1971) Unstirred water layers and absorption across the intestinal mucosa. Gastroenterology 61:932–934

    PubMed  CAS  Google Scholar 

  92. Loeb PM, Berk RN, Janes JO, Perkin L (1978) The effect of fasting on gallbladder opacification during oral cholecystography. A controlled study in normal volunteers. Radiology 126:395–401

    PubMed  CAS  Google Scholar 

  93. Goldberg HI, Lin SK, Thoeni R, Moss AA, Brito AC (1977) Recirculation of iopanoic acid after conjugation in the liver. Invest Radiol 12:537–541

    PubMed  CAS  Google Scholar 

  94. Thoeni RF, Goldberg HI, Moss AA, Lin SK, Brito AC (1978) Observation of the metabolism of iopanoyl (Telepaque) glucuronide in dogs treated with antibiotics. Invest Radiol 13:241–246

    PubMed  CAS  Google Scholar 

  95. Cox SR, Barnhart JL (1978) Unpublished observations

    Google Scholar 

  96. Jacobson ED, Prior JT, Faloon WW (1960) Malabsorptive syndrome induced by neomycin: morphologic alterations in the jejunal mucosa. J Lab Clin Med 56:245–250

    PubMed  CAS  Google Scholar 

  97. Dobbins WO, Merrero BA, Manabach CM (1968) Morphologic alterations associated with neomycin induced malabsorption. Am J Med Sci 255:63–75

    PubMed  Google Scholar 

  98. Jacobson ED, Faloon WW (1961) Malabsorptive effects of neomycin in commonly used doses. JAMA 175:187–196

    PubMed  CAS  Google Scholar 

  99. Orr JM, Benet LZ (1975) The effect of fasting on the role of intestinal absorption in rats: preliminary studies. Dig Dis Sci 20:858–865

    CAS  Google Scholar 

  100. Lang JH, Lasser EC (1967) Binding of roentgenographic contrast media to serum albumin. Invest Radiol 2:396–400

    PubMed  CAS  Google Scholar 

  101. Cooke WJ, Mudge GH (1975) Biliary and urinary excretion of iopanoic acid in the dog. Invest Radiol 10:25–34

    PubMed  CAS  Google Scholar 

  102. Lin SK, Moss AA, Riegelman S (1977) Iodipamide kinetics: capacity-limited biliary excretion with simultaneous pseudo-first-order renal excretion. J Pharm Sci 66:1670–1673

    PubMed  CAS  Google Scholar 

  103. Fehske KJ, Miller WE (1978) The interaction of iopanoic and iophenoxic acids with human serum albumin. Res Comm Chem Path Pharmacol 19:119–127

    CAS  Google Scholar 

  104. Mudge GH, Strewler GS, Desbiens N, Berndt WO, Wade DN (1971) Excretion and distribution of iophenoxic acid. J Pharmacol Exp Ther 178:159–172

    PubMed  CAS  Google Scholar 

  105. Berndt WO, Mudge GH, Wade DH (1971) Hepatic slice accumulation of iopanoic and iophenoxic acids. J Pharmacol Exp Ther 179:85–90

    PubMed  CAS  Google Scholar 

  106. Sudlow G, Birkett DH, Wade DN (1973) Spectroscopic techniques in the study of protein binding: the use of l-anilino-8-naphthalene-sulfonate as a fluorescent probe for the study of the interactions of iophenoxic and iopanoic acids to human serum albumin. Mol Pharmacol 9:649–657

    PubMed  CAS  Google Scholar 

  107. Vallner JJ (1977) Binding of drugs by albumin and plasma protein. J Pharm Sci 66:447–465

    PubMed  CAS  Google Scholar 

  108. Loeb PM, Berk RN, Janes JO, Perkin L, Moore J (1978) The effect of fasting on gallbladder opacification shunting oral cholecystography: a control study in normal volunteers. Radiology 126:395–401

    PubMed  CAS  Google Scholar 

  109. Hunter TB, Fon GT, Berk RN, Capp MP (1981) Concentration and excretion of contrast agents during oral cholecystography as measured by computer tomography in dogs. Invest Radiol Gastrointestinal Radiol 6:349–352

    CAS  Google Scholar 

  110. Shand DG, Rangno RE, Evans GH (1972) The disposition of propranolol. II. Hepatic elimination in the rat. Pharmacology 8:344–352

    PubMed  CAS  Google Scholar 

  111. Song CS, Beranbaum ER, Rothschild MA (1976) The role of serum albumin in the hepatic excretion of iodipamide. Invest Radiol 11:39–44

    PubMed  CAS  Google Scholar 

  112. Grauz H, Schmid R (1971) Reciprocal relation between plasma albumin level and hepatic sulfobromophthalein removal. N Engl J Med 284:1403–1406

    Google Scholar 

  113. Barnhart JL, Clarenburg R (1973) Factors determining clearance of bilirubin in perfused rat liver. Am J Physiol 225:497–507

    PubMed  CAS  Google Scholar 

  114. Cornelius C, Ben-Ezzer J, Arias IM (1967) Binding of sulfobromophthalein sodium (BSP) and other organic anions by isolated hepatic cell plasma membranes in vitro. Proc Soc Exp Biol Med 124:665–667

    PubMed  CAS  Google Scholar 

  115. Song CS (1969) Plasma membrane of rat liver. Isolation and enzymatic characterization of a fraction rich in bile canaliculi. J Cell Biol 41:124–132

    PubMed  CAS  Google Scholar 

  116. Boyer JL, Reno D (1975) Properties of (Na++K+)-activated ATPase in rat liver plasma membranes enriched with bile canaliculi. Biochim Biophys Acta 401:59–72

    PubMed  CAS  Google Scholar 

  117. Wisher MH, Evans WH (1975) Functional polarity of the rat hepatocyte surface membrane. Isolation and characterization of plasma-membrane subfractions from the blood-sinusoidal, bile-canalicular and contiguous surfaces of the hepatocyte. Biochem J 146:375–388

    PubMed  CAS  Google Scholar 

  118. Goresky CA (1965) The hepatic uptake and excretion of sulfobromophthalein and bilirubin. Can Med Assoc J 92:851–857

    PubMed  CAS  Google Scholar 

  119. Scharschmidt BF, Waggoner JG, Berk PD (1975) Hepatic organic anion uptake in the rat. J Clin Invest 56:1280–1292

    PubMed  CAS  Google Scholar 

  120. Vonk RJ (1978) Transport of drugs in isolated hepatocytes. The influence of bile salts. Biochem Pharmacol 27:397

    PubMed  CAS  Google Scholar 

  121. Bolt RJ, Dillon R, Pollard HM (1961) Interference with bilirubin excretion by a gallbladder dye: report of a case. N Engl J Med 265:1043–1044

    PubMed  CAS  Google Scholar 

  122. Goergen T, Goldberger LE, Berk RN (1974) The combined use of oral cholecystopaque media and iodipamide. Radiology 111:543–548

    PubMed  CAS  Google Scholar 

  123. Berry MN, Friend DS (1969) High-yield preparation of isolated rat liver parenchymal cells. A biochemical and fine structural study. J Cell Biol 43:506–520

    PubMed  CAS  Google Scholar 

  124. Schwarz LR, Burr R, Schwenk M, Pfaff E, Greim H (1975) Uptake of taurocholic acid into isolated rat-liver cells. Eur J Biochem 55:617–623

    PubMed  CAS  Google Scholar 

  125. Anwer MS, Korker R, Hegner D (1975) Bile acids secretion and synthesis by isolated rat hepatocytes. Biochem Biophys Res Commun 64:603–609

    PubMed  CAS  Google Scholar 

  126. Anwer MS, Dorker R, Hegner D (1976) Cholic acid uptake into isolated hepatocytes. Hoppe-Seylers Z Physiol Chem 375:1477–1486

    Google Scholar 

  127. Schwenk M, Burr R, Schwarz L, Pfaff E (1976) Uptake of bromosulphthalein by isolated liver cells. Eur J Biochem 64:189–197

    CAS  Google Scholar 

  128. van Bezooijen CFA, Grell T, Knook DL (1976) Bromosulfophthalein uptake by isolated liver parenchymal cells. Biochem Biophys Res Commun 69:354–361

    PubMed  Google Scholar 

  129. Stege TE, Loose LD, DiLuzio NR (1975) Comparative uptake of sulphobromophthalein by isolated Kupffer and parenchymal cells. Proc Soc Exp Biol Med 149:455–461

    PubMed  CAS  Google Scholar 

  130. Eaton DL, Klaasen CD (1978) Carrier-mediated transport of oubain in isolated hepatocytes. J Pharmacol Exp Ther 205:480–488

    PubMed  CAS  Google Scholar 

  131. Breuer H, Rao ML, Rao GS (1974) Uptake of steroid hormones by isolated rat liver cells. J Steroid Biochem 5:359

    Google Scholar 

  132. Rao ML, Rao GS, Holler M, Goreuer H, Schattenberg PJ, Stein WD (1976) A phenomenon indicative of carrier-mediation and simple diffusion. Hoppe-Seylers Z Physiol Chem 367:573–584

    Google Scholar 

  133. LeCam A, Freychet P (1977) Neutral amino acid transport. Characterization of the A and L systems in isolated rat hepatocytes. J Biol Chem 252:148–156

    CAS  Google Scholar 

  134. Bissell DM, Hammaker L, Meyer UA (1973) Parenchymal cells from adult rat liver in nonproliferating monolayer culture. J Cell Biol 59:722–734

    PubMed  CAS  Google Scholar 

  135. Guzelian PS, Bissell DM, Meyer UA (1977) Drug metabolism in adult rat hepatocytes in primary monolayer culture. Gastroenterology 72:1232–1239

    PubMed  CAS  Google Scholar 

  136. Kletizien RF, Pariza MW, Becker JE, Potter VR, Butcher FR (1976) Induction of amino-acid transport in primary cultures of adult rat liver parenchymal cells by insulin. J Biol Chem 251:301–3020

    Google Scholar 

  137. Hatoff DE, Hardison WG (1979) Induced synthesis of alakaline phosphatase by bile salts in rat liver cell culture. Gastroenterology 77:1062–1067

    PubMed  CAS  Google Scholar 

  138. Barnhart JL, Hardison WG, Witt BL, Berk RN (1983) Uptake of iopanoic acid by isolated rat hepatocytes in primary culture. Am J Physiol 244:G630–G636

    PubMed  CAS  Google Scholar 

  139. Iga T, Eaton PA, Klaassen CD (1979) Uptake of unconjugated bilirubin by isolated rat hepatocytes. Am J Physiol 236:C9–C14

    PubMed  CAS  Google Scholar 

  140. Ockner R, Weisiger R, LysenkO N (1980) Specific and saturable binding of 125I-al-bumin to rat hepatocytes: further evidence for a surface membrane albumin receptor. Gastroenterology 79:1041

    Google Scholar 

  141. Weisiger R, Jollan J, Ackner R (1980) An albumin receptor on the liver cell may mediate hepatic uptake of sulfobromophthalein and bilirubin: bound ligandin, not free, is the major uptake determinant. Gastroenterology 79:1065

    Google Scholar 

  142. McChesney EW, Hoppe JO (1956) Observations on the absorption and excretion of the glucuronide of iopanoic acid by the cat. Arch Int Pharmacodyn Ther 105:306–312

    PubMed  CAS  Google Scholar 

  143. McChesney EW, Banks WF (1965) Urinary excretion of three oral cholecystographic agents in man. Proc Soc Exp Biol Med 119:1027–1030

    PubMed  CAS  Google Scholar 

  144. McChesney EW, Hoppe JO (1954) Observations of the metabolism of iopanoic acid by the cat. Arch Int Pharmacodyn Ther 99:127–140

    PubMed  CAS  Google Scholar 

  145. Gartner LM, Arias IM (1969) Formation, transport, metabolism and excretion of bilirubin. N Engl J Med 280:1339–1345

    PubMed  CAS  Google Scholar 

  146. Schmid R (1973) Bilirubin metabolism in man. N Engl J Med 287:703–709

    Google Scholar 

  147. Carbone JV, Grodsky GM (1957) Constitutional nonhemolytic hyperbilirubinemia in the rat: defect of bilirubin conjugation. Proc Soc Exp Biol Med 94:461–463

    PubMed  CAS  Google Scholar 

  148. Arias IM (1959) A defect in microsomal function in nonhemolytic acholuric jaundice. J Histochem Cytochem 7:250–252

    PubMed  CAS  Google Scholar 

  149. Barnhart JL, Witt BL (1978) Unpublished data

    Google Scholar 

  150. Bock KW, Josting D, Lilienblum W, Pfeil H (1979) Purification of rat-liver microsomal UDP + glucuronyltransferase. Separation of two enzyme forms inducible by 3-methylcholanthrene or phenobarbital. Eur J Biochem 98:19–26

    PubMed  CAS  Google Scholar 

  151. Matsui M, Nagai F, Aoyagi S (1979) Strain differences in rat liver UDP-glucuronyl-transferase activity towards androsterone. Biochem J 179:483–487

    PubMed  CAS  Google Scholar 

  152. Bock KW, V Clausbruch UC, Ottenswalder H (1978) UDP-glueuronyl transferase in perfused rat liver and in microsomes: V. Studies with Gunn rats. Biochem Pharmacol 27:369–371

    PubMed  CAS  Google Scholar 

  153. Lucier GW, McDaniel OS, Hook GER (1975) Nature of the enhancement of hepatic uridine diphosphate glucuronyltransferase activity by 2,3,7,8-tetracholodibenzo-p-dioxine in rats. Biochem Pharmacol 24:325–334

    PubMed  CAS  Google Scholar 

  154. Barnhart JL, Berk RN, Czuleger PC (1979) Biliary excretion of three cholecystographic contrast agents in dogs: iocetamic acid, iopronic acid, and iosumetic acid. Invest Radiol 14:79–87

    PubMed  CAS  Google Scholar 

  155. Barnhart JL, Combes B (1976) Biliary excretion of dye in dogs infused with BSP or its glutathione conjugate. Am J Physiol 231:399–407

    PubMed  CAS  Google Scholar 

  156. Barnhart JL, Parkhill BJ, Cobo-Frenkel A, Berk RN, Loeb PM (1978) Iopanoate glucuronide: procedure for its isolation and purification and pharmacokinetics of its biliary excretion. Invest Radiol 13:347–355

    PubMed  CAS  Google Scholar 

  157. Loeb PM, Berk RN, Feld GK, Wheeler HO (1975) Biliary excretion of iodipamide. Gastroenterology 68:554–562

    PubMed  CAS  Google Scholar 

  158. Berk RN, Loeb PM, Cobo-Frenkel A, Barnhart JL (1976) Saturation kinetics and choleretic effects of iodoxamate and iodipamide — an experimental study in dogs. Radiology 119:529–535

    PubMed  CAS  Google Scholar 

  159. Loeb PM, Barnhart JL, Berk RN (1979) Iotroxamide — a new intravenous Cholangiographic agent. Comparison with iodipamide and the effect of bile salts. Radiology 125:323–329

    Google Scholar 

  160. Nelson JA, Staubus AE, Riegelman S (1975) Saturation kinetics of iopanoate in the dog. Invest Radiol 10:371–377

    PubMed  CAS  Google Scholar 

  161. Rosati G, Schiantaretti P (1970) Biliary excretion of contrast media. Invest Radiol 5:232–243

    PubMed  CAS  Google Scholar 

  162. Berk RN, Loeb PM, Cobo-Frenkel A, Barnhart JL (1977) The biliary and urinary excretion of sodium tyropanoate and sodium ipodate in dogs. Invest Radiol 12:85–95

    PubMed  CAS  Google Scholar 

  163. Loeb PM, Berk RN, Cobo-Frenkel A, Barnhart JL (1976) The biliary and urinary excretion of ioglycamide in dogs. Invest Radiol 11: 449–458

    PubMed  CAS  Google Scholar 

  164. Berk RN, Barnhart JL, Nazareno G, Witt BL (1981) The potential of iosulamide meglumine as a contrast material for intravenous cholangiography. Invest Radiol 16:240–244

    PubMed  CAS  Google Scholar 

  165. Berk RN, Loeb PM, Cobo-Frenkel A, Barnhart JL (1976) The biliary and urinary excretion of iopanoic acid. Pharmaco-kinetics, influence of bile salts and choleretic effect. Radiology 120:41–48

    PubMed  CAS  Google Scholar 

  166. Berk RN, Goldberger LE, Loeb PM (1974) The role of bile salts in the hepatic excretion of iopanoic acid. Invest Radiol 9:7–15

    PubMed  CAS  Google Scholar 

  167. Moss AA, Amberg JR, Jones PS (1972) Relationship of bile salts and bile flow to biliary excretion of iopanoic acid. Invest Radiol 7:11–15

    PubMed  CAS  Google Scholar 

  168. Dunn CR, Berk RN (1972) The pharmacokinetics of Telepaque metabolism: the relation of blood concentration and bile flow to the rate of hepatic excretion. AJR 114:758–766

    CAS  Google Scholar 

  169. Loeb PM, Barnhart JL, Berk RN (1978) The dependence of the biliary excretion of iopanoic acid on bile salts. Gastroenterology 74:174–181

    PubMed  CAS  Google Scholar 

  170. Goresky CA, Haddad HH, Kluger WS, Nadeau BE, Bach GG (1974) The enhancement of maximal bilirubin excretion with taurocholate-induced increments in bile flow. An J Physiol Pharmacol 52:389–403

    CAS  Google Scholar 

  171. Barnhart JL, Berk RN (1979) Unpublished observations

    Google Scholar 

  172. Forker EL (1977) Mechanisms of hepatic bile formation. Annual Rev Physiol 39:323–347

    PubMed  CAS  Google Scholar 

  173. Berk RN, Dunn CR (1972) The effects of secretion on the hepatic excretion of Telepaque. Radiology 103:585–587

    PubMed  CAS  Google Scholar 

  174. Carey MC, Small DM (1972) Micelle formation by bile salts. Physical-chemical and thermodynamic considerations. Arch Intern Med 30:506–527

    Google Scholar 

  175. Feld GK, Loeb PM, Berk RN (1975) The choleretic effects of iodipamide. J Clin Invest 55:528–535

    PubMed  CAS  Google Scholar 

  176. Benet S, Delage Y, Erlinger S (1979) Influence of taurocholate, taurochenodeoxyetiolate, and taurodehydrocholate on sulfobromophthalein transport in bile. Am J Physiol 236:E10–E14

    Google Scholar 

  177. Delage Y, Dumont M, Erlinger S (1976) Effect of glycodihydrofusate on sulfobromophthalein transport maximum in the hamster. Am J Physiol 231:1875–1878

    PubMed  CAS  Google Scholar 

  178. Scharschmidt BF, Schmid R (1978) The micellar sink. A quantitative assessment of the association of organic anions with mixed micelles and other macromolecular aggregates in rat bile. J Clin Invest 62:1122–1131

    PubMed  CAS  Google Scholar 

  179. Vonk RJ, Jekel P, Meijer DKF (1975) Choleresis and hepatic transport mechanisms. II. Influence of bile salt choleresis and biliary micelle binding on biliary excretion of various organic anions. Naunyn Schmiedebergs Arch Pharmacol 290:375–387

    PubMed  CAS  Google Scholar 

  180. Gibson GE, Forker EL (1974) Canalicular bile flow and bromosulfophthalein transport maximum: the effect of a bile salt independent choleretic, SC 2644. Gastroenterology 66:1046–1053

    PubMed  CAS  Google Scholar 

  181. Forker EL (1977) Canalicular anion transport. In: Berk PD, Berlin NI (eds) Chemistry and physiology of bile pigments. DHEW Publication Number 77–1100. US Government Printing Office, Washington, pp 383–389

    Google Scholar 

  182. Scharschmidt BF (1980) Secretion of organic anions and bile acids: possible role of macromolecular aggregates in bile (the micellular sink). From postgraduate course. The American Association for the Study of Liver Disease, Chicago

    Google Scholar 

  183. Barnhart JL, Berk RN, Janes JO, Witt BL (1980) Isolation, hepatic distribution and intestinal absorption of the glucuronide metabolite of iopanoic acid. Invest Radiol 15:5109–5115

    Google Scholar 

  184. Staubus AE, Berk RN, Loeb PM, Barnhart JL (1978) Saturation kinetics of iocetamic acid: evaluation of indirect pharmacokinetic techniques and comparison with iopanoic acid. Invest Radiol 13:85–92

    PubMed  CAS  Google Scholar 

  185. Barnhart JL, Hardison WG, Witt BL, Berk RN (1983) Uptake of iopanoic acid by isolated rat hepatocytes in primary culture. Am J Physiol 244:G630–G636

    PubMed  CAS  Google Scholar 

  186. Whelan G, Combes B (1971) Competition by unconjugated and conjugated sulfobromophthalein sodium (BSP) for transport into bile. Evidence for a single excretory system. J Lab Clin Med 78:230–244

    PubMed  CAS  Google Scholar 

  187. Smith RL (1973) The excretory function of bile. Wiley, New York

    Google Scholar 

  188. Hirom PC, Millburn P, Smith RL, Williams RT (1972) Molecular weight and chemical structures as factors in the biliary excretion of sulphonamides in the rat. Xenobiotica 2:205–214

    PubMed  CAS  Google Scholar 

  189. Hirom PC, Millburn P, Smith RC (1976) Bile and urine as complementary pathways for the excretion of foreign organic compounds. Xenobiotica 6:55–64

    PubMed  CAS  Google Scholar 

  190. Hirom PC, Millburn P, Smith RL, Williams RT (1972) Species variations in the threshold molecular-weight factor for the biliary excretion of organic anions. Biochem J 129:1071–1077

    PubMed  CAS  Google Scholar 

  191. Iga T, Awazu S, Nogami H (1971) Pharmacokinetic study of biliary excretion. III. Comparison of excretion behavior in xanthene dyes, fluorescein and bromsul-phthalein. Chem Pharm Bull (Tokyo) 19:297–303

    CAS  Google Scholar 

  192. Iga T, Awazu S, Hanano M, Nogami H (1970) Pharmacokinetic studies of biliary excretion. I. Comparison of excretion behavior in azo dyes and indigo carmine. Chem Pharm Bull (Tokyo) 18:2431–2437

    CAS  Google Scholar 

  193. Ryan AJ, Wright SE (1960) The excretion of some azo dyes in rat bile. J Pharm Pharmacol 13:492–495

    Google Scholar 

  194. Sovak M, Barnhart JL, Ranganathan R, Schulze PE, Siefert HM, Speck U (1981) Development and preliminary pharmacological evaluation of a zwitterionic oral cholecystographic agent. Invest Radiol 16:513–516

    PubMed  CAS  Google Scholar 

  195. Edholm P, Jacobson B (1959) Quantitative determination of iodine in vivo. Acta Radiol 52:337–346

    PubMed  CAS  Google Scholar 

  196. Ravin IS, Johnson CG, Riegel C (1932) Studies of gallbladder function. VII. The anion-cation content of hepatic and gallbladder bile. Am J Physiol 100:317–327

    Google Scholar 

  197. Grim E, Smith GA (1957) Water flux rates across dog gallbladder wall. Am J Physiol 191:555–560

    PubMed  CAS  Google Scholar 

  198. Diamond JM (1962) The mechanism of solute transport by the gallbladder. J Physiol 161:474–502

    PubMed  CAS  Google Scholar 

  199. Wheeler HO (1963) Transport of electrolytes and water across the wall of rabbit gallbladder. Am J Physiol 205:427–438

    PubMed  CAS  Google Scholar 

  200. Dietschy JM (1964) Water and solute movement across the wall of the everted rabbit gallbladder. Gastroenterology 47:395–408

    PubMed  CAS  Google Scholar 

  201. Frizzell RA, Feld M, Schultz SG (1979) Sodium-coupled chloride transport by epithelial tissues. Am J Physiol 236:F1–F8

    PubMed  CAS  Google Scholar 

  202. Frizzell RA, Duffey ME (1980) Chloride activities in epithelia. Fed Proc 39:2860–2864

    PubMed  CAS  Google Scholar 

  203. Dietschy JM, Moore EW (1964) Diffusion potentials and potassium distribution across the gallbladder wall. J Clin Invest 43:1551–1560

    PubMed  CAS  Google Scholar 

  204. Diamond JM (1971) Standing-gradient model of fluid transport in epithelia. Fed Proc 30:6–13

    PubMed  CAS  Google Scholar 

  205. Tormey J McD, Diamond JM (1967) The ultrastructural route of fluid transport in the rabbit gallbladder. J Gen Physiol 50:2031–2060

    PubMed  CAS  Google Scholar 

  206. Ivy AC, Oldberg E (1928) Hormone mechanism for gallbladder concentration and evacuation. Am J Physiol 86:599–613

    CAS  Google Scholar 

  207. Sandblom P, Boegtlin WL, Ivy AC (1935) The effect of cholecystokinin on the choledochoduodenal mechanism. Am J Physiol 113:175–180

    Google Scholar 

  208. Yau WM, Makhlouf GM, Edwards LE (1973) Mode of action of cholecystokinin and related peptides on gallbladder muscle. Gastroenterology 65:451–456

    PubMed  CAS  Google Scholar 

  209. Amer MS (1972) Studies with cholecystokinin in vitro. III. Mechanism of the effect on the isolated rabbit gallbladder strips. J Pharmacol Exp Ther 183:527–534

    PubMed  CAS  Google Scholar 

  210. Jaffee H, Wachowski TJ (1942) Relation of density of cholecystography shadows on the gallbladder to the iodine content. Radiology 38:43–51

    Google Scholar 

  211. Berk RN, Wheeler HO (1972) The role of water reabsorption by the gallbladder in the mechanism of nonvisualization at cholecystography. Radiology 103:37–40

    PubMed  CAS  Google Scholar 

  212. Ivy AC (1934) The physiology of the gallbladder. Physiol Rev 14:1–102

    CAS  Google Scholar 

  213. Berk RN, Lasser EC (1964) Altered concepts of the mechanism of nonvisualization of the gallbladder. Radiology 82:296–302

    PubMed  CAS  Google Scholar 

  214. Small DM, Beaudoin M, Shaffer E, O’Brian J, Williams L (1975) The gallbladder and the enterohepatic circulation. In: Advanced bile acid research. Stuttgart, Schattauer

    Google Scholar 

  215. Van Berge-Henegouwen GP, Hoffmann AF (1978) Nocturnal gallbladder storage and emptying in gallstone patients and healthy subjects. Gastroenterology 75:879–885

    PubMed  Google Scholar 

  216. Smith RL (1966) The biliary excretion and enterohepatic circulation of drugs and other organic compounds. Prog Drug Res 9:299–360

    CAS  Google Scholar 

  217. Plaa GL (1975) The enterohepatic circulation. In: Gillette JR, Mitchell JR (eds) Concepts in biochemical pharmacology 3. Berlin, Springer, p 130 (Handbook of experimental pharmacology, vol 28 pt 3)

    Google Scholar 

  218. Kent TH, Fischer LJ, Marr R (1972) Glucuronidose activity in the intestinal contents of rat and man and relationship to bacterial flora. Proc Soc Exp Biol Med 140:590–594

    PubMed  CAS  Google Scholar 

  219. Bokenbaum HG, Bekersky I, Jack MC, Kaplan SA (1979) Influence of gut microflora on bioavailability. Drug Metab Rev 9:259–279

    Google Scholar 

  220. Schroder JS, Rooney D (1953) Excretion of 3(3-amino-2,4,6-triodophenyl)-2-ethyl-propanoic acid (Telepaque) by man. Proc Soc Exp Biol Med 83:544–546

    PubMed  CAS  Google Scholar 

  221. Schroder JS, Rooney D (1953) Excretion of 3-(3-amino-2,4,6-triiodophenyl)-2-ethyl-propanoic acid (Telepaque) by man. Proc Soc Exp Biol Med 83:544–546

    PubMed  CAS  Google Scholar 

  222. Fischer HW (1966) Physiologic and pharmacologic aspects of cholangiography. Radiol Clin North AM 4:625–632

    Google Scholar 

  223. Shames DM, Moss AA (1974) Iodipamide kinetics in the dog. A multicompartmental analysis. Invest Radiol 9:141–148

    PubMed  CAS  Google Scholar 

  224. Burgener FA, Fischer HW (1975) Intravenous cholangiography in normal subsequently liver-damaged dogs. Radiology 114:519–524

    PubMed  CAS  Google Scholar 

  225. Burgener FA, Fischer HW, Adams JT (1975) Intravenous cholangiography in different degrees of common bile duct obstruction. Invest Radiol 10:342–350

    PubMed  CAS  Google Scholar 

  226. Smith PK, Gleason HL, Stoll CG, Ogorzalek S (1946) Studies on the pharmacology of salicylates. J Pharmacol Exp Ther 87:237–255

    PubMed  CAS  Google Scholar 

  227. Levy G, Tsuchiya T, Amsel LP (1972) Limited capacity for salicyl phenolic glucuro-nide formation and its effect on the kinetics of salicylate elimination in man. Clin Pharm Therap 13:258–268

    PubMed  CAS  Google Scholar 

  228. Ansell G (1970) Adverse reactions to contrast agents. Invest Radiol 5:374–384

    PubMed  CAS  Google Scholar 

  229. Lindgren P, Saltzman GF (1974) Increase of subcapsular renal pressure after intravenous iodipamide and other parenteral contrast media. Acta Radiol (Diagn) 15:273–280

    CAS  Google Scholar 

  230. Benisek GJ, Gunn JA (1962) A preliminary clinical evaluation of a new cholecystographic medim. Bilopaque. AJR 88:792–796

    CAS  Google Scholar 

  231. Burhenne H J (1963) Bilopaque: a new cholecystographic medium. Radiology 81:629–631

    PubMed  CAS  Google Scholar 

  232. Han SY, Witten DM (1974) Clinical trial of Bilopaque oral cholecystography. Evaluation of time of optimal and peak opacification of the gallbladder. Radiology 112:529–532

    PubMed  CAS  Google Scholar 

  233. Moskowitz H, Milidow E, Osmun GP (1973) Sodium Tyropanoate evaluation of new oral cholecystographic agent. NY State J Med 73:271–277

    CAS  Google Scholar 

  234. Parks RE (1974) Double blind study of four oral cholecystographic preparations. Radiology 112:525–528

    PubMed  CAS  Google Scholar 

  235. White WW, Fischer HW (1962) A double blind study of Oragrafin and Telepaque. AJR 87:745–748

    CAS  Google Scholar 

  236. Juhl JH, Cooperman LR, Crummy AB (1963) Oragrafin, a new cholecystographic medium. Radiology 80:87–91

    Google Scholar 

  237. Hekster REM (1968) Results of comparative radiographic, clinical and clinical-chemical studies in iocetamic acid and iopanoic acid. Radiol Clin Biol 37:338–352

    PubMed  CAS  Google Scholar 

  238. Tishler JM, Gold R (1969) A clinical trial of oral cholecystographic agents: Telepaque, sodium Oragrafin and calcium Oragrafin. J Can Assoc Radiol 20:102–105

    PubMed  CAS  Google Scholar 

  239. Russell JG, Frederick PR (1974) Clinical comparison of tyropanoate sodium, ipodate sodium and iopanoic acid. Radiology 112:519–523

    PubMed  CAS  Google Scholar 

  240. Berndt WO, Mudge GH (1968) Renal excretion of iodipamide. Invest Radiol 3:414–426

    PubMed  CAS  Google Scholar 

  241. Lindgren P, Nordenstam H, Slatzman GF (1966) Effects of iodipamide on the kidneys. Acta Radiol (Diagn) 4:129–138

    CAS  Google Scholar 

  242. Peters GA, Hodgson JR, Donovan RJ (1966) The effect of premedication with chlorpheniramine on reactions to methylglucamine iodipamide. J Allergy 38:74–83

    PubMed  CAS  Google Scholar 

  243. Craft IL, Swales JD (1967) Renal failure after cholangiography. Br Med J 2:736–738

    PubMed  CAS  Google Scholar 

  244. Rene RM, Mellinkoff SM (1959) Renal insufficiency after oral administration of a double dose of cholecystographic medium; report of 2 cases. N Engl J Med 261:589–592

    PubMed  CAS  Google Scholar 

  245. Fink HE, Roenick WJ, Wilson CP (1964) An experimental investigation of the nephrotoxic effects of oral cholecystographic agents. Am J Med Sci 247:201–216

    PubMed  CAS  Google Scholar 

  246. Teplick JG, Myerson RM, Sanen FJ (1965) Acute renal failure following oral cholecystography. Acta Radiol (Diagn) 3:353–368

    CAS  Google Scholar 

  247. Harrow BR, Winslow OP (1966) Renal toxicity following oral cholecystography with Oragrafin. Radiology 87:721–728

    PubMed  CAS  Google Scholar 

  248. Canalis CO, Smith GH, Robinson JC (1969) Acute renal failure after the administration of iopanoic acid as a cholecystographic agent. N Engl J Med 281:89–91

    Google Scholar 

  249. Meway J, McGeown MG, Kumar R (1970) Renal failure after radiological contrast material. BrJ Med 4:717–721

    Google Scholar 

  250. Schiro JC, Ricci JA, Tristan TA, Levin DM (1974) Transient renal insufficiency secondary to iopanoic acid. P Med 74:57–58

    Google Scholar 

  251. Burgener FA, Fischer HW (1978) Nephrotoxicity of sodium iopanoate in hydrated and dehydrated dogs. Invest Radiol 13:247–254

    PubMed  CAS  Google Scholar 

  252. Mudge GH (1970) Some questions of nephrotoxicity. Invest Radiol 5:407–421

    PubMed  CAS  Google Scholar 

  253. Scholz RJ, Johnson DO, Wise RE (1975) Intravenous cholangiography: optimum dosage and methodology. Radiology 114:513–518

    PubMed  CAS  Google Scholar 

  254. Stillman AE (1974) Hepatotoxic reaction to iodipamide meglumine injection. JAMA 228:1420–1421

    PubMed  CAS  Google Scholar 

  255. Sutherland LR, Edwards LA, Medline A, Wilkinson RW, Connon JJ (1977) Meglumine iodipamide (Cholografin) hepatotoxicity. Ann Intern Med 86:437–439

    PubMed  CAS  Google Scholar 

  256. Burk RF, Barnhart JL (1979) Iodipamide hepatotoxicity in the rat. Gastroenterology 76:1363–1367

    PubMed  CAS  Google Scholar 

  257. Barnhart JL, Berk RN (1979) Reduction in biliary transport of bile salts, iodipamide and iopanoic acid in aging rats. Gastroenterology 77:A4

    Google Scholar 

  258. Stanley RJ, Sagel SS, Levite RG (1977) Computed tomography of the liver. Radiol Clin North Am 15:331–348

    PubMed  CAS  Google Scholar 

  259. Gold JA, Zeman RK, Schwartz A (1979) Computed tomographic cholangiography in a canine model of biliary obstruction. Invest Radiol 14:498–501

    PubMed  CAS  Google Scholar 

  260. Dean PB, Kivisaari L, Kormano M (1978) The diagnostic potential of contrast enhancement pharmacokinetics. Invest Radiol 13:533–540

    PubMed  CAS  Google Scholar 

  261. Moss AA, Schrumpf J, Schnyder P (1979) Computed tomography of focal hepatic lesions: a blind clinical evaluation of the effect of contrast enhancement. Radiology 131:427–430

    PubMed  CAS  Google Scholar 

  262. Prando A, Wallace S, Bernardino ME (1979) Computed tomographic arteriography of the liver. Radiology 130:697–701

    PubMed  CAS  Google Scholar 

  263. Stephens DH, Sheedy II PF, Hattern RR (1977) Computed tomography of the liver. Am J Roentgenol 128:579–590

    CAS  Google Scholar 

  264. Violante MR, Dean PB (1980) Improved detectability of VX2 carcinoma in the rabbit liver with contrast enhancement in CT scanning. Radiology 134:237–239

    PubMed  CAS  Google Scholar 

  265. Dean PB, Biolante MR, Mahoney JA (1980) Hepatic CT contrast enhancement: effect of dose, duration of infusion, and time elapsed following infusion. Invest Radiol 15:158–161

    PubMed  CAS  Google Scholar 

  266. Fon GT, Hunter TB, Berk RN, Capp MP (1980) The effect of diet and fasting on gallbladder opacification during oral cholecystography in dogs as measured by computed tomography. Radiology 136:585–593

    PubMed  CAS  Google Scholar 

  267. Harson A, Davis MA, Seltzer SE, Paskins-Hurlburt AJ, Hessel SJ (1980) Heavy metal particulate contrast materials for computed tomography of the liver. J Comp Assisted Tomog 4:642–648

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Barnhart, J.L. (1984). Hepatic Disposition and Elimination of Biliary Contrast Media. In: Sovak, M. (eds) Radiocontrast Agents. Handbook of Experimental Pharmacology, vol 73. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69515-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69515-5_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69517-9

  • Online ISBN: 978-3-642-69515-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics