Skip to main content

Strategies for Maximizing Nutrient Uptake in Two Mediterranean Ecosystems of Low Nutrient Status

  • Conference paper
Mediterranean-Type Ecosystems

Part of the book series: Ecological Studies ((ECOLSTUD,volume 43))

Abstract

The problems of nutrient uptake by plants in mediterranean ecosystems are centred largely on restriction of effective rainfall to only part of the year, usually under six months, with that part also being the coolest. These limitations are intensified in those ecosystems with strongly leached soils derived from inherently infertile parent material (see Chapter 7, this volume). As prime examples, the mediterranean regions of South Africa and Western Australia are recognized as the most nutrient-impoverished of the six mediterranean ecosystems (Beadle 1966; Specht 1979; Cowling and Campbell 1980). Plant losses through drought (Marloth 1915; Hnatiuk and Hopkins 1980) and nutrient-deficiency symptoms (Schütte 1960; chlorosis on some soils) are indicators of the constraints of the edaphic environment in South African fynbos and Australian heath.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abbott LK, Robson AD (1979) A quantitative study of the spores and anatomy of mycorrhizas formed by a species of Glomus, with reference to its taxonomy. Australian Journal of Botany 27: 363–375.

    Google Scholar 

  • Adams RM, Smith GW (1977) An SEM survey of the five carnivorous pitcher plant genera. American Journal of Botany 64: 265–272.

    Google Scholar 

  • Ansiaux JR (1958) Sur l’alimentation minérale des phanérogemes parasites. Bulletin de l’Académie royal de Belgique, Classe des Sciences 5 séries 44: 787–793.

    CAS  Google Scholar 

  • Ashton DH (1976) Studies on the mycorrhizae of Eucalyptus regnans F. Muell. Australian Journal of Botany 24: 723–774.

    Google Scholar 

  • Baird AM (1977) Regeneration after fire in King’s Park, Western Australia. Journal of the Royal Society of Western Australia 60: 1–22.

    Google Scholar 

  • Barlow BA, Wiens D (1977) Host-parasite resemblance in Australian mistletoes: the case for cryptic mimicry. Evolution 31: 69–84.

    Google Scholar 

  • Barrow NJ (1977) Phosphorus uptake and utilization by tree seedlings. Australian Journal of Botany 25: 571–584.

    CAS  Google Scholar 

  • Bartlett EM, Lewis DH (1973) Surface phosphatase activity of mycorrhizal roots of beech. Soil Biology and Biochemistry 5: 249–257.

    CAS  Google Scholar 

  • Baylis GT (1967) Experiments on the ecological significance of phycomycetous mycorrhizas. New Phytologist 66: 231–243.

    Google Scholar 

  • Baylis GT (1975) The magnolioid root and mycotrophy in root systems derived from it. In: Sanders FE, Mosse B, Tinker PB (eds) Endomycorrhizas. Academic Press, London, pp 373–389.

    Google Scholar 

  • Beadle NC (1966) Soil phosphate and its role in molding segments of the Australian flora and vegetation, with special reference to xeromorphy and sclerophylly. Ecology 47: 992–1007.

    Google Scholar 

  • Becking JH (1970) Plant-endophyte symbiosis in non-leguminous plants. Plant and Soil 32: 611–654.

    CAS  Google Scholar 

  • Beresford RT (1979) Nutrient imbalances in tomato plants and acid phosphatase activity in the leaves. Journal of Science, Food and Agriculture 30: 275–280.

    Google Scholar 

  • Bergerson FJ (1974) Formation and function of bacteroids. In: Quispel A (ed) The biology of nitrogen fixation. North-Holland Publishing Company, Amsterdam, pp 473–498.

    Google Scholar 

  • Bhat KK, Nye PH (1973) Diffusion of phosphate to plant roots in soil: 1. Quantitative autoradiography of the depletion zone. Plant and Soil 38: 161–175.

    CAS  Google Scholar 

  • Boerd G, Thien S (1979) Phosphatase activity and phosphorus availability in the rhizosphere of corn roots. In: Harley JL, Russell RS (eds) The soil-root interface. Academic Press, London, pp 231–242.

    Google Scholar 

  • Bond G, Scott GD (1955) An examination of some symbiotic systems for fixation of nitrogen. Annals of Botany 19: 67–77.

    Google Scholar 

  • Bowen GD (1981) Coping with low nutrients. In: Pate JS, Mccomb AJ (eds) The biology of Australian plants. University of Western Australia Press, Perth, pp 33–64.

    Google Scholar 

  • Bowyer JW, Skerman VB (1968) Production of axenic cultures of soil-borne and endophytic blue-green algae. Journal of General Microbiology 54: 299–306.

    PubMed  CAS  Google Scholar 

  • Campbell EO (1963) Gastrodia minor Petrie, an epiparasite of Manuka. Transactions of the Royal Society of New Zealand 2: 73–81.

    Google Scholar 

  • Campbell EO (1964) The restiad peat bogs at Motumaoho and Moanatuatua. Transactions of the Royal Society of New Zealand 2: 219–2

    Google Scholar 

  • Campbell EO (1981) The water relations of heathlands: morphological adaptation to waterlogging. In: Specht RL (ed) Ecosystems of the world, vol 9B. Heathlands and related shrublands. Analytical studies. Elsevier, Amsterdam. pp 107–109.

    Google Scholar 

  • Carlquist S (1974) Island biology. Columbia University Press, New York, pp 253–330.

    Google Scholar 

  • Carrodus BB (1967) Absorption of nitrogen by mycorrhizal roots of beech. II. Ammonia and nitrate as sources of nitrogen. New Phytologist 66: 1–4.

    CAS  Google Scholar 

  • Chambers CA, Smith SE, Smith FA (1980) Effects of ammonium and nitrate ions on mycorrhizal infection, nodulation and growth of Trifolium subterraneum. New Phytologist 85: 47–62.

    CAS  Google Scholar 

  • Chandler GE, Anderson JW (1976a) Studies on the nutrition and growth of Drosera species with reference to the carnivorous habit. New Phytologist 76: 129–141.

    CAS  Google Scholar 

  • Chandler GE, Anderson JW (1976b) Uptake and metabolism of insect metabolites by leaves on tentacles of Drosera species. New Phytologist 77: 625–634.

    CAS  Google Scholar 

  • Chandler GE, Anderson JW (1976c) Studies on the origin of some hydrolytic enzymes associated with the leaves and tentacles of Drosera species and their role in heterotrophic nutriton. New Phytologist 77: 51–62.

    CAS  Google Scholar 

  • Chapin FS (1980) The mineral nutrition of wild plants. Annual Review of Ecology and Systematics 11: 233–260.

    CAS  Google Scholar 

  • Chilvers GA, Pryor LD (1965) The structure of eucalypt mycorrhizas. Australian Journal of Botany 13: 245–259.

    Google Scholar 

  • Chippendale GM (1981) Distribution density of Eucalyptus species in Australia. Search 12: 131–133.

    Google Scholar 

  • Colquhoun IJ (1979) The water relations of two plant species on the Swan Coastal Plain (abstract). Symposium on the biology of native Australian plants, Aug 11–13, University of Western Australia, Perth, p 47.

    Google Scholar 

  • Cooper KM (1975) Growth responses to the formation of endotrophic mycorrhizas in Solanum, Leptospermum, and New Zealand ferns. In: Sanders FE, Mosse B, Tinker PB (eds) Endomycorrhizas. Academic Press, London, pp 391–408.

    Google Scholar 

  • Cooper KM, Tinker PB (1978) Translocation and transfer of nutrients in vesicular-arbuscular mycorrhizas. New Phytologist 81: 43–52.

    CAS  Google Scholar 

  • Cowling RM, Campbell BM (1980) Convergence in vegetation structure in the mediterranean communities of California, Chile and South Africa. Vegetatio 43: 191–198.

    Google Scholar 

  • Daft MJ (1979) Effects of calcium, phosphorus and potassium on mycorrhizal plants. In: Harley JL, Russell RS (eds) The soil-root interface. Academic Press, London, pp 420–421.

    Google Scholar 

  • Dakin WJ (1919) The West Australian pitcher plant (Cephalotus follicularis) and its physiology. Journal and Proceedings of the Royal Society of Western Australia 4: 37–53.

    Google Scholar 

  • Dixon KW, Pate JS, Bailey WJ (1980) Nitrogen nutrition of the tuberous sundew Drosera erythrorhiza Lindl. with special reference to catch of arthropod fauna by its glandular leaves. Australian Journal of Botany 28: 283–297.

    CAS  Google Scholar 

  • Dodd J, Heddle EM (1981) Root systems of some swamp and banksia woodland plants of the Swan Coastal Plain, Western Australia (abstract). Bulletin of the Ecological Society of Australia 11: 4.

    Google Scholar 

  • Dörr I (1975) Development of transfer cells in higher parasitic plants. In: Aronoff S, Dainty J, Gorham PR, Srivastava LM, Swanson CA (eds) Phloem transport. Plenum Press, New York, pp 177–186.

    Google Scholar 

  • Drew MC, Nye PH (1969) The supply of nutrient ions by diffusion to plant roots in soil. II. The effects of root hairs on the uptake of potassium by roots of rye grass (Lolium multiflorum). Plant and Soil 31: 407–424.

    CAS  Google Scholar 

  • Engin M, Sprent JI (1973) Effects of water stress on growth and nitrogen-fixing activity of Trifolium repens. New Phytologist 72: 117–126.

    CAS  Google Scholar 

  • Finlayson M, Mccomb AJ (1978) Nitrogen fixation in wetlands of southwestern Australia. Search 9: 98–99.

    Google Scholar 

  • George AS (1980) Rhizanthella gardneri R.S. Rogers — the underground orchid of western Australia. American Orchid Society Bulletin 49: 631–646.

    Google Scholar 

  • Gibson AH (1976) Recovery and compensation by nodulated legumes to environmental stress. In: Nutman PS (ed) Symbiotic nitrogen fixation in plants. Cambridge University Press, Cambridge, pp 405–420.

    Google Scholar 

  • Giessler A (1928) Einfluss von Salzlösungen auf die Stärheverarbeitung bie Drosera. Flora 23: 133–190.

    Google Scholar 

  • Gobel F (1975) Some field observations on Nuytsia floribunda (Labill.) R. Br. West Australian Naturalist 29: 50–60.

    Google Scholar 

  • Green PS (1976) Ecological and nutritional aspects of proteoid roots. Hons Thesis. University of Adelaide, South Australia.

    Google Scholar 

  • Greenland DJ (1979) The physics and chemistry of the soil-root interface: some comments. In: Harley JL, Russell RS (eds) The soil-root interface. Academic Press, London, pp 83–98.

    Google Scholar 

  • Grieve BJ, Hellmuth EO (1970) Eco-physiology of Western Australian plants. Oecologia Plantarum 5: 33–68.

    Google Scholar 

  • Grobbelaar N, Strauss JM, Groenewald EG (1971) Non-leguminous seed plants in southern Africa which fix nitrogen symbiotically. Plant and Soil. Special vol, pp 325–334.

    Google Scholar 

  • Grove TS, O’Connell AM, Malajczuk N (1980) Effects of fire on the growth, nutrient content and rate of nitrogen fixation of the cycad Macrozamia riedlei. Australian Journal of Botany 28: 271–281.

    CAS  Google Scholar 

  • Gullan PK (1975) Vegetation at Cranbourne, vol II. PhD Thesis. Monash University, Victoria.

    Google Scholar 

  • Hall IR (1975) Endomycorrhizas of Metrosideros umbelleta and Weinmannia racemosa. New Zealand Journal of Botany 13: 463–472.

    Google Scholar 

  • Halliday J, Pate JS (1976) Symbiotic nitrogen fixation by coralloid roots of the cycad Macrozamia riedlei: physiological characteristics and ecological significance. Australian Journal of Plant Physiology 3: 349–358.

    CAS  Google Scholar 

  • Hardy RW, Burns RC, Holsten RD (1973) Applications of the acetylene-ethylene assay for measurement of nitrogen fixation. Soil Biology and Biochemistry 5: 47–81.

    CAS  Google Scholar 

  • Harley JL (1969) The biology of mycorrhiza. Leonard Hill, London, 334 pp.

    Google Scholar 

  • Harley JL (1975) Problems in mycotrophy. In: Sanders FE, Mosse B, Tinker PB (eds) Endomycorrhizas. Academic Press, London, pp 1–24.

    Google Scholar 

  • Hartel O (1937) Über den Wasserhaushalt von Viscum album L. Bericht der Deutschen botanischen Gesellschaft 59: 136–148.

    Google Scholar 

  • Haxen P (1978) Aspects of nodule physiology of some southwestern Cape leguminous species. Hons Thesis. University of Cape Town.

    Google Scholar 

  • Hayman DS (1974) Plant growth responses to vesicular-arbuscular mycorrhiza. New Phytologist 73: 71–80.

    Google Scholar 

  • Head GC (1964) A study of “exudation” from the root hairs of apple roots by time-lapse cine-photomicrography. Annals of Botany 28: 495–498.

    Google Scholar 

  • Hellmuth EO (1971) Eco-physiological studies in plants in arid and semi-arid regions in Western Australia. IV. Comparison of the field physiology of the host, Acacia grasbyi and its hemiparasite, Amyema nestor under optimal and stress conditions. Journal of Ecology 59: 351–363.

    Google Scholar 

  • Herbert DA (1919) Nuytsia floribunda (the Christmas tree) — its structure and parasitism. Journal of Proceedings of the Royal Society of Western Australia 5: 72–88.

    Google Scholar 

  • Herbert DA (1925) The root parasitism of Western Australian Santalaceae. Journal of the Royal Society of Western Australia 11: 127–149.

    Google Scholar 

  • Herrera R, Merida T, Stark N (1978) Direct phosphorus transfer from leaf litter to roots. Naturwissenschaften 65: 208–209.

    CAS  Google Scholar 

  • Hewitt EJ, Smith TA (1975) Plant mineral nutrition. English University Press, London, 298 pp.

    Google Scholar 

  • Hingston FJ (1977) Sources of, and sinks for, nutrients in forest ecosystems. In: Nutrient cycling in indigenous forest ecosystems. CSIRO, Division of Land Resources Management, Perth. pp 41–53.

    Google Scholar 

  • Hingston FJ, Malajczuk N, Grove TS (1982) N2-fixation (ascetylene reduction) by legume seedlings following an intense fire in jarrah forest. Journal of Applied Ecology (in press).

    Google Scholar 

  • Hnatiuk RJ, Hopkins AJ (1980) Western Australian species-rich kwongan (sclerophyllous shrubland) affected by drought. Australian Journal of Botany 28: 573–586.

    Google Scholar 

  • Jeffrey DW (1967) Phosphate nutrition of Australian heath plants. I. The importance of proteoid roots in Banksia (Proteaceae). Australian Journal of Botany 15: 403–411.

    CAS  Google Scholar 

  • Johnson PN (1973) Mycorrhizae of coniferous-broadleaved forest. PhD Thesis. Otago University, New Zealand, 301 pp.

    Google Scholar 

  • Jongens-Roberts SM, Brown GJ, Mitchell DT (1980) Studies on phosphorus cycling processes in the fynbos biome. CSIR, Fynbos Biome Annual Report No 2.

    Google Scholar 

  • Juniper BE, Gilchrist AJ, Robins AJ (1977) Some features of secretory systems in plants. Histochemical Journal 9: 659–680.

    PubMed  CAS  Google Scholar 

  • Kana TM, Tjepkema JD (1978) Nitrogen fixation associated with Scirpus atrovirens and other non-nodulated plants in Massachusetts. Canadian Journal of Botany 56: 2636–2640.

    CAS  Google Scholar 

  • Kimber PC (1974) The root system of jarrah (Eucalyptus marginata) Research Paper No 14. Forests Department, Perth, 5 pp.

    Google Scholar 

  • Klaren CH, Janssen B (1976) Physiological changes in the hemiparasite Rhinanthus serotinus before and after attachment. Physiologia Plantarum 42: 151–155.

    Google Scholar 

  • Kuijt K (1969) The biology of flowering parasitic plants. University of California Press, Berkeley, 246 pp.

    Google Scholar 

  • Lamont B (1972a) The morphology and anatomy of proteoid roots in the genus Hakea. Australian Journal of Botany 20: 155–174.

    Google Scholar 

  • Lamont B (1972b) The effect of soil nutrients on the production of proteoid roots by Hakea species. Australian Journal of Botany 20: 27–40.

    CAS  Google Scholar 

  • Lamont B (1972c) ‘Proteoid’ roots in the legume Viminaria juncea. Search 3: 90–91.

    Google Scholar 

  • Lamont B (1973) Factors affecting the distribution of proteoid roots within the root systems of two Hakea species. Australian Journal of Botany 21: 165–187.

    CAS  Google Scholar 

  • Lamont B (1974) The biology of dauciform roots in the sedge Cyathochaete avenacea. New Phytologist 73: 985–996.

    Google Scholar 

  • Lamont B (1976a) The effects of seasonality and waterlogging on the root systems of a number of Hakea species. Australian Journal of Botany 24: 691–702.

    Google Scholar 

  • Lamont B (1976b) A biological survey and recommendations for rehabilitating a portion of Reserve 31030 to be mined for heavy minerals during 1975-81. WAIT-Aid Ltd., Perth, 61 pp.

    Google Scholar 

  • Lamont B (1977) Root parasitism of Hakea sulcata by Nuytsia floribunda. West Australian Naturalist 13: 201–202.

    Google Scholar 

  • Lamont B (1979) Root systems of the Myrtaceae. Australian Plants 10: 74–78.

    Google Scholar 

  • Lamont B (1980a) Proteoid roots in the South African Proteaceae. CSIR, Fynbos Biome Annual Report No 2, 31 pp.

    Google Scholar 

  • Lamont B (1980b) Blue-green algae in nectar of Banksia aff. sphaerocarpa. West Australian Naturalist 14: 193–194.

    Google Scholar 

  • Lamont B (1981a) Specialized roots of non-symbiotic origin in heathlands. In: Specht RL (ed) Ecosystems of the world, vol 9B. Heathlands and related shrublands. Analytical studies. Elsevier, Amsterdam, pp 183–195.

    Google Scholar 

  • Lamont B (1981b) Morphometrics of the aerial roots of Kingia australis (Liliales). Australian Journal of Botany 29: 81–96.

    Google Scholar 

  • Lamont B (1981c) Autografting of roots and stems in Eucalyptus and of rhizomes in Nuytsia floribunda. West Australian Naturalist 15: 26–28.

    Google Scholar 

  • Lamont B (1981d) Availability of water and inorganic nutrients in the persistent leaf bases of the grasstree Kingia australis and the uptake and translocation of labelled phosphate by the embedded aerial roots. Physiologia Plantarum 52: 181–186.

    CAS  Google Scholar 

  • Lamont B (1981e) A botanist in South Africa, 1980: study leave report. School of Biology, Western Australian Institute of Technology, 22 pp.

    Google Scholar 

  • Lamont B (1981f) Understorey suppression by Eucalyptus wandoo (abstract). Conference on the Biology of Eucalyptus. King’s Park and Botanic Garden, Perth. p 4.

    Google Scholar 

  • Lamont B (1982a) Mineral nitrition of mistletoes. In: Calder DM, Berndhart P (eds) The biology of mistletoes. Academic Press, London. In press.

    Google Scholar 

  • Lamont B (1982b) Specialised roots in the genus Acacia: a review. Mulga Research Centre Annual Report 5: 9–11.

    Google Scholar 

  • Lamont B (1982c) The reproductive biology of Grevillea leucopteris (Proteaceae), including reference to its glandular hairs and colonizing potential. Flora 172: 1–20.

    Google Scholar 

  • Lamont B, Lange BJ (1976) “Stalagmiform” roots in limestone caves. New Phytologist 76: 353–360.

    Google Scholar 

  • Lamont B, Downes S (1979) The longevity, flowering and fire history of the grasstrees Xanthorrhoea preissii and Kingia australis. Journal of Applied Ecology 16: 893–899.

    Google Scholar 

  • Lamont B, Southall KJ (1982a) Biology of the mistletoe Amyema preissi on road verges and undisturbed vegetation. Search 13: 87–88.

    Google Scholar 

  • Lamont B, Southall KJ (1982b) Distribution of mineral nutrients between the mistletoe Amyema preissi and its host Acacia acuminata. Annals of Botany 49: 721–725.

    Google Scholar 

  • Lange RT (1959) Additions to the known nodulating species of Leguminosae. Antoni van Leeuenhoek Journal 25: 272–276.

    Google Scholar 

  • Lawrie AC (1981) Nitrogen fixation by native Australian legumes. Australian Journal of Botany 29: 143–157.

    CAS  Google Scholar 

  • Levyns M (1935) Veld burning experiments at Oakdale, Riversdale. Transactions of the Royal Society of South Africa 23: 231–243.

    Google Scholar 

  • Lie TA, Mulder EG (eds) (1971) Biological nitrogen fixation in natural and agricultural habitats. Plant and Soil. Special vol, 580 pp.

    Google Scholar 

  • Low AB (1979) Phytomass and litter studies on the Cape Flats. CSIR, Fynbos Biome Annual Report.

    Google Scholar 

  • Low AB (1980) Preliminary observations on specialized root morphologies in plants of the western Cape Province. South African Journal of Science 76: 513–516.

    Google Scholar 

  • Lüttge U (1971) Structure and function of plant glands. Annual Review of Plant Physiology 22: 23–44.

    Google Scholar 

  • Malajczuk N, Bowen GD (1974) Proteoid roots are microbially induced. Nature 251: 316–317.

    CAS  Google Scholar 

  • Malajczuk N, Mccomb AJ, Loneragan JF (1975) Phosphorus uptake and growth of mycorrhizal and uninfected seedlings of Eucalyptus calophylla R. Br. Australian Journal of Botany 23: 231–238.

    Google Scholar 

  • Malajczuk N, Grove T (1977) Legume understorey biomass, nutrient content and nitrogen fixation in eucalypt forests of southwestern Australia. In: Nutrient cycling in indigenous forest ecosystems. Division of Land Resources Management, CSIRO, Perth, pp 36–39.

    Google Scholar 

  • Malajczuk N, Hingston F (1981) Ectomycorrhizae associated with jarrah. Australian Journal of Botany 29: 453–463.

    Google Scholar 

  • Malajczuk N, Lamont BB (1981) Specialized roots of symbiotic origin in heathlands. In: Specht RL (ed) Ecosystems of the world, vol 9B. Heathlands and related shrublands. Analytical studies. Elsevier, Amsterdam, pp 165–182.

    Google Scholar 

  • Malloch DW, Pirozynski KA, Raven PH (1980) Ecological and evolutionary significance of mycorrhizal symbiosis in vascular plants (A review). Proceedings of the National Academy of Sciences of the USA 77: 2113–2118.

    PubMed  CAS  Google Scholar 

  • Marloth R (1913) The flora of South Africa, vol 1. Darter Brothers and Company, Cape Town, 264 pp.

    Google Scholar 

  • Marloth R (1915) The effects of droughts and of some other causes on the distribution of plants in the Cape Region. South African Journal of Science 12: 383–390.

    Google Scholar 

  • Marloth R (1925) The flora of South Africa, vol 2 (pt 1). Darter Brothers and Company, Cape Town, 124 pp.

    Google Scholar 

  • Marx DH, Bryan WC (1971) Influence of ectomycorrhizae on survival and growth of aseptic seedlings of loblolly pine at high temperature. Forest Science 17: 37–41.

    Google Scholar 

  • Mitchell DT, Read DJ (1981) Utilization of inorganic and organic phosphates by the mycorrhizal endophytes of Vaccinium macrocarpon and Rhododendron ponticum. Transactions of the British Mycological Society 76: 255–260.

    CAS  Google Scholar 

  • Moore CW, Keraitis K (1971) Effect of nitrogen source on growth of eucalypts in sand culture. Australian Journal of Botany 19: 125–141.

    Google Scholar 

  • Mosse B (1975) Specificity in VA mycorrhizas. In: Sanders FE, Mosse B, Tinker PB (eds) Endomycorrhizas. Academic Press, London, pp 469–484.

    Google Scholar 

  • Mosse B, Powell CL, Hayman DS (1976) Plant growth responses to vesicular-arbuscular mycorrhiza. IX. Interactions between VA mycorrhiza, rock phosphate and symbiotic nitrogen fixation. New Phytologist 76: 331–342.

    CAS  Google Scholar 

  • Muir BG (1977) Biological survey of the Western Australian Wheatbelt. 2. Vegetation and habitat of Bendering Reserve. Records of the Western Australian Museum. Supplement No 3.

    Google Scholar 

  • Mullette JJ, Hannon NJ, Elliot AG (1974) Insoluble phosphorus usage by Eucalyptus. Plant and Soil 41: 199–205.

    CAS  Google Scholar 

  • Nambiar EK (1976) Uptake of Zn65 from dry soil by plants. Plant and Soil 44: 267–271.

    CAS  Google Scholar 

  • Nambiar EK (1977) The effects of drying of the topsoil and of micronutrients in the subsoil on micronutrient uptake by an intermittently defoliated ryegrass. Plant and Soil 46: 185–193.

    CAS  Google Scholar 

  • Nutman PS (ed) (1976) Symbiotic nitrogen fixation in plants. Cambridge University Press, Cambridge, 584 pp.

    Google Scholar 

  • Nye PH (1979) Soil properties controlling the supply of nutrients to the root surface. In: Harley JL, Russell RS (eds) The soil-root. Interface. Academic Press, London, pp 39–49.

    Google Scholar 

  • Pate JS, Dixon KW (1978) Mineral nutrition of Drosera erythrorhiza Lindl. with special reference to its tuberous habit. Australian Journal of Botany 26: 455–464.

    CAS  Google Scholar 

  • Pathmaranee N (1974) Observations of proteoid roots. MSc Thesis. University of Sydney, New South Wales, 123 pp.

    Google Scholar 

  • Powell CL (1975) Rushes and sedges are non-mycotrophic. Plant and Soil 42: 481–484.

    Google Scholar 

  • Pringsheim EG, Pringsheim O (1962) Axenic culture of Utricularia. American Journal of Botany 49: 898–901.

    Google Scholar 

  • Purnell HM (1960) Studies of the family Proteaceae. I. Anatomy and morphology of the roots of some Victorian species. Australian Journal of Botany 8: 38–50.

    Google Scholar 

  • Read DJ, Koucheki HK, Hodgson J (1976) Vesicular-arbuscular mycorrhiza in natural vegetation systems. I. The occurrence of infection. New Phytologist 77: 641–653.

    Google Scholar 

  • Reid CP, Bowen GD (1979) Effects of soil moisture on VA mycorrhiza formation and root development in Medicago. In: Harley JL, Russell RS (eds) The soil-root interface. Academic Press, London. pp 211–219.

    Google Scholar 

  • Renbuss MA, Chilvers GA, Pryor LD (1972) Microbiology of an ashbed. Proceedings of the Linnean Society of New South Wales 97: 302–316 and plate.

    Google Scholar 

  • Robinson RJ (1973) Mycorrhiza in certain Ericaceae native to Southern Africa. Journal of South African Botany 39: 123–129.

    Google Scholar 

  • Rodriguez-Barrueco C, Mackintosh AH, Bond G (1970) Some effects of combined nitrogen on the nodule symbioses of Casuarina and Ceanothus. Plant and Soil 33: 129–139.

    Google Scholar 

  • Safir GR, Boyer JS, Gerdemann JW (1972) Nutrient status and mycorrhizal enhancement of water transport in soybean. Plant Physiology 49: 700–703.

    PubMed  CAS  Google Scholar 

  • Schütte KH (1960) Trace element deficiencies in Cape vegetation. Journal of South African Botany 26: 45–49.

    Google Scholar 

  • Shea SR, Kitt RJ (1976) The capacity of jarrah forest native legumes to fix nitrogen. Forests Department of Western Australian Research Paper 21.

    Google Scholar 

  • Shea SR, Dell B (1981) Structure of the surface root system of Eucalyptus marginata Sm. and its infection by Phytophthora cinnamomi Rands. Australian Journal of Botany 29: 49–58.

    Google Scholar 

  • Siddiqui MY, Carolin RC (1976) Studies on the ecology of coastal heath in New South Wales. II. The effects of water supply and phosphorus uptake on the growth of Banksia serratifolia, B. aspleniifolia and B. ericifolia. Proceedings of the Linnean Society of New South Wales 101: 38–52.

    Google Scholar 

  • Smith SE (1966) Physiology and ecology of Orchis mycorrhizal fungi with reference to seedling nutrition. New Phytologist 65: 488–499.

    Google Scholar 

  • Snowball K, Robson AD, Loneragan JF (1980) The effect of copper on nitrogen fixation in subterranean clover (Trifolium subterranean). New Phytologist 85: 63–72.

    CAS  Google Scholar 

  • So HB (1979) Water potential gradients and resistances of a soil-root system measured with the root and soil psychrometer. In: Harley JL, Russell RS (eds) The soil-root interface. Academic Press, London, pp 99–113.

    Google Scholar 

  • Sorensen D, Jackson WT (1968) Utilization of paramecium by Utricularia gibba. Planta 83: 166–170.

    Google Scholar 

  • Specht RL (1979) Heathlands and related shrublands of the world. In: Specht RL (ed) Ecosystems of the world, vol 9A. Heathlands and related shrublands. Descriptive studies. Elsevier, Amsterdam, pp 1–19.

    Google Scholar 

  • Specht RL (1981) Nutrient release from decomposing leaf litter of Banksia ornata. Dark Island heathland, South Australia. Australian Journal of Ecology 6: 59–64.

    Google Scholar 

  • Specht RL, Groves RH (1966) Comparison of the phosphate nutrition of Australian heath plants and introduced economic plants. Australian Journal of Botany 14: 201–221.

    Google Scholar 

  • Specht RL, Rayson P (1957) Dark Island heath (Ninety-Mile Plain, South Australia). III. The root systems. Australian Journal of Botany 5: 103–114.

    Google Scholar 

  • Sprent JI (1972) The effects of water stress on nitrogen-fixing root nodules. IV. Effects on whole plants of Vicia faba and Glycine max. New Phytologist 71: 603–611.

    Google Scholar 

  • Stewart WD (1963) The effect of combined nitrogen on growth and nodule development of Myrica and Casuarina. Zeitschrift für allgemeine Mikrobiologie 3: 152–156.

    Google Scholar 

  • Stock W, Lewis OAM (1980) An investigation on cycling and processing of nitrogen in the fynbos biome. CSIR, Fynbos Biome Annual Report No 2.

    Google Scholar 

  • Stribley DP, Read DJ (1975) Some nutritional aspects of the biology of ericaceous mycorrhizas. In: Sanders FE, Mosse B, Tinker PB (eds) Endomycorrhizas. Academic Press, London, pp 195–208.

    Google Scholar 

  • Stribley DP, Read DJ (1976) The biology of mycorrhiza in the Ericaceae. VI. The effects of mycorrhizal infection and concentration of ammonium nitrogen on growth of cranberry (Vaccinium macrocarpon Ait.) in sand culture. New Phytologist 77: 63–72.

    CAS  Google Scholar 

  • Sward RJ (1978) Studies on vesicular-arbuscular mycorrhizas of some Australian heathland plants. PhD Thesis, Monash University, Victoria.

    Google Scholar 

  • Tacey WH (1977) Nitrogen fixation rate of Albizia lophantha. In: Nutrient cycling in indigenous forest ecosystems. CSIRO, Division of Land Resources Management, Perth, pp 59–63.

    Google Scholar 

  • Titze JF, Craig G, Lamont BB (1980) Vesicular-arbuscular mycorrhizae in jarrah forest — a preliminary note. Mulga Research Centre Annual Report 3: 29–33.

    Google Scholar 

  • Tsivion Y (1978) Loading of assimilates and some sugars into the translocation system of Cuscuta. Australian Journal of Plant Physiology 5: 851–857.

    CAS  Google Scholar 

  • Tyson JH, Silver WS (1979) Relationship of ultrastructure of acetylene reduction (N2 fixation) in root nodules of Casuarina. Botanical Gazette 140 (suppl.): 44–48.

    CAS  Google Scholar 

  • Walters CM, Jooste JH (1980) Aspekte van die minerale voeding van 1ede van die Proteaceae as verteenwoordigers van die fynbosgemeenskap. CSIR, Fynbos Biome Annual Report No 2.

    Google Scholar 

  • Weatherley PE (1979) The hydraulic resistance of the soil-root interface — a cause of water stress in plants. In: Harley JL, Russell RS (eds) The soil-root interface. Academic Press, London, pp 275–286.

    Google Scholar 

  • Webb LJ (1954) Aluminium accumulation in the Australian-New Guinea flora. Australian Journal of Botany 2: 176–196.

    CAS  Google Scholar 

  • Whitney PJ (1972) The carbohydrate and water balance of beans (Vicia faba) attacked by broomrape (Orobanche crenata). Annals of Applied Biology 70: 59–66.

    Google Scholar 

  • Williams SE, Wollum AG, Aldon EF (1974) Growth of Atriplex canescens (Pursh) Nutt. improved by formation of vesicular-arbuscular mycorrhizae. Proceedings of the Soil Science Society of America 38: 962–965.

    Google Scholar 

  • Williamson B (1973) Acid phosphatase and esterase activity in orchid mycorrhiza. Planta 112: 149–158.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin · Heidelberg

About this paper

Cite this paper

Lamont, B.B. (1983). Strategies for Maximizing Nutrient Uptake in Two Mediterranean Ecosystems of Low Nutrient Status. In: Kruger, F.J., Mitchell, D.T., Jarvis, J.U.M. (eds) Mediterranean-Type Ecosystems. Ecological Studies, vol 43. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68935-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68935-2_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68937-6

  • Online ISBN: 978-3-642-68935-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics