Skip to main content

Physiology and Metabolism of Phosphate and Its Compounds

  • Chapter
Inorganic Plant Nutrition

Part of the book series: Encyclopedia of Plant Physiology ((PLANT,volume 15))

Abstract

The distribution of phosphorus1 in the world, unlike that of all other elements but carbon, is dominated by the present and past activities of living organisms. Thus it was first isolated as an element from that preeminently biological fluid, urine, by the Arabian alchemists in the 12th century and then by H. Brand in 1669; while the next source to be discovered was bone, in 1770 (Corbridge 1978). It is widely distributed in the Earth’s crust, where it comprises 0.1% by weight of the elements present. Igneous deposits are known, but most of the phosphate used by man has been formed either as guano and its end-product, phosphatized coral, or as sedimentary deposits laid down under marine conditions in a combination of biological and physicochemical processes. In each case, the key event in formation of the deposit has been the ability of living organisms to scavenge phosphate from their surroundings, so that the concentration within the organism is increased one thousand fold or more (see Sect. 2). With guano-based products, phosphate has passed through a long food chain (marine microorganism → crustacean → fish → sea bird) and has finally been drawn into one place as excreta and as fish and bird remains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdelkader AB (1968) La lipogenèse dans le tubercule de pomme de terre (Solanum tuberosum L.). 1. Analyse et biosynthèse des lipides dans le parenchyme central. Influence de la “survie” (ageing) de rondelles de parenchyme sur cette biosynthèse. Physiol Veg 6: 417–442

    Google Scholar 

  • Abdelkader AB, Mazliak P (1970) Echanges de lipides entre mitochondries, microsomes et surnageant cytoplasmique de cellules de pomme de terre ou de chou–fleur. Eur J Biochem 15: 250–262

    Article  PubMed  CAS  Google Scholar 

  • Asher CJ, Loneragan JF (1967) Responses of plants to phosphate concentration in solution culture: I. Growth and phosphorus content. Soil Sei 103: 225–233

    Google Scholar 

  • Ashworth EN, St John JB, Christiansen MN, Patterson GW (1981) Characterization of the phospholipid composition of wheat roots using high–performance liquid chromatography. J Agric Food Chem 29: 879–881

    Article  CAS  Google Scholar 

  • Barber SA, Walker JM, Vasey EH (1963) Mechanisms for the movement of plant nutrients from the soil and fertilizer to the plant root. J Agric Food Chem 11: 204–207

    Article  CAS  Google Scholar 

  • Barker J, Isherwood FA, Jakes R, Solomos T, Younis ME (1962) Determination of certain phosphate compounds in plant extracts. Nature 196: 1115

    Article  CAS  Google Scholar 

  • Barrier GE, Loomis WE (1957) Absorption and translocation of 2,4–dichlorophenoxyacetic acid and P32 by leaves. Plant Physiol 32: 225–231

    Article  PubMed  CAS  Google Scholar 

  • Bassham J A, Kirk M, Jensen RG (1968) Photosynthesis by isolated chloroplasts. I. Diffusion of labelled photosynthetic intermediates between isolated chloroplasts and suspending medium. Biochim Biophys Acta 153: 211–218

    Google Scholar 

  • Beever RE, Burns DJW (1976) Microorganisms and the phosphorus cycle: some physiological considerations. In: Blair GJ (ed) Prospects for improving efficiency of phosphorus utilization. Reviews in rural science, vol III. Univ New England, Armidale

    Google Scholar 

  • Beever RE, Burns DJW (1977) Adaptive changes in phosphate uptake by the fungus Neurospora crassa in response to phosphate supply. J Bacteriol 132: 520–525

    PubMed  CAS  Google Scholar 

  • Beever RE, Burns DJW (1980) Phosphate uptake, storage and utilization by fungi. Adv Bot Res 8: 127–219

    Article  CAS  Google Scholar 

  • Biddulph O, Biddulph S, Cory R, Koontz H (1958) Circulation patterns for phosphorus, sulfur and calcium in the bean plant. Plant Physiol 33: 293–300

    Article  PubMed  CAS  Google Scholar 

  • Bieleski RL (1968 a) Levels of phosphate esters in Spirodela Plant Physiol 43:1297–1308

    Google Scholar 

  • Bieleski RL (1968 b) Effect of phosphorus deficiency on levels of phosphorus compounds in Spirodela Plant Physiol 43:1309–1316

    Google Scholar 

  • Bieleski RL (1969) Phosphorus compounds in translocating phloem. Plant Physiol 44: 497–502

    Article  PubMed  CAS  Google Scholar 

  • Bieleski RL (1972) Turnover of phospholipids in normal and phosphorus–deficient Spirodela. Plant Physiol 49: 740–745

    Article  PubMed  CAS  Google Scholar 

  • Bieleski RL (1973) Phosphate pools, phosphate transport, and phosphate availability. Annu Rev Plant Physiol 24: 225–252

    Article  CAS  Google Scholar 

  • Bieleski RL (1976) Passage of phosphate from soil to plant. In: Blair GJ (ed) Prospects for improving efficiency of phosphorus utilization. Reviews in rural science, vol III. Univ New England, Armidale

    Google Scholar 

  • Bieleski RL, Johnson PN (1972) The external location of phosphatase activity in phosphorus– deficient Spirodela oligorrhiza. Aust J Biol Sci 25: 707–720

    CAS  Google Scholar 

  • Bieleski RL, Laties GG (1963) Turnover rates of phosphate esters in fresh and aged slices of potato tuber tissue. Plant Physiol 38: 586–594

    Article  PubMed  CAS  Google Scholar 

  • Borst P (1972) Mitochondrial nucleic acids. Annu Rev Biochem 41: 333–376

    Article  PubMed  CAS  Google Scholar 

  • Bowling DJF, Dunlop J (1978) Uptake of phosphate by white clover. I. Evidence for an electrogenic phosphate pump. J Exp Bot 29: 1139–1146

    Google Scholar 

  • Burns DJW, Beever RE (1977) Kinetic characterization of the two phosphate uptake systems in the fungus Neurospora crassa. J Bacteriol 132: 511–519

    PubMed  CAS  Google Scholar 

  • Burns DJW, Beever RE (1979) Mechanisms controlling the two phosphate uptake systems in Neurospora crassa. J Bacteriol 139: 195–204

    PubMed  CAS  Google Scholar 

  • Carter OG, Lathwell DJ (1967) Effects of temperature on orthophosphate absorption by excised corn roots. Plant Physiol 42: 1407–1412

    Article  PubMed  CAS  Google Scholar 

  • Chalmers DJ, Rowan KS (1971) The climacteric in ripening tomato fruit. Plant Physiol 48: 235–240

    Article  PubMed  CAS  Google Scholar 

  • Chapin FS, Bieleski RL (1982) Mild phosphorus stress in barley and a related lowphosphorus– adapted barleygrass: phosphorus fractions and phosphate absorption in relation to growth. Physiol Plant 54: 309–317

    Article  CAS  Google Scholar 

  • Cole CV, Elliott ET, Hunt HW, Coleman DC (1978) Trophic interactions in soils as they affect energy and nutrient dynamics. V. Phosphorus transformations. Microb Ecol 4: 381–387

    Google Scholar 

  • Coleman RG, Specht RL (1981) Mineral nutrition of heathlands: The possible role of polyphosphate in the phosphorus economy of heathland species. In: Specht RL (ed)

    Google Scholar 

  • Ecosystems of the world, vol 9B. Heathlands and related shrublands. Analytical studies. Elsevier, Amsterdam

    Google Scholar 

  • Collins JC, Reilly EJ (1968) Chemical composition of the exudate from, excised maize roots. Planta 83: 218–222

    Article  CAS  Google Scholar 

  • Cooke JG (1981) Pollution from our pastures. Soil Water 17: 13–15

    Google Scholar 

  • Corbridge DEC (1978) Phosphorus. Elsevier, Amsterdam

    Google Scholar 

  • Cox G, Moran KJ, Sanders F, Nockolds C, Tinker PB (1980) Translocation and transfer of nutrients in vesicular–arbuscular mycorrhizas. III. Polyphosphate granules and phosphorus translocation. New Phytol 84: 649–659

    Google Scholar 

  • Donaldson RP, Beevers H (1977) Lipid composition of organelles from germinating castor bean endosperm. Plant Physiol 59: 259–263

    Article  PubMed  CAS  Google Scholar 

  • Donaldson RP, Tolbert NE, Schnarrenberger C (1972) A comparison of microbody membranes with microsomes and mitochondria from plant and animal tissue. Arch Biochem Biophys 152: 199–215

    Article  PubMed  CAS  Google Scholar 

  • Dunlop J, Bowling DJF (1971) The movement of ions to the xylem exudate of maize roots. I. Profiles of membrane potential and vacuolar potassium activity across the root. J Exp Bot 22: 434–444

    Google Scholar 

  • Emmert FH (1959) Loss of phosphorus–32 by plant roots after foliar application. Plant Physiol 34: 449–454

    Article  PubMed  CAS  Google Scholar 

  • Epstein E (1972) Mineral nutrition of plants. Principles and perspectives. Wiley and Sons, New York

    Google Scholar 

  • Falk RH, Stocking CR (1976) Plant membranes. In: Stocking CR, Heber U (eds) Transport in plants III Encyclopaedia of plant physiology new ser, vol 3. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Ferguson AR, Eiseman JA (1983) Estimated annual removal of macronutrients in fruit and prunings from a kiwifruit orchard. NZJ Agric Res 26: 115–117

    Google Scholar 

  • Ferguson AR, Eiseman JA, Leonard JA (1983) Xylem sap from Actinidia chinensis seasonal changes in composition. Ann Bot (in press)

    Google Scholar 

  • Ferguson IB, Bollard EG (1976) The movement of calcium in germinating pea seeds. Ann Bot 40: 1047–1055

    CAS  Google Scholar 

  • Ferguson IB, Clarkson DT (1975) Ion transport and endodermal suberization in the roots of Zea mays. New Phytol 75: 69–79

    Article  CAS  Google Scholar 

  • Ferguson IB, Clarkson DT (1976) Ion uptake in relation to the development of a root hypodermis. New Phytol 77: 11–14

    Article  CAS  Google Scholar 

  • Fliege R, Flügge U–I, Werdan K, Heidt HW (1978) Specific transport of inorganic phosphate, 3–phosphoglycerate, and triosephosphates across the inner membrane of the envelope in spinach chloroplasts. Biochim Biophys Acta 502: 232–247

    Article  PubMed  CAS  Google Scholar 

  • Gilchrist AN, Gillingham AG (1970) Phosphate movement in surface run–off water. NZ J Agric Res 13: 225–231

    Google Scholar 

  • Gould WD, Coleman DC, Rubenk AJ (1979) Effect of bacteria and amoebae on rhizosphere phosphatase activity. Appl Environ Microbiol 37: 943–946

    PubMed  CAS  Google Scholar 

  • Greenway H, Gunn A (1966) Phosphorus retranslocation in Hordeum vulgare during early tillering. Planta 71: 43–67

    Article  CAS  Google Scholar 

  • Greenway H, Klepper B (1968) Phosphorus transport to the xylem and its regulation by water flow. Planta 83: 119–136

    Article  CAS  Google Scholar 

  • Groves RH (1981) Nutrient cycling in heathlands. In: Specht RL (ed) Ecosystems of the world, vol 9B. Heathlands and related shrublands. Analytical studies. Elsevier, Amsterdam

    Google Scholar 

  • Guardiola JL, Sutcliffe JF (1971) Mobilisation of phosphorus in the cotyledons of young seedlings of the garden pea (Pisum sativum L.). Ann Bot 35: 809–823

    CAS  Google Scholar 

  • Hagen CE, Hopkins HT (1955) Ionic species in orthophosphate absorption by barley roots. Plant Physiol 30: 193–199

    Article  PubMed  CAS  Google Scholar 

  • Harold FM (1966) Inorganic polyphosphates in biology: structure, metabolism and function. Bacteriol Rev 30: 772–794

    PubMed  CAS  Google Scholar 

  • Harvey HW (1969) The chemistry and fertility of sea waters. Cambridge Univ Press, Cambridge

    Google Scholar 

  • Healy WB, McColl RHS (1974) Clay particles as sources of phosphorus for Lemna and their role in eutrophication. NZJ Sei 17: 409–420

    CAS  Google Scholar 

  • Hevesy G (1946) Interaction between phosphorus atoms of the wheat seedling and the nutrient solution. Ark Bot 33: 1–16

    Google Scholar 

  • Johnson EJ, Bruff BS (1967) Chloroplast integrity and ATP–dependent C02 fixation in Spinacia oleracea. Plant Physiol 42: 1321–1328

    Article  PubMed  CAS  Google Scholar 

  • Jung C, Rothstein A (1965) Arsenate uptake and release in relation to the inhibition of transport and glucolysis in yeast. Biochem Pharmacol 14: 1093–1112

    Article  PubMed  CAS  Google Scholar 

  • Kluge M, Becker D, Ziegler H (1970) Untersuchungen über ATP und andere organische Phosphorverbindungen im Siebröhrensaft von Yucca flaccida und Salix triandra. Planta 91: 68–79

    Article  CAS  Google Scholar 

  • Knypl JS (1978) Reversal of the symptoms of phosphate deficiency in Spirodela by RNA and adenosine monophosphates. Z Pflanzenphysiol 90: 265–277

    CAS  Google Scholar 

  • Kuhl A (1960) Die Biologie der kondensierten organischen Phosphate. Ergeb Biol 23: 144–186

    CAS  Google Scholar 

  • Kulaev IS (1979) The biochemistry of inorganic polyphosphates. Wiley, Chichester New York Brisbane Toronto

    Google Scholar 

  • Kung S–D (1977) Expression of chloroplast genomes in higher plants. Annu Rev Plant Physiol 28: 401–437

    Article  CAS  Google Scholar 

  • Kunishi HM, Taylor AW, Heald WR, Gburek WJ, Weaver RM (1972) Phosphate movement from an agricultural watershed during two rainfall periods. J Agric Food Chem 20: 900–905

    Article  CAS  Google Scholar 

  • Leggett JE, Galloway RA, Gauch HG (1965) Calcium activation of orthophosphate absorption by barley roots. Plant Physiol 40: 897–902

    Article  PubMed  CAS  Google Scholar 

  • Liu T–TY, Shannon JC (1981) Measurement of metabolites associated with nonaqueously isolated starch granules from immature Zea mays L. endosperm. Plant Physiol 67: 525–529

    Article  PubMed  CAS  Google Scholar 

  • Loening UE, Ingle J (1967) Diversity of RNA components in green plant tissues. Nature 215: 363–367

    Article  PubMed  CAS  Google Scholar 

  • Loughman BC (1960) Uptake and utilization of phosphate associated with respiratory changes in potato tuber slices. Plant Physiol 35: 418–424

    Article  PubMed  CAS  Google Scholar 

  • MacRobbie EAC (1971) Fluxes and compartmentation in plant cells. Annu Rev Plant Physiol 22: 75–96

    Article  CAS  Google Scholar 

  • Makower RU (1969) Changes in phytic acid and acid–soluble phosphorus in maturing pinto beans. J Sei Food Agric 20: 82–84

    Article  CAS  Google Scholar 

  • Marsh BB (1959) The estimation of inorganic phosphate in the presence of adenosine triphosphate. Biochim Biophys Acta 32: 357–361

    Article  PubMed  CAS  Google Scholar 

  • Marx C, Dexheimer J, Gianinazzi–Pearson V, Gianinazzi S (1982) Enzymatic studies on the metabolism of vesicular–arbuscular mycorrhizas. IV. Ultracytoenzymological evidence ( ATPase) for active transfer processes in the host–arbuscle interface. New Phytol 90: 37–43

    Google Scholar 

  • Matheson NK, Strother S (1969) The utilization of phytate by germinating wheat. Phytochemistry 8: 1349–1356

    Article  CAS  Google Scholar 

  • Matile Ph (1978) Biochemistry and function of vacuoles. Annu Rev Plant Physiol 29: 193–213

    Article  CAS  Google Scholar 

  • Matile Ph, Wiemken A (1976) Interactions between cytoplasm and vacuole. In: Stocking CR, Heber U (eds) Transport in plants III. Encyclopaedia of plant physiology new ser, vol 3. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Mazel YT, Fokin AD (1977) Excretion of ions by roots of plants. Sov Plant Physiol 24: 805–810

    Google Scholar 

  • Mazliak P (1973) Lipid metabolism in plants. Annu Rev Plant Physiol 24: 287–310

    Article  CAS  Google Scholar 

  • McColl RHS, White E, Waugh JR (1975) Chemical run–off in catchments converted to agricultural use. NZJ Sei 18: 67–84

    CAS  Google Scholar 

  • McPharlin IR (1981) Phosphorus transport and phosphorus nutrition in Lemna (Lemna major L.) and Spirodela (Spirodela oligorrhiza (Kurz.) Hegelm.). Ph D thesis, Univ Auckland, NZ

    Google Scholar 

  • Mourioux G, Douce R (1981) Slow passive diffusion of orthophosphate between intact isolated chloroplasts and suspending medium. Plant Physiol 67: 470–473

    Article  PubMed  CAS  Google Scholar 

  • Mukherji S, Dey B, Paul AK, Sircar SM (1971) Changes in phosphorus fractions and phytase activity of rice seeds during germination. Physiol Plant 25: 94–97

    Article  CAS  Google Scholar 

  • Ongun A, Thomson WW, Mudd JB (1968) Lipid composition of chloroplasts isolated by aqueous and nonaqueous techniques. J Lipid Res 9: 409–415

    PubMed  CAS  Google Scholar 

  • Pitman MG (1977) Ion transport into the xylem. Annu Rev Plant Physiol 28: 71–88

    Article  CAS  Google Scholar 

  • Pradet A, Raymond P (1982) Adenylate energy charge, an indicator of energy metabolism. In: Physiology and biochemistry of plant respiration. Palmer JM (ed) Soc Exp Biol. Cambridge Univ Press, Cambridge

    Google Scholar 

  • Raven JA (1974 a) Phosphate transport in Hydrodictyon africanum New Phytol 73:421–432

    Google Scholar 

  • Raven JA (1974 b) Energetics of active phosphate influx in Hydrodictyon africanum J Exp Bot 25:221–229

    Google Scholar 

  • Reisenauer HM (1966) Mineral nutrients in soil solution. In: Altman PL, Dittmer DS (eds) Environmental biology. Fed Am Soc Exp Biol, Bethesda

    Google Scholar 

  • Ridge EH, Rovira AD (1971) Phosphatase activity of intact young wheat roots under sterile and non–sterile conditions. New Phytol 70: 1017–1026

    Article  CAS  Google Scholar 

  • Roberts JKM, Ray PM, Wade–Jardetzky N, Jardetzky O (1980) Estimation of cytoplasmic and vacuolar pH in higher plant cells by 31P NMR. Nature 283: 870–872

    CAS  Google Scholar 

  • Rowan KS (1966) Phosphorus metabolism in plants. Int Rev Cytol 19:301–390 Sager R, Ishida MR (1963) Chloroplast DNA in Chlamydomonas. Proc Natl Acad Sei USA 50: 725–730

    Google Scholar 

  • Samotus B, Schwimmer S (1962) Phytic acid as a phosphorus reservoir in the developing potato tuber. Nature 194: 578–579

    Article  CAS  Google Scholar 

  • Santarius KA, Heber U (1965) Changes in intracellular levels of ATP, ADP, AMP, and Pi and regulatory function of the adenylate system in leaf cells during photosynthesis. Biochim Biophys Acta 102: 39–54

    Google Scholar 

  • Smith FA (1966) Active phosphate uptake by Nitella translucens. Biochim Biophys Acta 126: 94–99

    Article  PubMed  CAS  Google Scholar 

  • Sugino Y, Miyoshi Y (1964) The specific precipitation of orthophosphate and some biological applications. J Biol Chem 239: 2360–2364

    PubMed  CAS  Google Scholar 

  • Tsuji H (1964) Acid–soluble phosphate ester contents of developing rice and oat shoots. Bot Mag 77: 247–252

    CAS  Google Scholar 

  • Ullrich W, Urbach W, Santarius KA, Heber U (1965) Die Verteilung des Orthophosphates auf Piastiden, Cytoplasma und Vacuole in der Blattzelle und ihre Veränderung im Licht–Dunkel–Wechsel. Z Naturforsch 20B: 905–910

    Google Scholar 

  • Ullrich–Eberius CI, Novacky A, Fischer E, Lüttge U (1981) Relationship between energydependent phosphate uptake and the electrical membrane potential in Lemna gibba G 1. Plant Physiol 67: 797–801

    Article  PubMed  CAS  Google Scholar 

  • Walker DA (1976) Plastids and intracellular transport. In: Stocking CR, Heber U (eds) Transport in plants III. Encyclopaedia of plant physiology new ser, vol 3. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Weigl J (1963) Die Bedeutung der energiereichen Phosphate bei der Ionenaufnahme durch Wurzeln. Planta 60: 307–321

    Article  CAS  Google Scholar 

  • Weigl J (1968) Austauschmechanismus des Ionentransports in Pflanzen am Beispiel des Phosphat– und Chlorid transports bei Maiswurzeln. Planta 79: 197–207

    Article  CAS  Google Scholar 

  • Weste JE, Rowan KS, Chalmers DJ (1974) The distribution of phosphorus–containing compounds in tomato plants during the development of phosphorus deficiency. In: Bieleski RL, Ferguson AR, CresswelL MM (eds) Mechanisms of regulation of plant growth. Bull 12. R Soc NZ, Wellington

    Google Scholar 

  • Wiskich JT (1977) Mitochondrial metabolite transport. Annu Rev Plant Physiol 28: 45–69

    Article  CAS  Google Scholar 

  • Woodrow IE, Rowan KS (1979) Change of flux of orthophosphate between cellular compartments in ripening tomato fruits in relation to the climacteric rise in respiration. Aust J Plant Physiol 6: 39–46

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin-Heidelberg

About this chapter

Cite this chapter

Bieleski, R.L., Ferguson, I.B. (1983). Physiology and Metabolism of Phosphate and Its Compounds. In: Läuchli, A., Bieleski, R.L. (eds) Inorganic Plant Nutrition. Encyclopedia of Plant Physiology, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68885-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68885-0_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68887-4

  • Online ISBN: 978-3-642-68885-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics