Skip to main content

The Production and Fate of Volatile Molecular Species in the Environment: Metals and Metalloids

  • Conference paper
Atmospheric Chemistry

Abstract

Forms of volatile environmental metal(loid)s cannot be predicted from thermodynamic considerations of redox conditions. In their transport to and from the atmosphere, they may be degraded, sorbed, or regenerated by both chemical and biological events at rates largely unknown, though measurable. Trapping and escape of these elements at ubiquitous aquatic surface microlayers can now be reconciled with new progress in correlating molecular geometries with air-water transport and the biogeochemistry of microenvironments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akagi, H.; Fujita, Y.; and Takabatake, E. 1975. Photochemical methylation of inorganic mercury in the presence of mercuric sulfide. Chem. Lett. (Japan): 171–176.

    Google Scholar 

  2. Aleksandrov, Y.A., and Tarunin, B.I. 1974. Ozonolysis of tetraalkylstannanes. Yh. Obshch. Khim. 44: 1835.

    CAS  Google Scholar 

  3. Andreae, M.O. 1979. Arsenic speciation in seawater and interstitial waters: The influence of biological-chemical interactions on the chemistry of a trace element. Limnol Oceanogr. 24: 440–452.

    Article  CAS  Google Scholar 

  4. Andreae, M.O. 1980. Arsenic in rain and the atmospheric mass balance of arsenic. J. Geophys. Res. 85: 4512–4518

    Article  CAS  Google Scholar 

  5. Berk, S.G., and Colwell, R.R. 1981. Transfer of mercury through a marine microbial food web. J. Exp. Mar. Biol. Ecol. 52: 157–172.

    Article  CAS  Google Scholar 

  6. Braman, R.S., and Tompkins, M.A. 1979. Separation and determination of nanogram amounts of inorganic tin and methyltin compounds in the environment. Anal. Chem. 51: 12–19.

    Article  PubMed  CAS  Google Scholar 

  7. Brief, R.S.; Blanchard, J.W.; Scala, R.A.; and Blackev, J.H. 1971. Metal carbonyls in the petroleum industry. Arch. Environ. Health 23: 373–384.

    PubMed  CAS  Google Scholar 

  8. Brinckman, F.E. 1981. Environmental organotin chemistry today: experiences in the field and laboratory. J. Organometal. Chem. Library 12: 343–384.

    CAS  Google Scholar 

  9. Brinckman, F.E.; Parris, G.E.; Blair, W.R.; Jewett, K.L.; Iverson, W.P.; and Bellama, J.M. 1977. Questions concerning environmental mobility of arsenic: needs for a chemical data base and means for speciation of trace organoarsenicals. Environ. Health Perspect. 19: 11–24.

    Article  PubMed  CAS  Google Scholar 

  10. Cammarata, A. 1979. Molecular topology and aqueous solubility of aliphatic alcohols. J. Pharm. Chem. 68: 839–842.

    CAS  Google Scholar 

  11. Cotton, F.A., and Wilkinson, G. 1980. Advanced Inorganic Chemistry, 4th ed. New York: Wiley Interscience.

    Google Scholar 

  12. Craig, P.J. 1980. Metal cycles and biological methylation. In The Handbook of Environmental Chemistry, Part A, ed. A.O. Hutzinger, vol. 1, pp. 169–227. New York: Springer-Verlag.

    Google Scholar 

  13. Hansch, C. 1969. A quantitative approach to biochemical structure-activity relationships. Acc. Chem. Res. 2: 232–239.

    Article  CAS  Google Scholar 

  14. Hansch, C.; Quinlan, J.E.; and Lawrence, G.L. 1968. The linear free-energy relationship between partition coefficients and the aqueous solubility of organic liquids. J. Org. Chem. 33.: 347–350.

    Article  CAS  Google Scholar 

  15. Harrison, R.M., and Laxen, D.P.H. 1978. Natural source of tetraalkyllead in air. Nature 275: 738–739.

    Article  PubMed  CAS  Google Scholar 

  16. Harrison, R.M., and Laxen, D.P.H. 1978. Sink processes for tetraalkyllead compounds in the atmosphere. Env. Sci. Technol. 12: 1384–1392.

    Article  CAS  Google Scholar 

  17. Henderson-Sellers, A., and Schwartz, A.W. 1980. Chemical evolution and ammonia in the early Earth’s atmosphere. Nature 287: 526–528.

    Article  CAS  Google Scholar 

  18. Hodge, V.F.; Seidel, S.L.; and Goldberg, E.D. 1979. Determination of tin(IV) and organotin compounds in natural waters, coastal sediments, and macro algae by atomic absorption spectrometry. Anal. Chem. 51: 1 256–1259.

    Google Scholar 

  19. Iverson, W.P., and Brinckman, F.E. 1978. Microbial metabolism of heavy metals. In Water Pollution Microbiology, ed. R. Mitchell, Vol. 2, pp. 201–232. New York: John Wiley & Sons.

    Google Scholar 

  20. Jackson, J.A.; Blair, W.R.; Brinckman, F.E.; and Iverson, W.P. 1982. Gas-chromatographic speciation of methylstannanes in the Chesapeake Bay using purge and trap sampling with a tin-selective detector. Env. Sci. Technol. 16: 110–119.

    Article  CAS  Google Scholar 

  21. Jarvie, A.W.P., and Whitmore, A.P. 1981. Methylation of elemental lead and lead(II) salts in aqueous solution. Env. Technol. Lett. 2: 197–204.

    Article  CAS  Google Scholar 

  22. Kelly, D.P.; Norris, P.R.; and Brierley, C.L. 1979. Microbiological methods for the extraction and recovery of metals. In Microbial Technology: Current State, Future Prospects, eds. A.T. Bull, D.C. Ellwood, and C. Ratledge, pp. 263–308. Cambridge University Press.

    Google Scholar 

  23. Lantzy, R.J., and Mackenzie, F.T. 1979. Atmosphere trace metals: global cycles and assessment of man’s impact. Geochim. Cosmochim. Acta 43: 511–525.

    Article  CAS  Google Scholar 

  24. Larson, R.A.; Symkowski, K.; and Hunt, L.L. 19 81. Occurrence and determination of organic oxidants in rivers and waste waters. Chemosphere 10: 1335–1338.

    Article  CAS  Google Scholar 

  25. Lion, L.W., and Leckie, J.O. 1981. The biogeochemistry of the air-sea interface. Ann. Rev. Earth Plan. Sci. 9: 449–486.

    Article  CAS  Google Scholar 

  26. Matter-Muller, C.; Gujer, W.; and Giger, W. 1981. Transfer of volatile substances from water to the atmosphere. Water Res. 1: 271–1279.

    Google Scholar 

  27. Rathburn, R.E., and Tai, D.Y. 1981. Technique for determining the volatilization coefficients of priority pollutants in streams. Water Res. 15: 243–250.

    Article  Google Scholar 

  28. Ridley, W.P.; Dizikes, L.J.; and Wood, J.M. 1977. Biomethylation of toxic elements in the environment. Science 197: 329–332.

    Article  PubMed  CAS  Google Scholar 

  29. Robinson, J.W., and Kiesel, E.L. 1981. Methylation of cadmium with vitamin B12: a possible method of detoxification. J. Env. Sci. Health A16: 341–352.

    Article  CAS  Google Scholar 

  30. Rowland, I.R.; Davies, M.J.; and Grasso, P. 1977. Volatilization of methylmercuric chloride by hydrogen sulphide. Nature 265: 718–719.

    Article  PubMed  CAS  Google Scholar 

  31. Silverberg, B.A.; Wong, P.T.S.; and Chau, Y.K. 1976. Ultrastructural examination of Aeromonas cultured in the presence of organic lead. Appl. Env. Microbiol. 32: 723–725.

    CAS  Google Scholar 

  32. Spangler, W.J.; Sprigarelli, J.L.; Rose, J.M.; and Miller, H.M. 1973. Methylmercury: bacterial degradion in lake sediments. Science 180: 192–193.

    Article  PubMed  CAS  Google Scholar 

  33. Tallman, D.E., and Shaikh, A.U. 1980. Redox stability of inorganic arsenic(III) and arsenic(V) in aqueous solution. Anal. Chem. 52: 196–199.

    Article  CAS  Google Scholar 

  34. Tanford, C. 1980. The Hydrophobic Effect: Formation of Micelles and Biological Membranes, 2nd ed. New York: Wiley Interscience.

    Google Scholar 

  35. Thayer, J.S., and Brinckman, F.E. 1982. The biological methylation of metals and metalloids. Adv. Organometal. Chem. 20: 313–356.

    Article  CAS  Google Scholar 

  36. Tobias, R.S. 1966. σ-bonded organometallic cations in aqueous solutions and crystals. Organometal. Chem. Rev. 1: 93–129.

    CAS  Google Scholar 

  37. Unger, S.H.; Cook, J.R.; and Hollenberg, J.S. 1978. Simple procedure for determining octanol-aqueous partition, distribution, and ionization coefficients by reverse-phase high-pressure liquid chromatography. J. Pharm. Sci. 67: 1364–1367.

    Article  PubMed  CAS  Google Scholar 

  38. Valvani, S.C; Yalkowsky, S.H.; and Amidon, G.L. 1976. Solubility of nonelectrolytes in polar solvents. VI. Refinements in molecular surface area computations. J. Phys. Chem. 80: 829–835.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

E. D. Goldberg

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Dr. S. Bernhard, Dahlem Konferenzen, Berlin

About this paper

Cite this paper

Brinckman, F.E., Olson, G.J., Iverson, W.P. (1982). The Production and Fate of Volatile Molecular Species in the Environment: Metals and Metalloids. In: Goldberg, E.D. (eds) Atmospheric Chemistry. Dahlem Workshop Reports Physical and Chemical Sciences Research Report, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68638-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68638-2_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68640-5

  • Online ISBN: 978-3-642-68638-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics