Skip to main content

Action Mechanisms of Secretagogue Drugs

  • Chapter
Pharmacology of Intestinal Permeation II

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 70 / 2))

Abstract

A large number of agents with laxative or diarrheal effects have been shown to influence intestinal fluid and electrolyte transfer. They inhibit the absorption of electrolytes and water and they can also cause an accumulation of fluid within the intestinal lumen. Depending on the administered dose or concentration of the agent and on the particular experimental conditions, inhibition of absorption may result, either on its own or accompanied by secretion. In order to characterize the pharmacodynamic properties of these agents to influence intestinal fluid transfer, they have been named secretagogue (Gaginella et al. 1977a), antiabsorptive and hydragogue (Rummel et al. 1975), or hydrophoric agents (Gaginella and Bass 1978). In this chapter the term “secretagogue” is used, since this expression seems to be the most widely accepted one. It is a phenomenological term without implications with regard to the action mechanisms. This restriction appears reasonable, particularly if one takes into account that, owing to the cytologic heterogeneity of the intestinal epithelium, different types of cells might be involved to different degrees in secretion. Confusion with the term “active secretion”, i.e., active transport of electrolytes and fluid from the blood to the intestinal lumen should be avoided (see Sect. B). Table 1 gives a list of diarrheal agents with secretagogue effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamic S, Bihler I (1967) Inhibition of intestinal sugar transport by Phenolphthalein. Mol Pharmacol 3:188–194

    PubMed  CAS  Google Scholar 

  • Amnion HV, Phillips SF (1973) Inhibition of colonic water and electrolyte absorption by fatty acids in man. Gastroenterology 65:744–749

    Google Scholar 

  • Ammon HV, Phillips SF (1974) Inhibition of ileal water absorption by intraluminal fatty acids. Influence of chain length, hydroxylation, and conjugation of fatty acids. J Clin Invest 53:205–210

    PubMed  CAS  Google Scholar 

  • Ammon HV, Thomas PJ, Phillips SF (1974) Effects of oleic and ricinoleic acid on net jejunal water and electrolyte movement. Perfusion studies in man. J Clin Invest 53:374–379

    PubMed  CAS  Google Scholar 

  • Ammon HV, Thomas PJ, Phillips SF (1977) Effects of long chain fatty acids on solute absorption. Perfusion studies in the human jejunum. Gut 18:805–813

    PubMed  CAS  Google Scholar 

  • Andreoli TE, Schafer JA (1976) Mass transport across cell membranes: the effects of antidiuretic hormone on water and solute flows in epithelia. Annu Rev Physiol 38:451–500

    PubMed  CAS  Google Scholar 

  • Banwell JG, Sherr H (1973) Effect of bacterial enterotoxins on the gastrointestinal tract. Gastroenterology 65:467–477

    PubMed  CAS  Google Scholar 

  • Bernier JJ, L’Hirondel C, Bretagne JF (1979) Cell loss under laxatives in human jejunum. Gastroenterology 76:1099

    Google Scholar 

  • Beubler E, Juan H (1977) Is the effect of diphenolic laxatives mediated via release of prostaglandin E? Experientia 34:386–387

    Google Scholar 

  • Beubler E, Juan H (1978) PGE-mediated laxative effect of diphenolic laxatives. Naunyn Schmiedebergs Arch Pharmacol 305:241–246

    PubMed  CAS  Google Scholar 

  • Beubler E, Juan H (1979) Effect of ricinoleic acid and other laxatives on net water flux and prostaglandin E release by the rat colon. J Pharm Pharmacol 31:681–685

    CAS  Google Scholar 

  • Beubler E, Lembeck F (1979) Inhibition of stimulated fluid secretion in the rat small and large intestine by opiate agonists. Naunyn Schmiedebergs Arch Pharmacol 306:113–118

    PubMed  CAS  Google Scholar 

  • Binder HJ (1975) Bile salt stimulation of colonic cyclic AMP: mechanism of bile salt induced electrolyte secretion? In: Matern S, Hackenschmidt J, Back P, Gerok W (eds) Advances in bile acid research. Schattauer, Stuttgart, pp 425–428

    Google Scholar 

  • Binder HJ (1977) Pharmacology of laxatives. Annu Rev Pharmacol Toxicol 17:355–367

    PubMed  CAS  Google Scholar 

  • Binder HJ (1979) Net fluid and electrolyte secretion: the pathophysiologic basis for diarrhea. In: Binder HJ (ed) Mechanisms of intestinal secretion. Liss, New York, pp 1–15

    Google Scholar 

  • Binder HJ, Rawlins CL (1973) Effect of conjugated dihydroxy bile salts on electrolyte transport in rat colon. J Clin Invest 52:1460–1466

    PubMed  CAS  Google Scholar 

  • Binder HJ, Filburn C, Volpe BT (1975) Bile salt alteration cf colonic electrolyte transport: role of cyclic adenosine monophosphate. Gastroenterology 68:503–508

    PubMed  CAS  Google Scholar 

  • Binder HJ, Dobbins JW, Racusen LC, Whiting DS (1978) Effect of propranolol on ricinoleic acid- and deoxycholic acid-induced changes of intestinal electrolyte movement and mucosal permeability. Evidence against the importance of altered permeability in the production of fluid and electrolyte accumulation. Gastroenterology 75:668–673

    PubMed  CAS  Google Scholar 

  • Bolton JE, Field M (1977) Ca ionophore-stimulated ion secretion in rabbit ileal mucosa: relation to actions of cyclic 3′–5′ AMP and carbamylcholine. J Membr Biol 35:159–173

    PubMed  CAS  Google Scholar 

  • Bright-Asare D, Binder HJ (1973) Stimulation of colonic secretion of water and electrolytes by hydroxy fatty acids. Gastroenterology 64:81–88

    PubMed  CAS  Google Scholar 

  • Briseid G, Briseid K, Bergersen B (1974) Studies on the increased absorption cf ouabain, phenolsulphonphthalein, and pralidoxime caused by sodium lauryl sulfate from single loop preparations in the rat. Naunyn Schmiedebergs Arch Pharmacol 282:45–47

    PubMed  CAS  Google Scholar 

  • Briseid G, Briseid K, Kirkevold K (1976) Increased intestinal absorption in the rat caused by sodium lauryl sulfate, and its possible relation to the cAMP system. Naunyn Schmiedebergs Arch Pharmacol 292:137–144

    PubMed  CAS  Google Scholar 

  • Briseid G, Øye I, Briseid K (1977) Increased level of cAMP in the rat intestinal mucosa caused by sodium lauryl sulfate. Naunyn Schmiedebergs Arch Pharmacol 298:263–266

    PubMed  CAS  Google Scholar 

  • Brown BD, Ammon HV (1981) Effect of glucose on jejunal water and solute absorption in the presence of glycodeoxycholate and oleate in man. Dig Dis Sci 26:710–717

    PubMed  CAS  Google Scholar 

  • Buglia G (1909) Hängt die Resorption von der Oberflächenspannung der resorbierten Flüssigkeit ab? Biochem Z 22:1–23

    Google Scholar 

  • Burke V, Gracey M, Thomas J, Malajczuk A (1975) Inhibition of intestinal amino acid absorption by unconjugated bile salt in vivo. Aust NZ J Med 5:430–432

    CAS  Google Scholar 

  • Burke V, Gracey M, Thomas J, Malajczuk A (1976) Inhibition of intestinal uptake of amino acids by unconjugated bile salt. AJEBAK 54:391–402

    PubMed  CAS  Google Scholar 

  • Camilleri M, Murphy R, Chadwick VS (1980) Dose-related effects of chenodeoxycholic acid in the rabbit colon. Dig Dis Sci 25:433–438

    PubMed  CAS  Google Scholar 

  • Camilleri M, Murphy R, Chadwick VS (1982) Pharmacological inhibition of chenodeoxychate-induced fluid and mucus secretion and mucosal injury in the rabbit colon. Dig Dis Sci 27:865–868

    PubMed  CAS  Google Scholar 

  • Carnot P, Glénard R (1913) De l’action du séné sur les mouvements de l’intestin perfusé. C R Soc Biol (Paris) 4:120–122

    Google Scholar 

  • Caspary WF (1974) Inhibition of active hexose and amino acid transport by conjugated bile salts in rat ileum. Eur J Clin Invest 4:17–24

    PubMed  CAS  Google Scholar 

  • Caspary WF, Meyne K (1980) Effects of chenodeoxy- and ursodeoxycholic acid on absorption, secretion and permeability in rat colon and small intestine. Digestion 20:168–174

    PubMed  CAS  Google Scholar 

  • Chadwick VS, Gaginella TS, Debongnie JC, Carlson GL, Phillips SF, Hofmann AF (1976) Mucosal epitheliolysis: a mechanism for the increased colonic permeability induced by dihydroxy bile acids. Gut 17:816

    Google Scholar 

  • Chadwick VS, Phillips SF, Hofmann AF (1977) Measurements of intestinal permeability using low molecular weight polyethylene glycols (PEG 400). II. Application to normal and abnormal permeability states in man and animals. Gastroenterology 73:247–251

    PubMed  CAS  Google Scholar 

  • Chadwick VS, Gaginella TS, Carlson GL, Debongnie JC, Phillips SF, Hofmann AF (1979) Effect of molecular structure on bile acid-induced alterations in absorptive function, permeability, and morphology in the perfused rabbit colon. J Lab Clin Med 94:661–674

    PubMed  CAS  Google Scholar 

  • Chan PC (1967) Reversible effect of sodium dodecyl sulfate on human erythrocyte membrane adenosine triphosphatase. Biochim Biophys Acta 135:53–60

    PubMed  CAS  Google Scholar 

  • Charney AN, Donowitz M (1978) Functional significance of intestinal Na+-K+-ATPase: in vivo ouabain inhibition. Am J Physiol 234: E629–E636

    PubMed  CAS  Google Scholar 

  • Chignell CF (1968) The effect of Phenolphthalein and other purgative drugs on rat intestinal (Na+ + K+) adenosine triphosphatase. Biochem Pharmacol 17:1207–1212

    PubMed  CAS  Google Scholar 

  • Cline WS, Lorenzsonn V, Benz L, Bass P, Olsen WA (1976) The effects of sodium ricinoleate on small intestinal function and structure. J Clin Invest 58:380–390

    PubMed  CAS  Google Scholar 

  • Conley DR, Coyne MJ, Bonorris GG, Chung A, Schoenfield LJ (1976a) Bile acid stimulation of colonic adenylate cyclase and secretion in the rabbit. Dig Dis Sci 21:453–458

    CAS  Google Scholar 

  • Conley D, Coyne M, Chung A, Bonorris G, Schoenfield L (1976b) Propranolol inhibits adenylate cyclase and secretion stimulated by deoxycholic acid in the rabbit colon. Gastroenterology 71:72–75

    PubMed  CAS  Google Scholar 

  • Corazza GR, Ciccarelli R, Caciagli F, Gasbarrini G (1979) Cyclic AMP and cyclic GMP levels in human colonic mucosa before and during chenodeoxycholic acid therapy. Gut 20:489–492

    PubMed  CAS  Google Scholar 

  • Coyne MJ, Bonorris GG, Chung A, Conley DR, Corke J, Schoenfield LJ (1976) Inhibition by propranolol of bile acid stimulation of rabbit colonic adenylate cyclase in vitro. Gastroenterology 71:68–71

    PubMed  CAS  Google Scholar 

  • Coyne MJ, Bonorris GG, Chung A, Conley D, Schoenfield LJ (1977) Propranolol inhibits bile acid and fatty acid stimulation of cyclic AMP in human colon. Gastroenterology 73:971–974

    PubMed  CAS  Google Scholar 

  • Dawson AM, Isselbacher KJ (1960) Studies on lipid metabolism in the small intestine with observation on the role of bile salts. J Clin Invest 39:730–740

    PubMed  CAS  Google Scholar 

  • Diamond JC (1979) Osmotic water flow in leaky epithelia. J Mebr Biol 51:195–216

    CAS  Google Scholar 

  • Dobbins JW, Binder HJ (1976) Effect of bile salts and fatty acids on the colonic absorption of oxalate. Gastroenterology 70:1096–1100

    PubMed  CAS  Google Scholar 

  • Donowitz M, Binder HJ (1974) Dioctyl sodium sulfosuccinate stimulates large intestinal water and electrolyte secretion: mechanism of laxative action? Gastroenterology 66:A-184/838

    Google Scholar 

  • Donowitz M, Binder HJ (1975) Effect of dioctyl sodium sulfosuccinate on colonic fluid and electrolyte movement. Gastroenterology 69:941–950

    PubMed  CAS  Google Scholar 

  • Donowitz M, Gharney AN, Tai YH (1979) A comprehensive picture of serotonin-induced ileal secretion. In: Binder HJ (ed) Mechanisms of intestinal secretion. Liss, New York, pp 217–230

    Google Scholar 

  • Dreesen M, Eyssen H, Lemli J (1981) The metabolism of sennosides A and B by the intestinal microflora: in vitro and in vivo studies on the rat and the mouse. J Pharm Pharmacol 33:679–681

    Google Scholar 

  • Duffy PA, Granger DN, Taylor AE (1978) Intestinal secretion induced by volume expansion in the dog. Gastroenterology 75:413–418

    PubMed  CAS  Google Scholar 

  • Ewe K (1977) Influence of diphenolic laxatives on water and electrolyte permeation in man. In: Kramer M, Lauterbach F (eds) Intestinal permeation. Excerpta Medica, Amsterdam, pp 420–426

    Google Scholar 

  • Ewe K (1980a) Effect of rhein on the transport of electrolytes, water and carbohydrates in the human jejunum and colon. Pharmacology 20 [Suppl 1]:27–35

    PubMed  CAS  Google Scholar 

  • Ewe K (1980b) The physiological basis of laxative action. Pharmacology 20 [Suppl 1]:2–20

    PubMed  CAS  Google Scholar 

  • Ewe K, Hölker B (1974) Einfluß eines diphenolischen Laxans (Bisacodyl) auf den Wasser-und Elektrolyttransport im menschlichen Colon. Klin Wochenschr 52:827–833

    PubMed  CAS  Google Scholar 

  • Fagundes-Neto V, Teichberg S, Bayne MA, Morton B, Lifshitz F (1981) Bile salt-enhanced rat jejunal absorption of a macromolecular tracer. Lab Invest 44:18–26

    PubMed  CAS  Google Scholar 

  • Fairclough PD, Feest TG, Chadwick VS, Clark ML (1977) Effect of sodium chenodeoxycholate on oxalate absorption from the excluded human colon- a mechanism for “enteric” hyperoxaluria. Gut 18:240–244

    PubMed  CAS  Google Scholar 

  • Farack UM, Nell G (1979) The influence of an adenylcyclase inhibitor on the choleratoxin-, desoxycholic acid- and bisacodyl-induced intestinal secretion in the rat. Naunyn Schmiedebergs Arch Pharmacol 308 [Suppl]:R27

    Google Scholar 

  • Farack UM, Nell G, Rummel W (1979) Der Einfluß von Chlorpromazin auf die durch Choleratoxin und Desoxycholsäure induzierte Flüssigkeitssekretion am Rattenjejunum. Z Gastroenterol 17:664–665

    Google Scholar 

  • Farack UM, Nell G, Lueg O (1981) Untersuchungen zum Mechanismus der Kaliumsekretion am Rattencolon unter dem Einfluß von Natriumdesoxycholat. Verh Dtsch Ges Inn Med 87:875–877

    CAS  Google Scholar 

  • Farack UM, Nell G, Lueg O, Rummel W (1982) Independence of the activation of mucus and potassium secretion on the inhibition of sodium and water absorption by deoxycholate in rat colon. Naunyn Schmiedebergs Arch Pharmacol 321:336–340

    PubMed  CAS  Google Scholar 

  • Farack UM, Nell G, Loeschke K, Rummel W (1983a) Is the secretagogue effect of deoxycholic acid mediated by the adenylate cyclase-cAMP system. Digestion 28:170–175

    PubMed  CAS  Google Scholar 

  • Farack UM, Nell G, Rummel W (1983b) Differentiation of secretagogue drugs by chlorpromazine in rat intestine in vivo. Naunyn-Schmiedeberg’s Arch Pharmacol 324:70–74

    CAS  Google Scholar 

  • Faust RG (1964) Effects of bile salts, sodium deoxycholate, strophantin-G and metabolic inhibitors on the absorption of D-glucose by the rat jejunum, in vitro. J Cell Comp Physiol 63:55–64

    CAS  Google Scholar 

  • Faust RG, Wu SML (1965a) The action of bile salts on fluid and glucose movement by rat and hamster jejunum, in vitro. J Cell Comp Physiol 65:435–448

    CAS  Google Scholar 

  • Faust RG, Wu SML (1965b) The effect of bile salts on tissue ATP levels of everted sacs of rat and hamster ileum. J Cell Physiol 65:449–451

    PubMed  CAS  Google Scholar 

  • Faust RG, Wu SML (1965c) The effect of bile salts on oxygen consumption, oxidative phosphorylation, and ATP-ase activity of mucosal homogenate from rat jejunum and ileum. J Cell Physiol 67:149–158

    Google Scholar 

  • Feldman S, Reinhard M (1976) Interaction of sodium alkyl sulfates with everted rat small intestinal membrane. J Pharm Sci 65:1460–1462

    PubMed  CAS  Google Scholar 

  • Feldman S, Salvino M, Gibaldi M (1970) Physiologic surfaceactive agents and drug absorption. VII. Effect of sodium deoxycholate on phenol red absorption in the rat. J Pharm Sci 59:705–707

    PubMed  CAS  Google Scholar 

  • Feldman DS, Rabinovitch S, Feldman EB (1971) Effects of bile salts and detergents on ion transport of absorbing ileum. J Clin Invest 50:29a

    Google Scholar 

  • Feldman S, Reinhard M, Willson C (1973) Effect of sodium taurodeoxycholate on biological membranes: release of phosphorus, phospholipid, and protein from everted rat small intestine. J Pharm Sci 62:1961–1964

    PubMed  CAS  Google Scholar 

  • Feldman DS, Rabinovitch S, Feldman EB (1975) Surfactants and bioelectric properties of rat jejunum. Dig Dis Sci 20:866–870

    CAS  Google Scholar 

  • Feldman EB, Watt R, Feldman DS (1977) Conjugated dihydroxy bile salt inhibition of glucose influx in rat jejunum in vitro. Dig Dis Sci 22:415–418

    CAS  Google Scholar 

  • Ferard G, Galluser M, Sall I, Pousse A (1980) Effect of sodium deoxycholate on intestinal glucose absorption and (Na+K+)-ATPase in the rat. Enzyme 25:387–393

    PubMed  CAS  Google Scholar 

  • Ferlemann G, Vogt W (1965) Entacetylierung und Resorption von phenolischen Laxantien. Naunyn Schmiedebergs Arch Pharmacol 250:479–487

    CAS  Google Scholar 

  • Field M, Sheerin HE, Henderson A, Smith PL (1975) Catecholamine effects on cyclic AMP levels and ion secretion in rabbit ileal mucosa. Am J Physiol 229:86–92

    PubMed  CAS  Google Scholar 

  • Forsyth GW, Hamilton DL, Scoot A, Goertz KE, Kapitany RA (1979) Failure to reverse choleratoxin induced intestinal secretion by agents which decrease mucosal cAMP. Can J Physiol Pharmacol 57:1004–1010

    PubMed  CAS  Google Scholar 

  • Forth W, Rummel W (1967) Resorptionshemmung, eine physiologische Wirkung von Gallensäuren? In: Hoffmann G, Delaloye B (eds) Radioisotope in der Gastroenterologie. Schattauer, Stuttgart, pp 141–146

    Google Scholar 

  • Forth W, Rummel W (1975) Activation and inhibition of intestinal absorption by drugs. In: Forth W, Rummel W (eds) Gastrointestinal absorption of drugs. Pergamon, Oxford, pp 171–244 (International encyclopedia of pharmacology and therapeutics, sec 39B: pharmacology of intestinal absorption, vol 1)

    Google Scholar 

  • Forth W, Baldauf J, Rummel W (1963) Ein Beitrag zur Klärung des Wirkungsmechanismus einiger Laxantien. Naunyn Schmiedebergs Arch Pharmacol 246:91

    Google Scholar 

  • Forth W, Rummel W, Baldauf J (1966a) Wasser- und Elektrolytbewegung am Dünn- und Dickdarm unter dem Einfluß von Laxantien, ein Beitrag zur Klärung ihres Wirkungsmechanismus. Naunyn Schmiedebergs Arch Pharmacol 254:18–32

    CAS  Google Scholar 

  • Forth W, Rummel W, Glasner H (1966b) Zur resorptionshemmenden Wirkung von Gallensäuren. Naunyn Schmiedebergs Arch Pharmacol 254:364–380

    CAS  Google Scholar 

  • Forth W, Nell G, Rummel W, Andres H (1972) The hydragogue and laxative effect of the sulfuric acid ester and the free diphenol of 4,4′-dihydroxydiphenyl(pyridyl-2)-methane. Naunyn Schmiedebergs Arch Pharmacol 274:46–53

    PubMed  CAS  Google Scholar 

  • Frizzell RA (1977a) Active chloride secretion by rabbit colon: Calcium dependent stimulation by ionophore A23187. J Membr Biol 35:175–187

    PubMed  CAS  Google Scholar 

  • Frizzell RA (1977b) Interaction between cyclic AMP and cell calcium in the stimulation of electrolyte secretion by mammalian colon. In: Bonfils et al. (eds) First International Symposium on Hormonal Receptors in Digestive Tract Physiology. INSERM Symposium No. 3. Biomedical Press, Elsevier/North Holland, pp 455–468

    Google Scholar 

  • Frizzell RA, Schultz SG (1970) Effect of bile salts on transport across brush border of rabbit ileum. Biochim Biophys Acta 211:589–592

    PubMed  CAS  Google Scholar 

  • Fry RJM, Staffeldt E (1964) Effect of diet containing sodium deoxycholate on the intestinal mucosa of the mouse. Nature 203:1396–1398

    PubMed  CAS  Google Scholar 

  • Gadacz TR, Gaginella TS, Phillips SF (1976) Inhibition of water absorption by ricinoleic acid. Evidence against hormonal mediation of the effect. Dig Dis Sci 21:859–862

    CAS  Google Scholar 

  • Gaginella TS, Bass P (1978) Laxatives: an update on mechanism of action. Life Sci 23:1001–1010

    PubMed  CAS  Google Scholar 

  • Gaginella TS, Phillips SF (1975) Ricinoleic acid: current view of an ancient oil. Am J Dig Dis 20:1171–1177

    PubMed  CAS  Google Scholar 

  • Gaginella TS, Phillips SF (1976) Ricinoleic acid (castor oil) alters surface structure. A scanning electron microscopic study. Mayo Clin Proc 51:6–12

    PubMed  CAS  Google Scholar 

  • Gaginella TS, O’Dorisio TM (1979) Vasoactive intestinal polypeptide: neuromodulator of intestinal secretion? In: Binder HJ (ed) Mechanisms of intestinal secretion. Liss, New York, pp 231–247

    Google Scholar 

  • Gaginella TS, Stewart JJ, Gullikson GW, Olsen WA, Bass P (1975a) Inhibition of small intestinal mucosa and smooth muscle cell function by ricinoleic acid and other surfactants. Life Sci 16:1595–1606

    PubMed  CAS  Google Scholar 

  • Gaginella TS, Bass P, Olsen W, Shug A (1975b) Fatty acid inhibition of water absorption and energy production in the hamster jejunum. FEBS Lett 53:347–350

    PubMed  CAS  Google Scholar 

  • Gaginella TS, Stewart JJ, Olsen WA, Bass P (1975c) Actions of ricinoleic acid and structurally related fatty acids on the gastrointestinal tract. II. Effects on water and electrolyte absorption in vitro. J Pharmacol Exp Ther 195:355–361

    PubMed  CAS  Google Scholar 

  • Gaginella TS, Lewis JC, Phillips SF (1976) Ricinoleic acid effects on rabbit intestine. An ultrastructural study. Mayo Clin Proc 51:569–573

    PubMed  CAS  Google Scholar 

  • Gaginella TS, Lewis JC, Phillips SF (1977a) Rabbit ileal mucosa exposed to fatty acids, bile acids and other secretagogues. Dig Dis Sci 22:781–790

    CAS  Google Scholar 

  • Gaginella TS, Chadwick VS, Debongnie JC, Lewis JC, Phillips SF (1977b) Perfusion of rabbit colon with ricinoleic acid: dose related mucosal injury, fluid secretion, and increased permeability. Gastroenterology 73:95–101

    PubMed  CAS  Google Scholar 

  • Gaginella TS, Haddad AC, Go VLW, Phillips SF (1977c) Cytotoxicity of ricinoleic acid (castor oil) and other intestinal secretagogues on isolated intestinal epithelial cells. J Pharmacol Exp Ther 201:259–266

    PubMed  CAS  Google Scholar 

  • Gaginella TS, Phillips SF, Dozois RR, Go VLW (1978) Stimulation of adenylate cyclase in homogenates of isolated intestinal epithelial cells from hamster. Gastroenterology 74:11–15

    PubMed  CAS  Google Scholar 

  • Gibaldi M, Feldman S (1970) Mechanisms of surfactant effects on drug absorption. J Pharm Sci 59:579–589

    PubMed  CAS  Google Scholar 

  • Gill DM (1977) Mechanism of action of cholera toxin. In: Greengard P, Robinson GA (eds) Advances in cyclic nucleotide research. Raven, New York, pp 86–118

    Google Scholar 

  • Goerg KJ (1979) Relationship between fluid production, mucosal permeability and changes of the mucosal morphology in the rat colon under the influence of deoxycholate and dioctylsulfosuccinate. Gastroenterol Clin Biol 3:169–170

    Google Scholar 

  • Goerg KJ, Nell G, Specht W (1978) Correlation between the 51CrEDTA clearance and the secretion of fluid and electrolytes under the influence of deoxycholate in the rat colon. Naunyn Schmiedebergs Arch Pharmacol 302 [Suppl]:R1

    Google Scholar 

  • Goerg KJ, Wanitschke R, Schulz L (1980a) Scanning electron microscopic study of the effect of rhein on the surface morphology of the rat colonic mucosa. Pharmacology 20 [Suppl 1]:36–42

    PubMed  CAS  Google Scholar 

  • Goerg KJ, Gross M, Nell G, Rummel W, Schulz L (1980b) Comparative study of the effect of cholera toxin and sodium deoxycholate on the paracellular permeability and on net fluid and electrolyte transfer in the rat colon. Naunyn Schmiedebergs Arch Pharmacol 312:91–97

    PubMed  CAS  Google Scholar 

  • Goerg KJ, Specht W, Nell G, Rummel W, Schulz L (1982) Effect of deoxycholate on the perfused rat colon. Scanning and transmission electron microscopic study of the morphological alterations occurring during the secretagogue action of deoxycholate. Digestion 25:145–154

    PubMed  CAS  Google Scholar 

  • Goerg KJ, Nell G, Rummel W (1983) Effect of deoxycholate on the perfused rat colon. Concentration dependence of the effect on net fluid and electrolyte transfer and the correlation with paracellular permeability. Digestion 26:105–113

    PubMed  CAS  Google Scholar 

  • Gordon SJ, Kinsey MD, Magen JS, Joseph RE, Kowlessar OD (1979) Structure of bile acids associated with secretion in the rat cecum. Gastroenterology 77:38–44

    PubMed  CAS  Google Scholar 

  • Gracey M, Burke V, Oshin A (1971a) Influence of bile salts on intestinal sugar transport in vivo. Scand J Gastroenterol 6:273–276

    PubMed  CAS  Google Scholar 

  • Gracey M, Burke V, Oshin A (1971b) Reversible inhibition of intestinal active sugar transport by deconjugated bile salt in vitro. Biochim Biophys Acta 225:308–314

    PubMed  CAS  Google Scholar 

  • Gracey M, Burke V, Storrie M, Oshin A (1972) Dissociation of intestinal active sugar transport from (Na+ + K+) ATPase activity. Clin Chim Acta 36:555–560

    PubMed  CAS  Google Scholar 

  • Gracey M, Papadimitriou J, Burke V, Thomas J, Bower G (1973) Effects on small intestinal function and structure by feeding a conjugated bile salt. Gut 14:519–528

    PubMed  CAS  Google Scholar 

  • Graf J, Giebisch G (1979) Intracellular sodium activity and sodium transport in Necturus gall bladder epithelium. J Membr Biol 47:327–355

    PubMed  CAS  Google Scholar 

  • Guiraldes E, Lamabadusuriya SP, Oyesiku JEJ, Whitfield AE, Harries JT (1975) A comparative study on the effects of different bile salts on mucosal ATPase and transport in the rat jejunum in vivo. Biochim Biophys Acta 389:495–505

    PubMed  CAS  Google Scholar 

  • Gullikson GW, Cline WS, Lorenzsonn V, Benz L, Olsen WA, Bass P (1977) Effects of anionic surfactants on hamster small intestinal membrane structure and function: relationship to surface activity. Gastroenterology 73:501–511

    PubMed  CAS  Google Scholar 

  • Gullikson GW, Dajani EZ, Bianchi RG (1981) Inhibition of intestinal secretion in the dog: a new approach for the management of diarrheal states. J Pharmacol Exp Ther 219:591–597

    PubMed  CAS  Google Scholar 

  • Hadorn B, Steiner N, Sumida C, Peters TJ (1971) Intestinal enterokinase. Mechanisms of its “secretion” into the lumen of the small intestine. Lancet I:165–166

    Google Scholar 

  • Hafkenscheid JCM (1977) Influence of bile acids on the (Na+ + K+) activated and Mg2+-activated ATPase of rat colon. Pfluegers Arch 369:203–206

    CAS  Google Scholar 

  • Hajjar JJ, Khuri RN, Bikhazi AB (1975) Effect of bile salts on amino acid transport by rabbit intestine. Am J Physiol 229:518–523

    PubMed  CAS  Google Scholar 

  • Hajjar JJ, Murphy DM, Scheig RL (1979) Mechanism of inhibition of alanine absorption by Na ricinoleate. Am J Physiol 236:E534–E538

    PubMed  CAS  Google Scholar 

  • Hakim AA, Lifson N (1969) Effects of pressure on water and solute transport by dog intestinal mucosa in vitro. Am J Physiol 216:276–284

    PubMed  CAS  Google Scholar 

  • Hand DW, Sanford PA, Smyth DH (1966) Polyphenolic compounds and intestinal transfer. Nature 209:618

    PubMed  CAS  Google Scholar 

  • Harries JT, Sladen GE (1972) The effects of different bile salts on the absorption of fluid, electrolytes, and monosaccharides in the small intestine of the rat in vivo. Gut 13:596–603

    PubMed  CAS  Google Scholar 

  • Hart SL, McColl I (1967) The effect of purgative drugs on the intestinal absorption of glucose. J Pharm Pharmacol 19:70–71

    PubMed  CAS  Google Scholar 

  • Hart SL, McColl I (1968) The effect of the laxative oxyphenisatin on the intestinal absorption of glucose in rat and man. Br J Pharmacol Chemother 32:683–686

    PubMed  CAS  Google Scholar 

  • Hepner GW, Hofmann AF (1973) Different effects of free and conjugated bile acids and their keto derivatives on (Na+, K+)-stimulated and Mg2 + ATPase of rat intestinal mucosa. Biochim Biophys Acta 291:237–245

    PubMed  CAS  Google Scholar 

  • Heymann P (1927a) Schwer resorbierbare Salze. In: Heffter A, Heubner W (eds) Handbuch der experimentellen Pharmakologie, vol 3/1. Springer, Berlin, pp 40–81

    Google Scholar 

  • Heymann P (1927b) Zuckerarten und Verwandtes. In: Heffter A, Heubner W (eds) Handbuch der experimentellen Pharmakologie, vol 3/1. Springer, Berlin, pp 82–132

    Google Scholar 

  • Hillestad B, Sund RB, Buajordet M (1982) Intestinal handling of bisacodyl and picosulphate by everted sacs of the rat jejunum and stripped colon. Acta Pharmacol Toxicol 51:388–394

    CAS  Google Scholar 

  • Im WB, Misch DW, Powell DW, Faust RG (1980) Phenolphthalein- and harmaline-induced disturbances in the transport functions of isolated brush border and basolateral membrane vesicles from rat jejunum and kidney cortex. Biochem Pharmacol 29:2307–2317

    PubMed  CAS  Google Scholar 

  • Jauch R, Hammer R, Busch U, Kopitar Z, Ohnuma N, Niki T (1977) Pharmakokinetik und Metabolismus von Na-Picosulfat bei der Ratte. Arzneimittelforsch 27:1045–1050

    PubMed  CAS  Google Scholar 

  • Jauch R, Hankwitz R, Beschke K, Pelzer H (1975) Bis-(p-hydroxyphenyl)-pyridil-2-methane: The common laxative principle of bisacodyl and sodium picosulphate. Arzneimittelforsch 25:1796–1800

    PubMed  CAS  Google Scholar 

  • Kakemi K, Sezaki H, Konishi R, Kimura T, Murakami M (1970) Effect of bile salts on the gastrointestinal absorption of drugs. Chem Pharm Bull (Tokyo) 18:275–280

    CAS  Google Scholar 

  • Karlström L, Cassuto J, Jodal M, Lundgren O (1983) The importance of the enteric nervous system for the bile-salt-induced secretion in the small intestine of rat. Scand J Gastroenterol 18:117–123

    PubMed  Google Scholar 

  • Kelly DG, Kerlin P, Sarr MG, Phillips SF (1981) Ricinoleic acid causes secretion in auto-transplated (extrinsically denervated) canine jenunum. Dig Dis Sci 26:966–970

    PubMed  CAS  Google Scholar 

  • Kobashi K, Nishimura T, Kusaka M, Hattori M, Namba T (1980) Metabolism of sennosides by human intestinal bacteria. Planta medica 40:225–236

    PubMed  CAS  Google Scholar 

  • Konder H, Dennhardt R, Haberich FJ (1979) Die Wirkung unkonjugierter Gallensäuren auf die Elektrolyt- und Wasserabsorption im proximalen Jejunum. Res Exp Med (Berl) 175:37–49

    CAS  Google Scholar 

  • Konder H, Dennhardt R, Haberich FJ (1981) Die Wirkung von Desoxycholat auf die Elektrolyt- und Wasserabsorption im terminalen Ileum. Res Exp Med (Berl) 178:141–150

    CAS  Google Scholar 

  • Krag E, Phillips SF (1974) Effect of free and conjugated bile acids on net water, electrolyte, and glucose movement in the perfused human ileum. J Lab Clin Med 83:947–955

    PubMed  CAS  Google Scholar 

  • Kvietys PR, Wilborn W, Granger DN (1981) Effect of atropine on bile-oleic acid-induced alterations in dog jejunal hemodynamics, oxygenation, and net transmucosal water movement. Gastroenterology 80:31–38

    PubMed  CAS  Google Scholar 

  • Lack L, Weiner IM (1966) Intestinal bile salt transport: structure activity relationships and other properties. Am J Physiol 210:1142–1152

    PubMed  CAS  Google Scholar 

  • Lamabadusuriya SP, Guiraldes E, Harries JT (1975) Influence of mixtures of taurocholate, fatty acids, and monolein or the toxic effects of deoxycholate in rat jejunum in vivo. Gastroenterology 69:463–469

    PubMed  CAS  Google Scholar 

  • Laudér-Brunton T (1874) On the action of purgative medicines. Practitioner 12:342–350

    Google Scholar 

  • Lee JS (1979) Lymph capillary pressure of rat intestinal villi during fluid absorption. Am J Physiol 237:E301–E307

    PubMed  CAS  Google Scholar 

  • Lemli J, Lemmens L (1980) Metabolism of sennosides and rhein in the rat. Pharmacology 20 [Suppl 1]:50–57

    PubMed  CAS  Google Scholar 

  • Lemmens L, Borja E (1976) The influence of dihydroxyanthracene derivatives on water and electrolyte movement in rat colon. J Pharm Pharmacol 28:498–501

    PubMed  CAS  Google Scholar 

  • Leng-Peschlow E (1980) Inhibition of intestinal water and electrolyte absorption by senna derivatives in rats. J Pharm Pharmacol 32:330–335

    PubMed  CAS  Google Scholar 

  • Lewin MR, El Masri SH, Clark CG (1979) Effects of bile acids on mucus secretion in the dog colon. Eur Surg Res 11:392–398

    PubMed  CAS  Google Scholar 

  • Lifson N (1979) Fluid secretion and hydrostatic pressure relationships in the small intestine. In: Binder HJ (ed) Mechanisms of intestinal secretion. Liss, New York, pp 249–261

    Google Scholar 

  • Lish PM, Weikel JH (1959) Influence of surfactants on absorption from the colon. Toxicol Appl Pharmacol 1:501–504

    PubMed  CAS  Google Scholar 

  • Low-Beer TS, Schneider RE, Dobbins WO (1970) Morphological changes of the small-intestinal mucosa of guinea pig and hamster following incubation in vitro and perfusion in vivo with unconjugated bile salts. Gut 11:486–492

    PubMed  CAS  Google Scholar 

  • Luderer JR, Demers LM, Nomides CT, Hayes AH (1980) Mechanism of action of castor oil: a biochemical link to the prostaglandins. In: Samuelson B, Ramwell PW, Paoletti R (eds) Advances in prostaglandin and thromboxane research, vol 8. Raven, New York, pp 1633–1635

    Google Scholar 

  • Maenz DD, Forsyth GW (1982) Ricinoleate and deoxycholate are calcium ionophores in jejunal brush border vesicles. J Membr Biol 70:125–133

    PubMed  CAS  Google Scholar 

  • Magnus R (1924a) Allgemeines über Abführmittel. Anthrachinonderivate, Chrysarobin, Phenolphthalein. In: Heffter A (ed) Handbuch der experimentellen Pharmakologie, vol 2/2. Springer, Berlin, pp 1592–1644

    Google Scholar 

  • Magnus R (1924b) Drastische Abführmittel. Allgemeines. Koloquinten (Colocynthin). Elaterin. Podophyllin. Podophyllotoxin. Convolvulin, Jalapin (Scammonin), Turpathin, Ipomoein. Gummi-Gutti, Cambogiasäure, Euphorbium. Lärchenschwamm, Agaricinsäure. In: Heffter A (ed) Handbuch der experimentellen Pharmakologie, vol 2/2. Springer, Berlin, pp 1645–1676

    Google Scholar 

  • Meisel JL, Bergman D, Gracey D, Saunders DR, Rubin CE (1977) Human rectal mucosa: proctoscopic and morphological changes caused by laxatives. Gastroenterology 72:1274–1279

    PubMed  CAS  Google Scholar 

  • Mekhjian HS, Phillips SF (1970) Perfusion of the canine colon with unconjugated bile acids. Gastroenterology 59:120–129

    PubMed  CAS  Google Scholar 

  • Mekhjian HS, Phillips SF, Hofmann AF (1971) Colonic secretion of water and electrolytes induced by bile acids: perfusion studies in man. J Clin Invest 50:1569–1577

    CAS  Google Scholar 

  • Mertens RB, Mayer SE, Wheeler HO (1976) Effect of conjugated bile acids on cyclic AMP levels in rabbit ileal mucosa. Gastroenterology 70:919

    Google Scholar 

  • Meyer-Betz F, Gebhardt T (1912) Röntgenuntersuchungen über den Einfluß der Abführmittel auf die Darmbewegungen am gesunden Menschen. Münch Med Wochschr 59:1793–1797

    CAS  Google Scholar 

  • Mitjavila MT, Mitjavila S, Derache R (1973) Mesures du métabolisme et de la lyse de cellules épithéliales isolées de l’intestin du rat incubées en présence de divers détergents. Toxicology 1:237–248

    PubMed  CAS  Google Scholar 

  • Mitjavila MT, Mitjavila S, Gas N, Derache R (1975) Influence of various surface-active agents on the activity of several enzymes in the brush-border of enterocytes. Toxicol Appl Pharmacol 34:72–82

    PubMed  CAS  Google Scholar 

  • Moffatt RE, Kramer LL, Lerner D, Jones R (1975) Studies on dioctyl sodium sulfosuccinate toxicity: clinical, gross and microscopic pathology in the horse and guinea pig. Can J Comp Med 39:434–441

    PubMed  CAS  Google Scholar 

  • Moore JD, Zatzmann ML, Overack DE (1971) Effects of synthetic surfactants on intestinal permeability. Proc Soc Exp Biol Med 137:1135–1139

    PubMed  CAS  Google Scholar 

  • Moreto M, Planas JM, Naftalin RJ (1981) Effects of secretagogues on the K+ permeability of mucosal and serosal borders of rabbit colonic mucosa. Biochim Biophys Acta 648:215–224

    PubMed  CAS  Google Scholar 

  • Mortillaro N, Taylor AE (1976) Interaction of capillary and tissue forces in the cat small intestine. Circ Res 39:348–358

    PubMed  CAS  Google Scholar 

  • Nadai T, Kondo R, Tatematsu A, Sezaki H (1972) Drug-induced histological changes and its consequences on the permeability of the small intestinal mucosa. I. EDTA, tetracycline and sodium laurylsulfate. Chem Pharm Bull (Tokyo) 20:1139–1144

    CAS  Google Scholar 

  • Nadai T, Kume M, Tatematsu A, Sezaki H (1975) Drug induced histological changes and its consequences on the permeability of the small intestinal mucosa. Chem Pharm Bull (Tokyo) 23:543–551

    CAS  Google Scholar 

  • Naito SI, Shioda K, Sawada M, Niki S, Awataguchi M, Mizutani M (1976) Hydrolysis of bis(p-hydroxyphenyl) pyridyl-2-nathane disulphate. I. Presence of arylsulphatase and laxative activity. Chem Pharm Bull 24:1943–1947

    PubMed  CAS  Google Scholar 

  • Nataf C, Desmazures C, Bernier JJ (1979) Mesure de l’entéropathie exsudative provoquée par les laxatifs. Gastroenterol Clin Biol 3:594

    Google Scholar 

  • Nataf C, Desmazures C, Giraudeaux V, Bernier JJ (1981) Etude des pertes intestinales de proteines provoquées par les laxatifs chez l’homme normal. Gastroenterol Clin Biol 5:187–192

    PubMed  CAS  Google Scholar 

  • Nell G, Forth W, Rummel W, Wanitschke R (1972) Abolition of the apparent Na+ impermeability of the colon mucosa by deoxycholate. In: Back P, Gerok W (eds) Bile acids in human diseases. Schattauer, Stuttgart, pp 263–267

    Google Scholar 

  • Nell G, Overhoff H, Forth W, Kulenkampff H, Specht W, Rummel W (1973a) Influx and efflux of sodium in jejunal and colonic segments of rats under the influence of oxyphenisatin. Naunyn Schmiedebergs Arch Pharmacol 277:53–60

    PubMed  CAS  Google Scholar 

  • Nell G, Overhoff H, Forth W, Rummel W (1973b) The influence of water gradients and oxyphenisatin on the net transfer of sodium and water in the rat colon. Naunyn Schmiedebergs Arch Pharmacol 277:363–372

    PubMed  CAS  Google Scholar 

  • Nell G, Forth W, Freiberger T, Rummel W, Wanitschke R (1975) Characterization of permeability changes by test molecules in rat colonic mucosa under the influence of sodium deoxycholate. In: Matern S, Hackenschmidt J, Back P, Gerok W (eds) Advances in bile acid research. Schattauer, Stuttgart, pp 419–424

    Google Scholar 

  • Nell G, Forth W, Rummel W, Wanitschke R (1976a) Pathway of sodium moving from blood to intestinal lumen under the influence of oxyphenisatin and deoxycholate. Naunyn Schmiedebergs Arch Pharmacol 293:31–37

    PubMed  CAS  Google Scholar 

  • Nell G, Forth W, Rummel W, Wanitschke R (1976b) Pathway of sodium moving from blood to intestinal lumen under influence of oxyphenisatin and deoxycholate. In: Robinson JWL (ed) Intestinal ion transport. MTP Press, Lancaster, pp 189–196

    Google Scholar 

  • Nell G, Rummel W, Wanitschke R (1977) Characterization of the paracellular pathway by test molecules in colonic mucosa. In: Kramer M, Lauterbach F (eds) Intestinal permeation. Excerpta Medica, Amsterdam, pp 413–418

    Google Scholar 

  • Nell G, Goerg KJ, Rummel W (1981) Effect of bile acids on the permeability of the colon. In: Demling L, Soergel KH, Ruppin H, Domschke W (eds) Diarrhea. Thieme, Stuttgart

    Google Scholar 

  • Nellans HN, Schultz SG (1976) Relations among transepithelial sodium transport, potassium exchange, and cell volume in rabbit ileum. J Gen Physiol 68:441–463

    PubMed  CAS  Google Scholar 

  • Nissim JA (1960a) Reduction of intestinal absorption by a synthetic chemical. Nature 185:222–224

    PubMed  CAS  Google Scholar 

  • Nissim JA (1960b) Reduction of the intestinal absorption of glucose, methionine and sodium butyrate by the cation trimethylhexadecylammonium. Nature 187:308–310

    PubMed  CAS  Google Scholar 

  • Nissim JA (1961) Enhancement of inhibition of intestinal absorption by cetrimide-phloridzin combination. Nature 191:37–39

    PubMed  CAS  Google Scholar 

  • Nissim JA (1962) Enhancement of the intestinal absorption of glucose by small doses of cetrimide and sodium lauryl sulphate. Nature 196:1106–1107

    PubMed  CAS  Google Scholar 

  • Nissim JA (1964) Mechanism of intestinal absorption: the concept of a spectrum of intracellular plasma. Nature 204:148–151

    PubMed  CAS  Google Scholar 

  • Nordström C (1972) Enzymic release of enteropepdidase from isolated rat duodenal brush borders. Biochim Biophys Acta 268:711–718

    PubMed  Google Scholar 

  • Nunn AS, Baker RA, Searle GW (1963) Inhibition of intestinal glucose absorption by bile salt. Life Sci 2:646–650

    CAS  Google Scholar 

  • Oddsson E, Rask-Madsen J, Krag E (1977a) Effect of glycochenodeoxycholic acid on unidirectional transepithelial fluxes of electrolytes in the perfused human ileum. Scand J Gastroenterol 12:199–204

    PubMed  CAS  Google Scholar 

  • Oddson E, Rask-Madsen J, Krag E (1977b) Transmural ionic fluxes and electrical potential difference in the human jejunum during perfusion with a dihydroxy bile acid. Scand J Gastroenterol 12:453–456

    Google Scholar 

  • Øye I, Sutherland EW (1966) The effect of epinephrine and other agents on adenyl cyclase in cell membrane of avian erythrocytes. Biochim Biophys Acta 127:347–354

    PubMed  Google Scholar 

  • Parkinson TM, Olson JA (1963) Inhibitory effects of bile acids on the uptake metabolism and transport of water soluble substances in the small intestine of the rat. Life Sci 2:393–398

    CAS  Google Scholar 

  • Parkinson TM, Olson JA (1964) Inhibitory effects of bile acids on adenosine triphosphatase, oxygen consumption, and the transport and diffusion of water soluble substances in the small intestine of the rat. Life Sci 3:107–112

    PubMed  CAS  Google Scholar 

  • Parsons DS, Paterson CR (1965) Fluid and solute transport across rat colonic mucosa. Q J Exp Physiol 50:220–231

    CAS  Google Scholar 

  • Peters HC (1942) The influence of bile salts on active intestinal absorption of chloride. Am J Physiol 136:340–345

    CAS  Google Scholar 

  • Phillips SF, Gaginella TS (1977) Intestinal secretion as a mechanism in diarrheal disease. In: Glass GBJ (ed) Progress in gastroenterology, vol 3. Grune and Stratton, New York, pp 481–518

    Google Scholar 

  • Phillips SF, Gaginella TS (1979) Effects of fatty acids and bile acids on intestinal water and electrolyte transport. In: Binder HJ (ed) Mechanisms of intestinal secretion. Liss, New York, pp 287–294

    Google Scholar 

  • Phillips RA, Love AHG, Mitchell TG, Neptune EM Jr (1965) Cathartics and the sodium pump. Nature 206:1367–1368

    PubMed  CAS  Google Scholar 

  • Pope JL, Parkinson TM, Olson JM (1966) Action of bile salts on the metabolism and transport of water soluble nutrients by perfused rat jejunum in vitro. Biochim Biophys Acta 130:218–232

    CAS  Google Scholar 

  • Powell DW, Tapper EJ (1979) Intestinal ion transport: cholinergic-adrenergic interactions. In: Binder HJ (ed) Mechanisms of intestinal secretion. Liss, New York, pp 175–192

    Google Scholar 

  • Powell DW, Lawrence BA, Morris SM, Etheridge DR (1980) Effect of Phenolphthalein on in vitro rabbit ileal electrolyte transport. Gastroenterology 78:454–463

    PubMed  CAS  Google Scholar 

  • Rachmilewitz D, Karmeli F (1979) Effect of bisacodyl and dioctyl sodium sulfosuccinate on rat intestinal prostaglandin E2 content/Na-K-ATPase and adenyl cyclase activities. Gastroenterology 76:1221

    Google Scholar 

  • Rachmilewitz D, Karmeli F, Okon E (1980) Effects of bisacodyl on cAMP and prostaglandin E2 contents, (Na + K) ATPase, adenyl cyclase, and phosphodiesterase activities of rat intestine. Dig Dis Sci 25:602–608

    PubMed  CAS  Google Scholar 

  • Rachmilewitz D, Karmeli F, Okon E (1981) Effect of dioctyl sodium sulfosuccinate on cyclic AMP and prostaglandin E2 contents, and Na, K, -ATPase, adenylate cyclase and phosphodiesterase activities in rat intestine. Isr J Med Sci 17:28–35

    PubMed  CAS  Google Scholar 

  • Racusen LC, Binder HJ (1979) Ricinoleic acid stimulation of active anion secretion in colonic mucosa of the rat. J Clin Invest 63:743–749

    PubMed  CAS  Google Scholar 

  • Rampton DS, Breuer NF, Vaja SG, Sladen GE, Dowling RH (1981) Role of Prostaglandines in bile salt-induced changes in rat colonic structure and function. Clin Sci 61:641–648

    PubMed  CAS  Google Scholar 

  • Read NW, Krejs GJ, Jones VE, Fordtran JS (1979) Effect of ouabain on Na, K-ATPase and electrolyte transport in the dog ileum in vivo. Gut 20:356–365

    PubMed  CAS  Google Scholar 

  • Reuss L, Weinman SA, Grady TP (1980) Intracellular K+-activity and its relation to baso-lateral ion transport in Necturus gall bladder epithelium. J Gen Physiol 76:33–52

    PubMed  CAS  Google Scholar 

  • Reynell PC, Spray GH (1958) Chemical gastroenteritis in the rat. Gastroenterology 34:867–873

    PubMed  CAS  Google Scholar 

  • Rosenberg IH, Hardison WG (1965) Mechanism of bile salt inhibition of intestinal transport. Fed Proc 24:375

    Google Scholar 

  • Roy CC, Dubois RS, Phillipon F (1970) Inhibition by bile salts of the jejunal transport of 3-O-methyl glucose. Nature 225:1055–1056

    PubMed  CAS  Google Scholar 

  • Rummel W (1976) Biologische Membranfunktionen in Gesundheit und Krankheit, Wirkungen von Gallensäuren und Laxantien auf den mucosalen Transfer. Bull Schweiz Akad Med Wiss 32:233–250

    PubMed  CAS  Google Scholar 

  • Rummel W, Nell G, Wanitschke R (1975) Action mechanisms of antiabsorptive and hydragogue drugs. In: Csaky TZ (ed) Intestinal absorption and malabsorption. Raven, New York, pp 209–227

    Google Scholar 

  • Russel RI, Allan JG, Gerskowitch VP, Cochran KM (1973) The effect of conjugated and unconjugated bile acids on water and electrolyte absorption in the human jejunum. Clin Sci Mol Med 45:301–311

    Google Scholar 

  • Saunders DR (1975) Regional differences in the effect of bile salts on absorption by rat small intestine in vivo. J Physiol (Lond) 250:373–383

    CAS  Google Scholar 

  • Saunders DR, Hedges JR, Sillery J, Esther L, Matsumura K, Rubin CE (1975a) Morphological and functional effects of bile salts on rat colon. Gastroenterology 68:1236–1245

    PubMed  CAS  Google Scholar 

  • Saunders DR, Sillery J, Rachmilewitz D (1975b) Effect of dioctyl sodium sulfosuccinate on structure and function of rodent and human intestine. Gastroenterology 69:380–386

    PubMed  CAS  Google Scholar 

  • Saunders DR, Sillery J, Rachmilewitz D, Rubin CE, Tytgat GN (1977) Effect of bisacodyl on the structure and function of rodent and human intestine. Gastroenterology 72:849–856

    PubMed  CAS  Google Scholar 

  • Saunders DR, Sillery J, Surawica C, Tytgat GN (1978) Effect of Phenolphthalein on the function and structure of rodent and human intestine. Dig Dis Sci 23:909–913

    CAS  Google Scholar 

  • Scarpello JHB, Cary BA, Sladen GE (1978) Effects of ileol and caecal resection on the colon of the rat. Clin Sci Mol Med 54:241–249

    PubMed  CAS  Google Scholar 

  • Schiffl H, Loeschke K (1977) Induction of Na-K-ATPase in plasma membranes of rat cecum mucosa by diet: time course and kinetics. Pfluegers Arch 372:83–90

    CAS  Google Scholar 

  • Schmid W (1952) Zum Wirkungsmechanismus diätetischer und medikamentöser Darmmittel. Arzneimittel-Forsch 2:6–20

    CAS  Google Scholar 

  • Schreiner J, Nell G, Loeschke K (1980) Effect of diphenolic laxatives on Na+-K +-activated ATPase and cyclic nucleotide content of rat colon mucosa in vivo. Naunyn Schmiedebergs Arch Pharmacol 313:249–255

    PubMed  CAS  Google Scholar 

  • Schultz OE, Fedders S, Holm WD, Schulze V (1974) Zusammenhänge zwischen Konstitution und laxativer Wirkung bei Triarylmethanderivaten. Arzneimittel-Forsch 24:1933–1941

    CAS  Google Scholar 

  • Schultz SG (1977) Sodium-coupled solute transport by small intestine: a status report. Am J Physiol 233:E249–E254

    PubMed  CAS  Google Scholar 

  • Schultz SG, Frizzell RA, Nellans HN (1974) Ion transport by mammalian small intestine. Annu Rev Physiol 36:51–91

    PubMed  CAS  Google Scholar 

  • Schultz SG, Fuisz RE, Curran PF (1966) Amino acid and sugar transport in rabbit ileum. J Gen Physiol 49:849–866

    PubMed  CAS  Google Scholar 

  • Schwiter EJ, Hepner GW, Rose RC (1975) Effect of bile acids on electrical properties of rat colon: evaluation of an in vitro model for secretion. Gut 16:477–481

    PubMed  CAS  Google Scholar 

  • Sheerin HE, Field M (1977) Ileal mucosal cyclic AMP and Cl secretion: serosal vs. mucosal addition of cholera toxin. Am J Physiol 232:E210–E215

    PubMed  CAS  Google Scholar 

  • Simon B, Kather H (1980) Interaction of laxatives with enzymes of cyclic AMP metabolism from human colonic mucosa. Eur J Clin Invest 10:231–234

    PubMed  CAS  Google Scholar 

  • Simon B, Cyzgan P, Stiehl A, Kather H (1978) Human colonic adenylate cyclase: effects of bile acis. Eur J Clin Invest 8:321–323

    PubMed  CAS  Google Scholar 

  • Sladen GE, Harries JT (1972) Studies on the effects of unconjugated dihydroxy bile salts on rat small intestinal function in vivo. Biochim Biophys Acta 288:443–456

    PubMed  CAS  Google Scholar 

  • Specht W (1977) Morphology of the intestinal wall. Its mucosa membrane under normal and experimental conditions. In: Kramer M, Lauterbach F (eds) Intestinal permeation. Excerpta Medica, Amsterdam, pp 4–40

    Google Scholar 

  • Stewart JJ, Gaginella TS, Olsen WA, Bass P (1975) Inhibitory actions of laxatives on motility and water and electrolyte transport in the gastrointestinal tract. J Pharmacol Exp Ther 192:458–467

    PubMed  CAS  Google Scholar 

  • Straub W, Triendl E (1934) Über die Wirkung des Senna-Infuses auf den Dickdarm der Katze. Naunyn Schmiedebergs Arch Pharmacol 175:528–535

    Google Scholar 

  • Sugimura F (1974a) Studies of intestinal absorption under pathological conditions. I. Light microscopic studies of intestinal damage caused by sodium lauryl sulfate. Nihon Univ J Med 16:25–37

    Google Scholar 

  • Sugimura F (1974b) Studies of intestinal absorption under pathological conditions. II. Electron microscopic studies of intestinal damage caused by sodium lauryl sulfate. Nihon Univ J Med 16:39–50

    Google Scholar 

  • Sund RB (1975) The effect of dodecylsulphate upon net sodium and water transport from tied jejunal loops in anaesthetized rats. Acta Pharmacol Toxicol (Copenh) 37:282–296

    CAS  Google Scholar 

  • Sund RB (1978) Glucose and cation transport in rat jejunum, ileum and colon in vivo: control experiments, and effect of cationic surfactant. Acta Pharmacol Toxicol (Copenh) 42:117–124

    CAS  Google Scholar 

  • Sund RB, Hillestad B (1978) Diphenolic laxatives and intestinal cAMP: experiments with oxyphenisatin in the rat in vivo. Acta Pharmacol Toxicol (Copenh) 42:321–322

    CAS  Google Scholar 

  • Sund RB, Hillestad B (1981) Studies on hydragogue drugs: effect of surfactants on cAMP levels in the rat jejunal mucosa in short time experiments in vivo. Acta Pharmacol Toxicol (Copenh) 49:110–115

    CAS  Google Scholar 

  • Sund RB, Hillestad B (1982) Uptake, conjugation and transport of some laxative diphenoles by everted sacs of the rat jejunum and stripped colon. Acta Pharmacol Toxicol (Copenh) 51:377–387

    CAS  Google Scholar 

  • Sund RB, Jacobsen DN (1978) In vivo reversibility of the jejunal glucose and cation-transport alteration caused by intraluminal surfactants in the rat. Acta Pharmacol Toxicol (Copenh) 43:339–345

    CAS  Google Scholar 

  • Sund RB, Matheson I (1978) Glucose and cation transport in rat jejunum, ileum and colon in vivo: effects of anionic and nonionic surfactants, and of desoxycholate. Acta Pharmacol Toxicol (Copenh) 42:253–258

    CAS  Google Scholar 

  • Sund RB, Olsen G (1981) Net sodium and glucose transport in the jejunum, ileum and colon of anaesthetized rats in response to intraluminal theophylline and anionic surfactants. Acta Pharmacol Toxicol (Copenh) 49:65–71

    CAS  Google Scholar 

  • Sund RB, Hol L, Storbråten A (1979) Studies in the rat on the absorption, biliary excretion, laxative action and interference with intestinal transport of some oxyphenisatin derivatives. Acta Pharmacol Toxicol (Copenh) 44:251–259

    CAS  Google Scholar 

  • Sund RB, Nell G, Andres H, Rummel W (1980) Deoxycholic acid and synthetic surfactants: effect on net sodium and water transport, 51Cr EDTA permeability and bioelectrical parameters in the isolated colonic mucosa of the rat. Gastroenterol Biol Clin 5:124

    Google Scholar 

  • Sund RB, Songedal K, Harestad T, Salvesen B (1981) Enterohepatic circulation, urinary excretion and laxative action of some bisacodyl derivatives after intragastric administration in the rat. Acta Pharmacol Toxicol (Copenh) 48:73–80

    CAS  Google Scholar 

  • Sund RB, Roland M, Kristiansen S, Salvesen B (1982) Biliary excretion of bisacodyl and picosulphate in man: studies in gallstone patients after biliary tract surgery. Acta Pharmacol Toxicol (Copenh) 50:50–57

    CAS  Google Scholar 

  • Takagi T, Takeda M (1979) Chenodeoxycholic acid-induced diarrhea in rats: effects of atropine and codeine. Arch Int Pharmacodyn Ther 240:328–339

    PubMed  CAS  Google Scholar 

  • Taub M, Bonorris G, Chung A, Coyne MJ, Schoenfield LJ (1977) Effect of propranolol on bile acid- and cholera enterotoxin-stimulated cAMP and secretion in rabbit intestine. Gastroenterology 72:101–105

    PubMed  CAS  Google Scholar 

  • Taub M, Coyne MJ, Bonorris GG, Chung A, Coyne B, Schoenfield LJ (1978) Inhibition by propranolol of bile acid- and PGE1-stimulated cAMP and intestinal secretion. Am J Gastroenterol 70:129–135

    PubMed  CAS  Google Scholar 

  • Taylor CB (1963) The effect of cetyltrimethylammonium bromide and some related compounds on transport and on metabolism in the intestine of the rat in vitro. J Physiol (Lond) 165:199–218

    CAS  Google Scholar 

  • Teem MV, Phillips SF (1972) Perfusion of the hamster jejunum with conjugated and unconjugated bile acids: inhibition of water absorption and effects on morphology. Gastroenterology 62:261–267

    PubMed  CAS  Google Scholar 

  • Tomkin GH, Love AHG (1972) Investigation of glucose transport and 57Co Vitamin B12 uptake using the everted sac technique with histological examination of the sacs after suspension in bile salts and indole. Digestion 6:129–138

    PubMed  CAS  Google Scholar 

  • van Os FHL (1976) Anthraquinone derivatives in vegetable laxatives. Pharmacology 14 [Suppl 1]:7–17

    PubMed  Google Scholar 

  • van Os CH, Wiedner G, Wright EM (1979) Volume flows across gall bladder epithelium induced by small hydrostatic and osmotic gradients. J Membr Biol 49:1–20

    PubMed  Google Scholar 

  • Vasseur M, Ferard G, Pousse A (1978) Rat intestinal brush border enzymes release by deoxycholate in vivo. Pfluegers Arch 373:133–138

    CAS  Google Scholar 

  • Vasseur M, Pousse A, Ferard G (1980) The relationship between surface tension and release of rat jejunal brush border membrane hydrolases induced by sodium deoxycholate. Reprod Nutr Develop 20 (5A):1461–1466

    CAS  Google Scholar 

  • Verhaeren E (1980) Mitochondrial uncoupling activity as a possible base for a laxative and antipsoriatic effect. Pharmacology 20:43–49

    PubMed  CAS  Google Scholar 

  • Verhaeren EHC, Dreesen MJ, Lemli JA (1981) Influence of 1,8-dihydroxyanthraquinone and loperamide on the paracellular permeability across colonic mucosa. J Pharm Pharmacol 33:526–528

    PubMed  CAS  Google Scholar 

  • Vogt W, Schmidt G, Dakhil T (1965) Die Bedeutung der Glucuronidbildung und -spaltung für das Schicksal von Dihydroxy-diphenylpyridylmethan. Naunyn Schmiedebergs Arch Pharmacol 250:488–495

    CAS  Google Scholar 

  • Volpe BT, Binder HJ (1975) Bile salt alteration of ion transport across jejunal mucosa. Biochim Biophys Acta 394:597–604

    PubMed  CAS  Google Scholar 

  • Wall MJ, Baker RD (1974) Intestinal transmural electrical properties: effects of conjugated bile salt in vitro. Am J Physiol 227:499–506

    PubMed  CAS  Google Scholar 

  • Wanitschke R (1980a) Influence of rhein on electrolyte and water transfer in the isolated rat colonic mucosa. Pharmacology 20 [Suppl 1]:21–26

    PubMed  CAS  Google Scholar 

  • Wanitschke R (1980b) Intestinal filtration as a consequence of increased mucosal hydraulic permeability. Klin Wochenschr 58:267–278

    PubMed  CAS  Google Scholar 

  • Wanitschke R, Ammon HV (1978) Effects of dihydroxy bile acids and hydroxy fatty acids on the absorption of oleic acid in the human jejunum. J Clin Invest 61:178–186

    PubMed  CAS  Google Scholar 

  • Wanitschke R, Soergel KH (1975) Effect of deoxycholate and oxyphenisatin on isolated rat colonic mucosa. Clin Res 23:520A

    Google Scholar 

  • Wanitschke R, Nell G, Rummel W, Specht W (1977a) Transfer of sodium and water through isolated rat colonic mucosa under the influence of deoxycholate and oxyphenisatin. Naunyn Schmiedebergs Arch Pharmacol 297:185–190

    PubMed  CAS  Google Scholar 

  • Wanitschke R, Nell G, Rummel W (1977b) Influence of hydrostatic pressure gradients on net transfer of sodium and water across isolated rat colonic mucosa. Naunyn Schmiedebergs Arch Pharmacol 297:191–194

    PubMed  CAS  Google Scholar 

  • Weist FR, Birkner H (1974) Zur Pharmakokinetik von Bisacodyl (Dulcolax) nach oraler und rektaler Applikation. Therapiewoche 24:2281–2283

    Google Scholar 

  • Whitmore DA, Brookes LG, Wheeler KP (1979) Relative effects of different surfactants on intestinal absorption and the release of proteins and phospholipids from the tissue. J Pharm Pharmacol 31:277–283

    PubMed  CAS  Google Scholar 

  • Wingate DL (1974) The effect of glycin-conjugated bile acids on net transport and potential difference across isolated rat jejunum and ileum. J Physiol (Lond) 242:189–207

    CAS  Google Scholar 

  • Wingate DL, Phillips SF, Hofmann AF (1973a) Effect of glycine-conjugated bile acids with and without lecithin on water and glucose absorption in perfused human jejunum. J Clin Invest 52:1230–1236

    PubMed  CAS  Google Scholar 

  • Wingate DL, Krag E, Mekhjian HS, Phillips SF (1973b) Relationship between ion and water movement in the human jejunum, ileum and colon during perfusion with bile acids. Clin Sci Mol Med 45:593–606

    PubMed  CAS  Google Scholar 

  • Winne D, Görig H (1982) Appearance of 14C-polyethylene glycol 4000 in intestinal venous blood: influence of osmolarity and laxatives, effect on net water flux determination. Naunyn Schmiedebergs Arch Pharmacol 321:149–156

    PubMed  CAS  Google Scholar 

  • Wright EM, Mircheff AK, Hanna SD, Harms V, van Os CH, Walling MW, Sachs G (1979) The dark side of the intestinal epithelium: the isolation and characterisation of basolateral membranes. In: Binder HJ (ed) Mechanisms of intestinal secretion. Liss, New York, pp 117–130

    Google Scholar 

  • Yau WM, Makhlouf GM (1974) Different effects of hormonal peptides and cyclic adenosine 3′,5′-monophosphate on colonic transport in vitro. Gastroenterology 67:662–667

    PubMed  CAS  Google Scholar 

  • Yonezawa M (1977) Basic studies of the intestinal absorption. I. Changes in the rabbit intestinal mucosa after exposure to various surfactants. Nihon Univ J Med 19:125–141

    CAS  Google Scholar 

  • Zatzmann ML, Moore JD (1968) Time to achieve steady state luminal glucose concentration during intestinal lavage. J Appl Physiol 25:95–97

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nell, G., Rummel, W. (1984). Action Mechanisms of Secretagogue Drugs. In: Csáky, T.Z. (eds) Pharmacology of Intestinal Permeation II. Handbook of Experimental Pharmacology, vol 70 / 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69508-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69508-7_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69510-0

  • Online ISBN: 978-3-642-69508-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics