Skip to main content

Biosynthesis and Mutasynthesis of Aminoglycoside Antibiotics

  • Chapter
Aminoglycoside Antibiotics

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 62))

Abstract

The discovery of streptomycin by Waksman in 1944 contributed significantly to the therapy of tuberculosis and initiated the era of aminoglycoside antibiotic research. Following the discovery of streptomycin, neomycin (1949) and kanamycin (1957) were discovered and applied to the control of infections caused by gram-negative bacteria. In addition to these aminoglycoside antibiotics (aminoglycosides), paromomycin (1959), spectinomycin (1961), gentamicin (1963), ribostamycin (1970), sisomicin (1970), and tobramycin (1971) are now in widespread clinical use. Butirosin (1971), lividomycin (1971), apramycin (1973), sagamicin (1974), fortimicin (1976), and seldomycin (1977) are under clinical investigation. The aminoglycosides kasugamycin (1965), destomycin (1965), and validamycin (1971) are now widely used for agricultural and veterinary purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Akamatsu N (1968) Biosynthesis of streptomycin (in Japanese). Kagaku no Ryoiki 22:375–381

    CAS  Google Scholar 

  • Anisova LN, Kovolenko IV, Kornitskaya EYa, Krasilnikova OL, Soifer VS, Tovarova II, Khokhlov AS (1976) Mutant Actinomyces streptomycini blocked in streptidine biosynthesis (in Russian). Antibiotiki 21:6–10

    PubMed  CAS  Google Scholar 

  • Arima K, Okazaki H, Ono H, Yamada K, Beppu T (1973) Effect of exogenous fatty acids on the cellular fatty acid composition and neomycin formation in a mutant strain of Streptomyces fradiae. Agrie Biol Chem 37:2313–2317

    CAS  Google Scholar 

  • Axelrod B (1960) Other pathways of carbohydrate metabolism. In: Greenberg DM (ed) Metabolic pathways, vol I. Academic Press, New York London, pp 205–249

    Google Scholar 

  • Baddiley J, Blumson NL, DiGirolamo A, DiGirolamo M (1961) Thymidine diphosphate sugar derivatives and their transformation in Streptomyces griseus. Biochim Biophys Acta 50:391–393

    PubMed  CAS  Google Scholar 

  • Barabás GY, Szabó G (1977) Effect of penicillin on streptomycin production byStreptomyces griseus. Antimicrob Agents Chemother 11:392–395

    PubMed  Google Scholar 

  • Basak K, Majumdar SK (1978) Enzymatic studies on kanamycin biosynthesis. Indian J Exp Biol 16:57–61 (cf Microbiol Abstr 9270-B14)

    CAS  Google Scholar 

  • Baud H, Betencourt A, Peyre M, Penasse L (1977) Ribostamycin, as an intermediate in the biosynthesis of neomycin. J Antibiot (Tokyo) 30:720–723

    CAS  Google Scholar 

  • Benveniste R, Davies J (1973) Aminoglycoside antibiotic-inactivating enzymes in actinomy- cetes similar to those present in clinical isolate of antibiotic-resistant bacteria. Proc Natl Acad Sci USA 70:2276–2280

    PubMed  CAS  Google Scholar 

  • Bérdy J, Pauncz JK, Vajna ZM, Horvath GY, Gyimesi J, Koczka I (1977) Metabolites of gentamicin-producing Micromonospora species I. Isolation and identification of metabolites. J Antibiot (Tokyo) 30:945–954

    Google Scholar 

  • Birch AJ (1963) The biosynthesis of antibiotics. Pure Appl Chem 7:527–537

    CAS  Google Scholar 

  • Blumson NL, Baddiley J (1961) Thymidine diphosphate mannose and thymidine diphosphate rhamnose in Streptomyces griseus. Biochem J 81:114–124

    CAS  Google Scholar 

  • Borisova LN, Ivkina NS (1968) Mutants of Actinomyces streptomycini (Streptomyces griseus) with altered biosynthesis of antibiotics (in Russian). Spetsifichnost Khim Mutageneza Mater Yses Simp 138–146 (cf. Chem Abstr 71:36586 a)

    Google Scholar 

  • Bruce RM, Ragheb HS, Weiner H (1968) Biosynthesis of streptomycin. Origin of streptidine from D-glucose. Biochim Biophys Acta 158:499–500

    PubMed  CAS  Google Scholar 

  • Bruton J, Horner WH (1966) Biosynthesis of streptomycin. III. Origin of the carbon atoms of streptose. J Biol Chem 241:3142–3146

    PubMed  CAS  Google Scholar 

  • Bruton J, Horner WH (1969) Biosynthesis of streptomycin. V. Origin of the formyl carbon atom of streptose. Biochim Biophys Acta 184:641–642

    PubMed  CAS  Google Scholar 

  • Bruton J, Horner WH, Russ GA (1967) Biosynthesis of streptomycin. IV. Further studies on the biosynthesis of streptidine and N-methyl-L-glucosamine. J Biol Chem 242:813–818

    PubMed  CAS  Google Scholar 

  • Bu’Lock JD (1965) The biosynthesis of natural products. An introduction to secondary metabolism. McGraw-Hill, London

    Google Scholar 

  • Bu’Lock JD (1967) Essays in biosynthesis and microbial development. Wiley & Sons Chichester

    Google Scholar 

  • Candy DJ, Baddiley J (1965) The biosynthesis of streptomycin. The origin of the C-formyl group of streptose. Biochem J 96:526–529

    PubMed  CAS  Google Scholar 

  • Candy DJ, Blumson NL, Baddiley J (1964) The biosynthesis of streptomycin. Incorporation of 14C-labeled compounds into streptose and N-methyl-L-glucosamine. Biochem J 91:31–35

    PubMed  CAS  Google Scholar 

  • Chang LT, Behr DA, Elander RP (1978) Effects of plasmid-curing agents on cultural characteristics and kanamycin formation in a production strain of Streptomyces kanamyceticus. Abstr 73 of the 3rd International Symposium on the Genetics of Industrial Microorganisms, University of Wisconsin, Madison June 4–9. Available from: Publication office, American Society for Microbiology, 1913 I St., NW, Washington DC 20006

    Google Scholar 

  • Chen IW, Charalampous FC (1965 a) Inositol 1-phosphate as intermediate in the conversion of glucose 6-phosphate to inositol. Biochem Biophys Res Commun 19:144–149

    CAS  Google Scholar 

  • Chen IW, Charalampous FC (1965 b) Biochemical studies on inositol. VIII. Purification and properties of the enzyme system which converts glucose 6-phosphate to inositol. J Biol Chem 240:3507–3512

    PubMed  CAS  Google Scholar 

  • Chen IW, Charalampous FC (1966 a) Biochemical studies on inositol. IX. D-Inositol 1- phosphate as intermediate in the biosynthesis of inositol from glucose 6-phosphate, and characteristics of two reactions in this biosynthesis. J Biol Chem 241:2194–2199

    PubMed  CAS  Google Scholar 

  • Chen IW, Charalampous FC (1966 b) Biochemical studies on inositol. X. Partial purification of yeast inositol 1-phosphatase and its separation from glucose 6-phosphate cyclase. Arch Biochem Biophys 117:154–157

    CAS  Google Scholar 

  • Chen IW, Charalampous FC (1967) Studies on the mechanism of cyclization of glucose 6-phosphate to D-inositol 1-phosphate. Biochim Biophys Acta 136:568–570

    PubMed  CAS  Google Scholar 

  • Chen Y-M, Walker JB (1977) Transaminations involving keto- and amino-inositols and glutamine in actinomycetes which produce gentamicin and neomycin. Biochem Biophys Res Commun 77:688–692

    PubMed  CAS  Google Scholar 

  • Chung S-T, Morris RL (1978) Isolation and characterization of plasmid deoxyribonucleic acid from Streptomyces fradiae. Abstr 78 of the 3rd International Symposium on the Genetics of Industrial Microorganisms, University of Wisconsin, Madison, June 4–9. Available from: Publication Office, American Society for Microbiology, 19131 St., NW, Washington DC 20006

    Google Scholar 

  • Claes PJ, Compernolle F, Vanderhaeghe H (1974) Chromatographic analysis of neomycin. Isolation and identification of minor components. J Antibiot (Tokyo) 27:931–942

    CAS  Google Scholar 

  • Claridge CA, Bush JA, Defuria MD, Price KE (1974) Fermentation and mutation studies with a butirosin-producing strain of Bacillus circulans. Dev Indust Microbiol 15:101–113

    CAS  Google Scholar 

  • Cleophax J, Gero SD, Leboul J, Akhtar M, Barnett JEG, Pearce CJ (1976) A chiral synthesis of D-(+)-2,6-dideoxystreptamine and its microbial incorporation into novel antibiotics. J Am Chem Soc 98:7110–7112

    PubMed  CAS  Google Scholar 

  • Comb DG, Roseman S (1958) Enzymic synthesis of A-acetyl-D-mannosamine. Biochim Biophys Acta 29:653–654

    PubMed  CAS  Google Scholar 

  • Cox DA, Richardson K, Ross BC (1977) The aminoglycosides. Top Antibiot Chem 1:2–90

    CAS  Google Scholar 

  • Daniels PJL (1978) Synthetic and mutasynthetic antibiotics related to sisomicin. 18th Interscience Conference on Antimicrobial Agents and Chemotherapy, Session 51, Atlanta, Georgia, Oct. 1–4 (cf. Daum and Lemke 1979). Available from: Publications Office, American Society for Microbiology, 1913 I St., NW, Washington DC 20006

    Google Scholar 

  • Daniels PJL, Rane DF (1979) Synthetic and mutasynthetic antibiotics related to sisomicin. In: Schlessinger D (ed) Microbiology-1979. American Society for Microbiology, Washington, DC, pp 314–317

    Google Scholar 

  • Daniels PJL, Yehaskel A, Morton JB (1976) The biosynthetic origin of the methyl groups of the gentamicin antibiotics. 16th Interscience Conference on Antimicrobial Agents and Chemotherapy, No. 45, Chicago, Oct 27–29. Available from: Publications Office, American Society for Microbiology, 1913 I St., NW, Washington DC 20006

    Google Scholar 

  • Daum SJ, (1979) New gentamicin-type antibiotics produced by mutasynthesis. In: Schlessinger D (ed) Microbiology-1979. American Society for Microbiology, Washington, DC, pp 312–313

    Google Scholar 

  • Daum SJ, Lemke JR (1979) Mutational biosynthesis of new antibiotics. Annu Rev Microbiol 33:241–265

    PubMed  CAS  Google Scholar 

  • Daum SJ, Rosi D, Goss WA (1977 a) Production of antibiotics by biotransformation of 2,4,6/3,5-pentahydroxycyclohexanone and 2,4/3,5-tetrahydroxycyclohexanone by a deoxystreptamine-negative mutant of Micromonospora purpurea. J Am Chem Soc 99:283–284

    PubMed  CAS  Google Scholar 

  • Daum SJ, Rosi D, Goss WA (1977 b) Mutational biosynthesis by idiotrophs of Micromonospora purpurea. II. Conversion of non-amino containing cyclitols to aminoglycoside antibiotics. J Antibiot (Tokyo) 30:98–105

    CAS  Google Scholar 

  • Davies J, Houk C, Yagisawa M, White TJ (1979) Occurrence and function of aminogly- coside-modifying enzymes. In: Sebek OK, Laskin AL (eds) Genetics of industrial microorganisms. American Society for Microbiology, Washington, DC, pp 166–169

    Google Scholar 

  • Deguchi T, Okumura S, Ishii A, Tanaka M (1977) Synthesis of carbon-14 and tritium labeled sagamicin. J Antibiot (Tokyo) 30:993–998

    CAS  Google Scholar 

  • Delic V, Pigac J, Sermonti G (1969) Detection and study of cosynthesis of tetracycline antibiotics by an agar method. J Gen Microbiol 55:103–108

    PubMed  CAS  Google Scholar 

  • Demain AL, Inamine E (1970) Biochemistry and regulation of streptomycin and mannosi-dostreptomycinase (A-D-mannosidase) formation. Bacteriol Rev 34:1–19

    PubMed  CAS  Google Scholar 

  • Demain AL, Nagaoka K (1976) Derivatives of streptomycin and production of streptomycin derivatives by mutational biosynthesis. US patent 3,956,275; US patent 3,993,544; Japan Kokai 51–118, 748

    Google Scholar 

  • Dolak LA, Castle TM, Dietz A, Laborde AL (1980) 3-Amino-3-deoxyglucose produced by a Streptomyces sp. J Antibiot (Tokyo) 33:900–901

    CAS  Google Scholar 

  • Elbein AD, Health EC (1965 a) The biosynthesis of cell wall lipopolysaccharide in Escherichia coli. I. The biochemical properties of a uridine diphosphate galactose 4-epimerase-less mutant. J Biol Chem 240:1919–1925

    PubMed  CAS  Google Scholar 

  • Elbein AD, Health EC (1965 b) The biosynthesis of cell wall lipopolysaccharide in Escherichia coli. II. Guanosine diphosphate 4-keto-6-deoxy-D-mannose, an intermediate in the biosynthesis of guanosine diphosphate colitose. J Biol Chem 240:1926–1931

    PubMed  CAS  Google Scholar 

  • Fletcher HG Jr, Anderson L, Lardy H (1951) The nomenclature of the cyclohexitols and their derivatives. J Org Chem 16:1238–1246

    CAS  Google Scholar 

  • Floss HG, Chang C-J, Mascaretti O, Shimada K (1978) Studies on the biosynthesis of antibiotics. Planta Med 34:345–380

    CAS  Google Scholar 

  • Foley L, Weigele M (1978) Speetinomyein chemistry. 1. Characterization of a 5a,9a-epi- 4(R)-dihydrospectinomycin derivative. J Org Chem 43:4355–4359

    CAS  Google Scholar 

  • Fujiwara T, Tanimoto T, Matsumoto K, Kondo E (1978) Ribostamycin production by a mutant of butirosin producing bacteria. J Antibiot (Tokyo) 31:966–969

    CAS  Google Scholar 

  • Fujiwara T, Takahashi Y, Matsumoto K, Kondo E (1980 a) Isolation of an intermediate of 2-deoxystreptamine biosynthesis from a mutant of Bacillus circulans. J Antibiot (Tokyo) 33:824–829

    CAS  Google Scholar 

  • Fujiwara T, Takahashi Y, Matsumoto K, Kondo E (1980 b) Production of a new aminoglycoside antibiotic by a mutant of Bacillus circulans. J Antibiot (Tokyo) 33:836–841

    CAS  Google Scholar 

  • Fukagawa Y (1968) Studies on biosynthesis of kasugamycin. PhD thesis, Kyushu University, Fukuoka, Japan (cf. Umezawa S and Tsuchiya T 1969)

    Google Scholar 

  • Fukagawa Y, Sawa T, Homma I, Takeuchi T, Umezawa H (1968 a) Studies on biosynthesis of kasugamycin. IV. Biosynthesis of the kasugamine moiety from [l-14C]-glucosamine and [1,2 or 6-14C]-glucose. J Antibiot (Tokyo) 21:358–360

    CAS  Google Scholar 

  • Fukagawa Y, Sawa T, Homma I, Takeuchi T, Umezawa H (1968 b) Studies on biosynthesis of kasugamycin. V. Biosynthesis of the amidine group. J Antibiot (Tokyo) 21:410–412

    CAS  Google Scholar 

  • Fukagawa Y, Sawa T, Takeuchi T, Umezawa H (1968 c) Studies on biosynthesis of kasugamycin. I. Biosynthesis of kasugamycin and the kasugamine moiety. J Antibiot (Tokyo) 21:50–54

    CAS  Google Scholar 

  • Fukagawa Y, Sawa T, Takeuchi T, Umezawa H (1968 d) Biosynthesis of kasugamycin. II. Biosynthesis of the two-carbon side chain of kasugamycin. J Antibiot (Tokyo) 21:182–184

    CAS  Google Scholar 

  • Fukagawa Y, Sawa T, Takeuchi T, Umezawa H (1968 e) Studies on biosynthesis of kasugamycin. III. Biosynthesis of the D-inositol moiety. J Antibiot (Tokyo) 21:185–188

    CAS  Google Scholar 

  • Furumai T, Takeda K, Kinumaki A, Ito Y, Okuda T (1979) Biosynthesis of butirosins. II. Biosynthetic pathway of butirosins elucidated from cosynthesis and feeding experiments. J Antibiot (Tokyo) 32:891–899

    CAS  Google Scholar 

  • Gabriel O, Lindquist LC (1968) Biological mechanisms involved in the formation of deoxy sugars. IV. Enzymatic conversion of thymidine diphosphoglucose-4T to thymidine di- phospho-4-keto-6-deoxyglucose-6T. J Biol Chem 243:1479–1484

    PubMed  CAS  Google Scholar 

  • Galanina LA, Agatov PA (1959) Effect of some chemical compounds on formation of streptomycin by LSI strain ofActinomyces streptomycini (in Russian). Doklady Akad Nauk SSSR 127:450–452 (cf. Chem Abstr 54:2586i)

    CAS  Google Scholar 

  • Ganelin VL, Demina AS, Petyushenko RM, Sazykin YO, Navashin SM (1979) Aminoglycosides-phosphotransferase from Actinomyces fradiae. Isolation, purification and properties (in Russian). Antibiotiki 24:424–430

    PubMed  CAS  Google Scholar 

  • Gero SD, Mercier D (1977) Neomycin and paromomycin analogues for use as broad-spectrum antibiotics prepared by fermentation (in Japanese). Japan Kokai 52–142044

    Google Scholar 

  • Ghosh S, Roseman S (1965 a) The sialic acids. IV. W-acyl-D-glucosamine 6-phosphate 2-epi-merase. J Biol Chem 240:1525–1530

    PubMed  CAS  Google Scholar 

  • Ghosh S, Roseman S (1965 b) The sialic acids. V. W-acyl-D-glucosamine 2-epimerase. J Biol Chem 240:1531–1536

    PubMed  CAS  Google Scholar 

  • Gilbert JM, Matsuhashi M, Strominger JL (1965) Thymidine diphosphate 4-acetamido-4,6- dideoxyhexoses. II. Purification and properties of thymidine diphosphate D-glucose oxi- doreductase. J Biol Chem 240:1305–1308

    PubMed  CAS  Google Scholar 

  • Gorin PAJ, Spencer JFT, Phaff HJ (1964) The synthesis of jS-galacto- and /?-gluco-pyranosyl ¿¿saccharides by Sporobolomyces singularis. Can J Chem 42:2307–2317

    CAS  Google Scholar 

  • Grisebach H (1978) Biosynthesis of sugar components of antibiotic substances. Adv Carbo-hydr Chem Biochem 35:81–126

    CAS  Google Scholar 

  • Hanessian S, Roy R (1979) Synthesis of (+)-spectinomycin. J Am Chem Soc 101:5839–5841

    CAS  Google Scholar 

  • Hayakawa T, Otake N, Yonehara H, Tanaka T, Sakaguchi K (1979) Isolation and characterization of plasmids from Streptomyces. J Antibiot (Tokyo) 32:1348–1350

    CAS  Google Scholar 

  • Heding H (1964) Radioactive myoinositol incorporation into streptomycin. Science 143:953–954

    PubMed  CAS  Google Scholar 

  • Heding H (1968) N-Demethyl-streptomycin. I. Microbiological formation and isolation. Acta Chim Scand 22:1649–1654

    CAS  Google Scholar 

  • Heding H, Bajpai K (1973) Last step in the biosynthesis of streptomycin: N-methylation of Af-demethylstreptomycin. J Antibiot (Tokyo) 26:725–727

    CAS  Google Scholar 

  • Hessler EJ, Jahnke HK, Robertson JH, Tsuji K, Rinehart KL Jr, Shier WT (1970) Neomycins D, E and F: identity with paromamine, paromomycin I and paromomycin II. J Antibiot (Tokyo) 23:464–466

    CAS  Google Scholar 

  • Heyes WF (1978) The biosynthesis and commercial production of neomycin - a review. Process Biochem 13(12):10–12

    CAS  Google Scholar 

  • Hockenhull DJD (1960) The biochemistry of streptomycin production. Prog Ind Microbiol 2:132–165

    Google Scholar 

  • Hoeksema H, Knight JC (1975) The production of dihydrospectinomycin by Streptomyces spectabilis. J Antibiot (Tokyo) 28:240–241

    CAS  Google Scholar 

  • Hopwood DA (1978) Extrachromosomally determined antibiotic production. Annu Rev Microbiol 32:373–392

    PubMed  CAS  Google Scholar 

  • Horner WH (1964 a) Biosynthesis of streptomycin. I. Origin of the guanidine group. J Biol Chem 239:578–581

    PubMed  CAS  Google Scholar 

  • Horner WH (1964 b) Biosynthesis of streptomycin. II. Myoinositol, a precursor of the streptidine moiety. J Biol Chem 239:2256–2258

    PubMed  CAS  Google Scholar 

  • Horner WH (1967) Streptomycin. In: Gottlieb D, Shaw PD (eds) Biosynthesis. Springer, Berlin Heidelberg New York Antibiotics, vol 2, pp 373–399

    Google Scholar 

  • Horner WH, Russ GA (1969) Biosynthesis of streptomycin. VI. Myo-inosose-2, an intermediate in streptidine biosynthesis. Biochem Biophys Acta 192:352–354

    PubMed  CAS  Google Scholar 

  • Horner WH, Russ GA (1971) Biosynthesis of streptomycin. VII. Stereospecificity of the enzymatic dehydrogenation of l-guanidino-l-deoxy-scy/Zo-inositol. Biochem Biophys Acta 237:123–127

    PubMed  CAS  Google Scholar 

  • Horner WH, Thaker IH (1968) The metabolism of scyllo-inositol in Streptomyces griseus. Biochem Biophys Acta 165:306–308

    PubMed  CAS  Google Scholar 

  • Hotta K, Okami Y, Umezawa H (1977) Elimination of the ability of a kanamycin-producing strain to biosynthesize deoxystreptamine moiety by acriflavine. J Antibiot (Tokyo) 30:1146–1149

    CAS  Google Scholar 

  • Hunter GD, Hockenhull DJD (1955) Actinomycete metabolism. Incorporation of 14C-la- belled compounds into streptomycin. Biochem J 59:268–272

    PubMed  CAS  Google Scholar 

  • Igarashi K, Honma T, Fujiwara T, Kondo E (1980) Structure elucidation of an intermediate of 2-deoxystreptamine biosynthesis. J Antibiot (Tokyo) 33:830–835

    CAS  Google Scholar 

  • Ikeda A, Kokan A, Yoshimura Y, Nimi O, Nomi R (1977) Correlation between streptomycin biosynthesis and cell wall formation (in Japanese). Abstr 306 of the Annual Meeting of the Society of Fermentation Technology, Japan, Osaka, Nov 10–12. Available from: Business Office, The Society of Fermentation Technology, Japan, Faculty of Engineering, Osaka University, Suitashi, Osaka 565, Japan

    Google Scholar 

  • Kakinuma K, Ogawa Y, Sasaki T, Seto H, Otake N (1981) Stereochemistry of the ribosta- mycin biosynthesis studied by 2H-NMR spectroscopy. Symposium paper 70 of the 24th Symposium on the Chemistry of Natural Products, Midokaikan, Osaka, Oct 13–16. Available from: Organizing Committee, Faculty of Pharmaceutical Sciences, Osaka University, Suita-shi, Osaka 565, Japan

    Google Scholar 

  • Kameda Y, Horii S, Yamano T (1975) Microbial transformation of validamycins. J Antibiot (Tokyo) 28:298–306

    CAS  Google Scholar 

  • Kameda Y, Asano N, Hashimoto T (1978) Microbial glycosidation of validamycins. J Antibiot (Tokyo) 31:936–938

    CAS  Google Scholar 

  • Karow EO, Peck RL, Rosenblum C, Woodbury DT (1952) Microbiological synthesis of 14C-labeled streptomycin. J Am Chem Soc 74:3056–3059

    CAS  Google Scholar 

  • Kase H, Odakura Y, Nakayama K (1980) Sagamicin biosynthesis and fermentation by Micromonospora sagamiensis (in Japanese). Abstr 4 of the Symposium on Recent Topics on Biosynthesis, Tokyo, Jan 25. Available from: Agricultural Chemical Society of Japan, Japan Academic Societies Center, 4–16 Yayoi 2-chome, Bunkyo-ku, Tokyo 113, Japan

    Google Scholar 

  • Kawamura T, Ichihara N, Ishimoto N, Ito E (1975) Biosynthesis of uridine diphosphate N- acetyl-D-mannosaminuronic acid from uridine diphosphate A-acetyl-D-glucosamine in Escherichia coli. Separation of enzymes responsible for epimerization and dehydrogenation. Biochem Biophys Res Commun 66:1506–1512

    PubMed  CAS  Google Scholar 

  • Khokhlov AS, Tovarova II, Borisova LN, Pliner SA, Shevchenko LN, Kornitskaya EYa, Ivkina NS, Rapoport IA (1967) The A-factor responsible for the biosynthesis of streptomycin in mutant strains ofActinomyces streptomycini (in Russian). Dokl Akad Nauk SSSR 117:232–235

    Google Scholar 

  • Khokhlov AS, Anisova LN, Tovarova II, Kleiner EM, Kovalenko IV, Krasilnikova OI, Kornitskaya EYa, Pliner SA (1973) Effect of A-factor on asporogenous and non-streptomycin producing mutants of Streptomyces griseus. Z Allg Mikrobiol 13:647–655

    PubMed  CAS  Google Scholar 

  • Kindle H, Biedl-Neubacher J, Hoffmann-Ostenhop O (1965) Untersuchungen über die Biosynthese der Cyclite. IX. Ãœberführung von D-Glucose und D-Glucose-6-phosphate in m&sö-Inosit durch einen zellfreien Extrakt aus Candida utilis. Biochem Z 341:157–167

    Google Scholar 

  • Kirby R, Wright LF, Hopwood DA (1975) Plasmid-determined antibiotic synthesis and resistance inStreptomyces coelicolor. Nature 254:265–267

    PubMed  CAS  Google Scholar 

  • Kirby JP, Borders DB, Van Lear GE (1977) Structure of LL-BM408, an aminocyclitol antibiotic. J Antibiot (Tokyo) 30:175–177

    CAS  Google Scholar 

  • Kleiner EM, Pliner SA, Soifer VS, Onoprienko VV, Balashova TA, Rozynov BV, Khokhlov AS (1976) Structure of the A-factor, a bioregulator from Streptomyces griseus (in Russian). Bioorg Khim 2:1142–1147

    CAS  Google Scholar 

  • Kleiner EM, Onoprienko VV, Pliner SA, Soifer VS, Khokhlov AS (1977) Synthesis of A- factor racemate - A biological regulator from Streptomyces griseus (in Russian). Bioorg Khim 3:424–426

    CAS  Google Scholar 

  • Kniep B, Grisebach H (1976) Enzymic synthesis of streptomycin. Transfer of L-dihydro- streptose from dTDP-L-dihydrostreptose to streptidine-6-phosphate. FEBS Lett 65:44–46

    PubMed  CAS  Google Scholar 

  • Kniep B, Grisebach H (1980 a) Biosynthesis of streptomycin. Purification and properties of dTDP-L-dihydrostreptose: streptidine-6-phosphate dihydrostreptosyltransferase from Streptomyces griseus. Eur J Biochem 105:139–144

    PubMed  CAS  Google Scholar 

  • Kniep B, Grisebach H (1980 b) Biosynthesis of streptomycin. Enzymatic formation of dihy- drostreptomycin 6-phosphate from dihydrostreptosyl streptidine 6-phosphate. J Antibiot (Tokyo) 33:416–419

    CAS  Google Scholar 

  • Kojima M (1974) Studies on bioconversion of ribostamycin (SF-733). PhD thesis. Tokyo University, Tokyo

    Google Scholar 

  • Kojima M, Satoh A (1973) Microbial semi-synthesis of aminoglycosidic antibiotics by mutants of S.ribosidiflcus and S.kanamyceticus. J Antibiot (Tokyo) 26:784–786

    CAS  Google Scholar 

  • Kojima M, Yamada Y, Umezawa H (1968) Studies on the biosynthesis of kanamycins. Part I. Incorporation of 14C-glucose or 14C-glucosamine into kanamycins and kanamy- cin-related compounds. Agric Biol Chem 32:467–473

    CAS  Google Scholar 

  • Kojima M, Yamada Y, Umezawa H (1969) Studies on the biosynthesis of kanamycins. Part II. Incorporation of the radioactive degradation products of kanamycin A or related metabolites into kanamycin A. Agric Biol Chem 33:1181–1185

    CAS  Google Scholar 

  • Kojima M, Inouye S, Niida T (1973) Bioconversion of ribostamycin (SF-733). I. Isolation and structure of 3 (or l)-N-carboxymethylribostamycin. J Antibiot (Tokyo) 26:246–248

    CAS  Google Scholar 

  • Kojima M, Ezaki N, Amano S, Inouye S, Niida T (1975 a) Bioconversion of ribostamycin (SF-733). II. Isolation and structure of 3-Af-acetylribostamycin, a microbiologically inactive product of ribostamycin produced by Streptomyces ribosidificus. J Antibiot (Tokyo) 28:42–47

    CAS  Google Scholar 

  • Kojima M, Inouye S, Niida T (1975 b) Bioconversion of ribostamycin (SF-733). III. Formation, structure and synthesis of 3-Af-carboxymethyl ribostamycin. J Antibiot (Tokyo) 28:48–55

    CAS  Google Scholar 

  • Kornitskaya EYa, Tovarova II, Khokhlov AS (1975) The peculiarity of A-factor interaction with mutant 1439 of Act. streptomycini during biosynthesis of streptomycin (in Russian). Antibiotiki 20:978–982

    CAS  Google Scholar 

  • Kornitskaya EYa, Tovarova II, Soifer VS, Khokhlov AS (1976 a) Investigation on the streptomycin biosynthesis regulation with the use of a blocked mutant Act. streptomycini (in Russian). Antibiotiki 21:10–14

    CAS  Google Scholar 

  • Kornitskaya EYa, Tovarova II, Khokhlov AS (1976 b) Formation of A factor by various actinomycetes. Microbiology (Engl Transl Mikrobiologiya) 45:264–267

    Google Scholar 

  • Köster H, Liebermann B, Reuter G (1975) Physiologie und Biochemie der Streptomyceten. III. Einbau von D-Glucose-U-14C in Paromomycin als Indikator für die Antibioticabil- dung durch Streptomyces albus vor metamycinus nov. var. Z Allg Mikrobiol 15:437–445

    PubMed  Google Scholar 

  • Köster H, Liebermann B, Reuter G (1977) Physiologie und Biochemie der Streptomyceten. XI. Unterschiedlicher Einbau von D-Glucose-U-14C in die Paromomycin-isomere und in die Bausteine von Paromomycin I. Z Allg Mikrobiol 17:433–436

    PubMed  Google Scholar 

  • Krasilnikova OL, Anisova LN, Khokholov AS (1978 a) Mutants of Actinomyces streptomycini blocked with respect to biosynthesis of streptobiosamine moiety of streptomycin molecule (in Russian). Antibiotiki 23:135–138

    CAS  Google Scholar 

  • Krasilnikova OL, Anisova LN, Khokhlov AS (1978 b) Low active mutants of Actinomyces streptomycini (Streptomyces griseus) with protein in biosynthesis of streptidine part of streptomycin molecule (in Russian). Antibiotiki 23:204–207

    CAS  Google Scholar 

  • Kugelman M, Jaret RS, Mittelman S (1978) The structure of aminoglycoside antibiotic 66- 40G produced by Micromonospora inyoensis. J Antibiot (Tokyo) 31:643–645

    CAS  Google Scholar 

  • Kumagai AH, Akamatsu N (1977) Biosynthesis of A-methyl-L-glucosamine from D-glucose by Streptomyces griseus. Biochim Biophys Acta 499:447–449

    PubMed  CAS  Google Scholar 

  • Lee BK, Testa RT, Wagman GH, Liu CM, McDaniel L, Schaffner C (1973) Incorporation of L-methionine-methyl-14C into gentamicins. J Antibiot (Tokyo) 26:728–731

    Google Scholar 

  • Lee BK, Condon RG, Marawski A, Wagman GH (1975) Incorporation of L-methionine- methyl-14C into gentamicins. III. Chromatographic separation and degradation of components of methyl-14C-gentamicin complex. J Antibiot (Tokyo) 28:163–166

    CAS  Google Scholar 

  • Lee BK, Condon RG, Wagman GH, Katz E (1976) Micromonospora-produced gentamicin components. Antimicrob Agents Chemother 9:151–159

    PubMed  CAS  Google Scholar 

  • Lee BK, Bailey JV, Condon RG, Marquez JA, Wagman GH, Weinstein MJ (1977) Biotransformation of sisomicin to gentamicin C2b. Antimicrob Agents Chemother 12:335–338

    PubMed  CAS  Google Scholar 

  • Lee BK, Nagabhushan TL, Condon RG, Cooper AB, Waitz JA (1978) Antibiotic biosynthesis by cofermentation of blocked mutants of two Micromonospora species. Antimicro Agents Chemother 14:73–77

    CAS  Google Scholar 

  • Lee BK, Nagabhushan TL, Condon RG, Shimonaski G, Kalyanpur MG, Patel M, Waitz JA (1979) Biosynthetic pathway leading to gentamicin C2b. Antimicrob Agents Chemother 16:589–591

    PubMed  CAS  Google Scholar 

  • Lemieux RU, Wolfrom ML (1948) The chemistry of streptomycin. Adv Carbohydr Chem 3:337–384

    CAS  Google Scholar 

  • Lemke JR, Demain AL (1976) Preliminary studies on streptomutin A. Eur J Appl Microbiol 2:91–94

    CAS  Google Scholar 

  • Lowther DA, Rogers HJ (1956) The role of glutamine in the biosynthesis of hyaluronate by Streptococcal suspensions. Biochem J 62:304–314

    PubMed  CAS  Google Scholar 

  • Magasanik B (1953) Enzymatic adaptation in the metabolism of cyclitols in Aerobacter aerogenes. J Biol Chem 205:1007–1018

    PubMed  CAS  Google Scholar 

  • Maier S, Grisebach H (1979) Biosynthesis of streptomycin. Enzymic oxidation of dihydro- streptomycin (6-phosphate) to streptomycin (6-phosphate) with a particulate fraction of Streptomyces griseus. Biochim Biophys Acta 586:231–241

    PubMed  CAS  Google Scholar 

  • Maier S, Matern U, Grisebach H (1975) On the role of dihydrostreptomycin in streptomycin biosynthesis. FEBS Lett 49:317–319

    PubMed  CAS  Google Scholar 

  • Majumdar MK, Majumdar SK (1969) Amino sugar antibiotic as phosphoamide from Streptomyces fradiae. J Antibiot (Tokyo) 22:174–175

    CAS  Google Scholar 

  • Majumdar MK, Majumdar SK (1970) Isolation and characterization of three phosphoami- do-neomycins and their conversion into neomycin by Streptomyces fradiae. Biochem J 120:271–278

    PubMed  CAS  Google Scholar 

  • Majumdar MK, Majumdar SK (1971) Relationship between alkaline phosphatase and neomycin formation in Streptomyces fradiae. Biochem J 122:397–404

    PubMed  CAS  Google Scholar 

  • Majumdar SK, Kutzner HJ (1962) Studies on the biosynthesis of streptomycin. Appl Microbiol 10:157–168

    PubMed  CAS  Google Scholar 

  • Matsuhashi M, Strominger JL (1964) Thymidine diphosphate 4-acetamido-4,6-dideoxyhex- oses. I. Enzymatic synthesis by strains of Escherichia coli. J Biol Chem 239:2454–2463

    PubMed  CAS  Google Scholar 

  • Matsuhashi M, Strominger JL (1966) Thymidine diphosphate 4-acetamido-4,6-dideoxyhex- oses. III. Purification and properties of thymidine diphosphate 4-keto-6-deoxy-D-glu- cose transaminase from Escherichia coli strain B. J Biol Chem 241:4738–4744

    PubMed  CAS  Google Scholar 

  • Matsuhashi S (1966) Enzymatic synthesis of cytidine diphosphate 3,6-dideoxyhexoses. II. Reversible 2-epimerization of cytidine diphosphate paratose. J Biol Chem 241:4275–4282

    PubMed  CAS  Google Scholar 

  • Matsuhashi S, Matsuhashi M, Brown JG, Strominger JL (1966 a) Enzymatic synthesis of cytidine diphosphate 3,6-dideoxyhexoses. III. Cytidine diphosphate D-glucose oxi- doreductase. J Biol Chem 241:4283–4287

    PubMed  CAS  Google Scholar 

  • Matsuhashi S, Matsuhashi M, Strominger JL (1966 b) Enzymatic synthesis of cytidine diphosphate 3,6-dideoxyhexoses. I. Over-all reactions. J Biol Chem 241:4267–4274

    PubMed  CAS  Google Scholar 

  • Matsuhashi Y, Sawa T, Kondo S, Takeuchi T (1977) Aminoglycoside 3’-phosphotrans-ferase in Bacillus circulans producing butirosins. J Antibiot (Tokyo) 30:435–437

    CAS  Google Scholar 

  • Matsumura S, Shirafuji H, Nogami I (1978) Formation of butirosin A by washed cell suspensions of Bacillus vitellinus (in Japanese). J Takeda Res Lab 37:278–285

    CAS  Google Scholar 

  • Melo A, Elliott WH, Glaser L (1968) The machanism of 6-deoxyhexose synthesis. I. Intramolecular hydrogen transfer catalyzed by deoxythymidine diphosphate D-glucose oxi- doreductase. J Biol Chem 243:1467–1474

    PubMed  CAS  Google Scholar 

  • Mendicino J, Picken JM (1966) Biosynthesis of streptomycin. In: Snell JF (ed) Biosynthesis of antibiotics, vol I. Academic Press, New York London,pp 121–140

    Google Scholar 

  • Miller AL, Walker JB (1969) Enzymatic phosphorylation of streptomycin by extracts of streptomycin-producing strains of Streptomyces. J Bacteriol 99:401–405

    PubMed  CAS  Google Scholar 

  • Miller AL, Walker JB (1970) Accumulation of streptomycin-phosphate in cultures of streptomycin producers grown on a high-phosphate medium. J Bacteriol 104:8–12

    PubMed  CAS  Google Scholar 

  • Mitscher LA, Martin LL, Feller DR (1971) The biosynthesis of spectinomycin. J Chem Soc Chem Commun 1971:1541–1542

    Google Scholar 

  • Munro MHG, Taniguchi M, Rinehart KL Jr, Gottlieb D, Stoudt TH, Rogers TO (1975) Carbon-13 evidence for the stereochemistry of streptomycin biosynthesis from glucose. J Am Chem Soc 97:4782–4783

    PubMed  CAS  Google Scholar 

  • Murase M, Ito T, Fukatsu S, Umezawa H (1970) Studies on kanamycin related compounds produced during fermentation by mutants ofStreptomyces kanamyceticus. Isolation and properties. Progr Antimicrob Anticancer Chemother 2:1098–1110

    CAS  Google Scholar 

  • Nagaoka K, Demain AL (1975) Mutational biosynthesis of a new antibiotic, streptomutin A, by an idiotroph ofStreptomyces griseus. J Antibiot (Tokyo) 28:627–635

    CAS  Google Scholar 

  • Nakahama K, Shirafuji H, Nogami I, Kida M, Yoneda M (1977) Butirosin 3’-phosphotransferase from Bacillus vitellinus, a butirosin-producing organism. Agric Biol Chem 41:2437–2445

    CAS  Google Scholar 

  • Nakayama K, Kase H, Kitamura S, Shirahata K, Iida T (1979 a) New substance SUM-4 and production thereof (in Japanese). Japan Kokai 54–135,704

    Google Scholar 

  • Nakayama K, Kase H, Kitamura S, Shirahata K, Iida T (1979 b) Antibiotic SU-1 and production thereof (in Japanese). Japan Kokai 54–135,705

    Google Scholar 

  • Nakayama K, Kase H, Odakura Y, Iida T, Shirahata K (1979 c) Antibiotic SU-2 and production thereof (in Japanese). Japan Kokai 54–59,202

    Google Scholar 

  • Nakayama K, Kase H, Shimura H (1979 d) Production of gentamicin Cs (in Japanese). Japan Kokai 54–160,796

    Google Scholar 

  • Nakayama K, Kase H, Shirahata K, Iida T, Mori Y, Mochida K (1979 e) Antibiotic SUM-3 and production thereof (in Japanese). Japan Kokai 54–117,477

    Google Scholar 

  • Nakayama K, Ito S, Odakura Y, Shirahata K, Takahashi K (1979 f) A new compound FU- 10 and production thereof (in Japanese). Japan Kokai 54–128,547

    Google Scholar 

  • Nara T (1977) Aminoglycoside antibiotics. In: Perlman D, Tsao GT (eds) Annual reports on fermentation process. Vol 1. Academic Press, New York San Francisco London, pp 299–326

    Google Scholar 

  • Nara T (1978) Aminoglycoside antibiotics. In: Perlman D, Tsao GT (eds) Annual reports on fermentation process. Vol 2. Academic Press, New York San Francisco London, pp 223–266

    Google Scholar 

  • Neuss N (1975) The use of 13C labeling in the study of antibiotic biosynthesis. Methods Enzymol 43:404–425

    PubMed  CAS  Google Scholar 

  • Nimi O, Kiyohara H, Mizoguchi T, Ohata Y, Nomi R (1970) Biosynthesis of streptomycin Part VII. A specific enzyme responsible for dephosphorylation of phosphorylated streptomycin. Agric Biol Chem 34:1150–1156

    CAS  Google Scholar 

  • Nimi O, Ito G, Ohata Y, Funayama S, Nomi R (1971 a) Streptomycin-phosphorylating enzyme produced by Streptomyces griseus. Agric Biol Chem 35:856–861

    CAS  Google Scholar 

  • Nimi O, Ito G, Sueda S, Nomi R (1971 b) Phosphorylation of streptomycin at C6-OH of streptidine moiety by an intracellular enzyme of Streptomyces griseus. Agric Biol Chem 35:848–855

    CAS  Google Scholar 

  • Nimi O, Norimoto Y, Nomi R (1971c) Incorporation of streptidine-C6-phosphate into phosphorylated streptomycin by resting cell of Streptomyces griseus. Agric Biol Chem 35:1819–1821

    Google Scholar 

  • Nimi O, Kokan A, Manabe K, Maehara K, Nomi R (1976) Correlation between streptomycin formation and mucopeptide biosynthesis. J Ferment Technol 54:587–595

    CAS  Google Scholar 

  • Nogami I, Arai Y, Horii S, Yoneda M (1974) Production of antibiotics (in Japanese). Japan Kokai 49–117,685

    Google Scholar 

  • Nogami I, Arai Y, Kida M, Hiraga K (1976) Butirosin A or its derivatives (in Japanese). Japan Kokai 51–1,694

    Google Scholar 

  • Nojiri C, Watabe H, Katsumata K, Yamada Y, Murakami T, Kumata Y (1980) Isolation and characterization of plasmids from parent and variant strains of Streptomyces ribosidificus. J Antibiot (Tokyo) 33:118–121

    CAS  Google Scholar 

  • Nomi R (1978) Biosynthesis of aminoglycoside antibiotics - a review (in Japanese). Hakkokogaku Kaishi 5:479–493

    Google Scholar 

  • Nomi R, Nimi O (1969) Biosynthesis of streptomycin. Part VI. Chemical structure of a streptomycin precursor. Agric Biol Chem 33:1459–1463

    Google Scholar 

  • Nomi R, Nimi O, Kado T (1968) Biosynthesis of streptomycin. Part IV. Accumulation of a streptomycin precursor in the culture broth and partial purification of the precursor. Agric Biol Chem 32:1256–1260

    CAS  Google Scholar 

  • Nomi R, Nimi O, Kado T (1969) Biosynthesis of streptomycin. Part V. Purification and properties of a streptomycin precursor. Agric Biol Chem 33:1454–1458

    CAS  Google Scholar 

  • Oka Y, Ishida H, Morioka M, Numazaki Y, Yamafugi T, Ozono T, Umezawa H (1979) New antibiotics and production thereof (in Japanese). Japan Kokai 54–98,741

    Google Scholar 

  • Okami Y (1979) Antibiotics from marine microorganisms with reference to plasmid involvement. J Nat Prod 42:583–595

    PubMed  CAS  Google Scholar 

  • Okanishi M (1977) Secondary metabolite production and plasmid (in Japanese). Amino Acid Nucleic Acid 35:15–30

    Google Scholar 

  • Okanishi M (1978) Plasmids and their functions involved in antibiotic production (in Japanese). Hakkokogaku Kaishi 56:468–478

    CAS  Google Scholar 

  • Okanishi M (1979) Antibiotic production and episomic factors (in Japanese). Ferment Industry 37:33–40

    Google Scholar 

  • Okanishi M (1980) Role of plasmid genes in antibiotic production. In: Umezawa H, Tanaka N (eds) Advances in antibiotic research. Japan Scientific Societies Press, Tokyo, pp 35–52.

    Google Scholar 

  • Okanishi M, Umezawa H (1978) Plasmids involved in antibiotic production in Streptomy- cetes. In: Freerksen E, Tarnok I, Thumin JH (eds) Genetics of the actinomycetales. Fischer, Stuttgart New York, pp 19–38

    Google Scholar 

  • Okanishi M, Ohta T, Umezawa H (1970) Possible control of formation of aerial mycelium and antibiotic production inStreptomyces by episomic factors. J Antibiot (Tokyo) 23:45–47

    CAS  Google Scholar 

  • Okanishi M, Manome T, Umezawa H (1980) Isolation and characterization of plasmid DNAs in actinomycetes. J Antibiot (Tokyo) 33:88–91

    CAS  Google Scholar 

  • Okazaki H, Ono H, Yamada K, Beppu T, Arima K (1973) Relationship among cellular fatty acid composition, amino acid uptake and neomycin formation in a mutant strain of Streptomyces fradiae. Agric Biol Chem 37:2319–2325

    CAS  Google Scholar 

  • Okazaki H, Beppu T, Arima K (1974) Induction of antibiotic formation in Streptomyces sp. No. 362 by the change of cellular fatty acid spectrum. Agric Biol Chem 38:1455–1461

    CAS  Google Scholar 

  • Ortmann R, Matern U, Grisebaeh H, Stadler P, Sinnwell Y, Paulsen H (1974) NADPH- dependent formation of thymidine diphosphodihydrostreptose from thymidine diphos- pho-D-glucose in a cell-free system from S. griseus and its correlation with streptomycin biosynthesis. Eur J Biochem 43:265–271

    PubMed  CAS  Google Scholar 

  • Pearce CJ, Barnett JEG, Anthony C, Akhtar M, Gero SD (1976) The role of the pseudo- disaccharide neamine as an intermediate in the biosynthesis of neomycin. Biochem J 159:601–606

    PubMed  CAS  Google Scholar 

  • Pearce CJ, Akhtar M, Barnett JEG, Mercier D, Sepulchre A-M, Gero SD (1978) Sub-unit assembly in the biosynthesis of neomycin. The synthesis of 5-O-β-D-ribofuranosyl and 4-O-β-D-ribofuranosyl-2,6-dideoxystreptamines. J Antibiot (Tokyo) 31:74–81

    CAS  Google Scholar 

  • Petyushenko RM, Ganelin VL, Chernyshev AI, Denaina AS, Esipov SE, Sazykin YuO, Navashin SM (1979) Aminoglycosides-phosphotransferase from Actinomyces fradiae. Identification of inactivation product (in Russian). Antibiotiki 24:430–436

    CAS  Google Scholar 

  • Piwowarski JM, Shaw PD (1979) Streptomycin resistance in a streptomycin-producing microorganism. Antimicrob Agents Chemother 16:176–182 Posternak T (1965) The cyclitols. In: Lederer E (ed) Chemistry of natural products. Holden-Day, San Francisco, pp 152–156

    Google Scholar 

  • Queener SW, Sebek OK, Vezina C (1978) Mutants blocked in antibiotic synthesis. Annu Rev Microbiol 32:593–636

    PubMed  CAS  Google Scholar 

  • Reuter G, Köster H, Liebermann (1977) Physiologie und Biochemie der Streptomyceten. XIII. Biosynthese von Paromomycin unter Einsatz von 14C-Glucose, -Glucosamin, -2- Desoxystreptamin und -Ribose durch Streptomyces albus var. metamycinus nov. var. Z Allg Mikrobiol 17:543–547

    PubMed  CAS  Google Scholar 

  • Rinehart KL Jr (1961) The neomycins and related antibiotics. Wiley & Sons, New York London Sydney, pp 93–94

    Google Scholar 

  • Rinehart KL Jr (1977) Mutasynthesis of new antibiotics. Pure Appl Chem 49:1361–1384

    CAS  Google Scholar 

  • Rinehart KL Jr (1979) Biosynthesis and mutasynthesis of aminocyclitol antibiotics. Jpn J Antibiot 32:S-32-S-46

    CAS  Google Scholar 

  • Rinehart KL Jr, Schimbor RF (1967) Neomycins. In: Gottlieb D, Shaw PD (eds) Biosynthesis. Springer, Berlin Heidelberg New York (Antibiotics, vol 2, pp 359–372)

    Google Scholar 

  • Rinehart KL Jr, Stroshane RM (1976) Biosynthesis of aminocyclitol antibiotics. J Antibiot (Tokyo) 29:319–353

    CAS  Google Scholar 

  • Rinehart KL Jr, Malik JM, Nystrom RS, Stroshane RM, Truitt ST, Taniguchi M, Rolls JP, Haak WJ, Buff BA (1974) Biosynthetic incorporation of [l-13C]glucosamine and [6-13C]glucose into neomycin. J Am Chem Soc 96:2263–2265

    CAS  Google Scholar 

  • Rolls JP, Ruff BD, Haak WJ, Rinehart KL Jr, Stroshane RM (1975) The use of precursors labeled with stable isotopes to study the biosynthesis of neomycin. Abstr 75th Annu Meet Am Soc Microbiol

    Google Scholar 

  • Rosi D, Goss WA, Daum SJ (1977) Mutational biosynthesis by idiotrophs of Micromonospora purpurea. I. Conversion of aminocyclitols to new aminoglycoside antibiotics. J Antibiot (Tokyo) 30:88–97

    CAS  Google Scholar 

  • Russ GA (1975) Studies on the biosynthesis of streptomycin and its streptidine moiety by Streptomyces griseus. Diss Abstr Int B Sci Eng 35:4810–4811

    Google Scholar 

  • Satoh A, Ogawa H, Satomura Y (1975 a) Effect of sclerin on production of aminoglycoside antibiotics accompanied by salvage function in Streptomyces. Agric Biol Chem 39:1593–1598

    CAS  Google Scholar 

  • Satoh A, Ogawa H, Satomura Y (1975 b) Role and regulation mechanism of kanamycin acetyltransferase in kanamycin biosynthesis. Agric Biol Chem 39:2331–2336

    CAS  Google Scholar 

  • Satoh A, Ogawa H, Satomura Y (1976) Regulation of w-acetylkanamycin amidohydrolase in the idiophase in kanamycin fermentation. Agric Biol Chem 40:191–196

    CAS  Google Scholar 

  • Sawa T, Fukagawa Y, Homma I, Takeuchi T, Umezawa H (1968) Studies on biosynthesis of kasugamycin. VI. Some relationships between the incorporation of 14C-compounds and the production of kasugamycin. J Antibiot (Tokyo) 21:413–420

    CAS  Google Scholar 

  • Scholda R, Billek G, Hoffmann-Ostenhof O (1964 a) Untersuchungen über die Biosynthese der Cyclite. I. Bildung von D-Pinit, D-Inosit und Sequoyit aus meso-Inosit in Blättchen von Trifolium incarnatum. Z Physiol Chem 335:180–186

    CAS  Google Scholar 

  • Scholda R, Billek G, Hoffmann-Ostenhof O (1964 b) Untersuchungen über die Biosynthese der Cyclite. VIII. Der Mechanismus der Umwandlung von meso-Inosit in D-Pinit und D-Inosit in Trifolium incarnatum. Monatsh Chem 95:1311–1317

    CAS  Google Scholar 

  • Sepulchre A-M, Quiclet B, Gero SD (1980) Bioconversion dans le domaine des antibiotiques aminocyclitolglycosidiques. Bull Soc Chim Fr 11–56–11–65

    Google Scholar 

  • Shaw PD, Piwowarski J (1977) Effects of ethidium bromide and acriflavine on streptomycin production by Streptomyces bikiniensis. J Antibiot (Tokyo) 30:404–408

    CAS  Google Scholar 

  • Shevchenko LA, Popova IS, Tovarova II, Kovalenko IV, Anisova LN, Khokhlov AS (1977) Relation of two Actinomyces streptomycini mutants in streptomycin biosynthesis (in Russian). Izw Akad Nauk SSSR Ser Biol 1977:551–557 (Chem Abstr 87:116377d)

    Google Scholar 

  • Shier WT, Rinehart KL Jr, Gottlieb D (1969) Preparation of four new antibiotics from a mutant ofStreptomyces fradiae. Proc Natl Acad Sci USA 63:198–204

    PubMed  CAS  Google Scholar 

  • Shier WT, Rinehart KL Jr, Gottlieb D (1972) Antibiotics containing the aminocyclitol sub- unit. US 3,669,838

    Google Scholar 

  • Shier WT, Ogawa S, Hichens M, Rinehart KL Jr (1973) Chemistry and biochemistry of the neomycins. XVII. Bioconversion of aminocyclitols to aminocyclitol antibiotics. J Antibiot (Tokyo) 26:551–561

    CAS  Google Scholar 

  • Shier WT, Schaefer PC, Gottlieb D, Rinehart KL Jr (1974) Use of mutants in the study of aminocyclitol antibiotic biosynthesis and the preparation of the hybrimycin C complex. Biochemistry 13:5073–5078

    PubMed  CAS  Google Scholar 

  • Shirafuji H, Nakahama K, Nogami I, Kida M, Yoneda M (1977) Accumulation of 6’-N-pyrophosphoamide butirosin A by phosphatase deficient mutants (in Japanese). Abstr Ann Meet Agric Chem Soc Jpn:156

    Google Scholar 

  • Silverman M, Rieder SV (1960) The formation of N-methyl-L-glucosamine from D-glucose by Streptomyces griseus. J Biol Chem 235:1251–1254

    PubMed  CAS  Google Scholar 

  • Slechta L, Coats JH (1974) Studies of the biosynthesis of spectinomycin. Abstr 294 of the 14th Interscience Conference on Antimicrobial Agents and Chemotherapy, San Francisco, Calif., Sept 11–13. Available from: Publications Office, American Society for Microbiology, 1913 I St., NW, Washington DC 20006

    Google Scholar 

  • Snipes CE, Brillinger G-U, Sellers L, Mascaro L, Floss HG (1977) Stereochemistry of the dTDP-glucose oxidoreductase reaction. J Biol Chem 252:8113–8117

    PubMed  CAS  Google Scholar 

  • Stepnov VP, Garaev MM, Fedotov AR, Golub EI (1978) Plasmids in Actinomycetes producing oxytetracyline and neomycin (in Russian). Antibiotiki 23:892–895

    PubMed  CAS  Google Scholar 

  • Stroshane RM (1976) Biosynthetic studies on the aminocyclitol antibiotics neomycin and spectinomycin. PhD thesis, University of Illinois, Urbana. Xerox Univ. Microfilm, 76–16202 (cf. Heyes WF 1978)

    Google Scholar 

  • Stroshane RM, Taniguchi M, Rinehart KL Jr, Rolls JP, Haak WJ, Ruff BA (1976) Spectinomycin biosynthesis studied by carbon magnetic resonance spectroscopy. J Am Chem Soc 98:3025–3027

    PubMed  CAS  Google Scholar 

  • Suami T, Ogawa S, Chida N (1980) The revised structure of validamycin A. J Antibiot (Tokyo) 33:98–99

    CAS  Google Scholar 

  • Takeda K, Kinumaki A, Furumai T, Yamaguchi T, Ohshima S, Ito Y (1978 a) Mutational biosynthesis of butirosin analogs. J Antibiot (Tokyo) 31:247–249

    CAS  Google Scholar 

  • Takeda K, Aihara K, Furumai T, Ito Y (1978 b) An approach to the biosynthetic pathway of butirosins and the related antibiotics. J Antibiot (Tokyo) 31:250–253

    CAS  Google Scholar 

  • Takeda K, Okuno S, Ohashi Y, Furumai T (1978 c) Mutational biosynthesis of butirosin analogs. I. Conversion of neamine analogs into butirosin analogs by mutants of Bacillus circulans. J Antibiot (Tokyo) 31:1023–1030

    CAS  Google Scholar 

  • Takeda K, Kinumaki A, Okuno S, Matsushita T, Ito Y (1978 d) Mutational biosynthesis of butirosin analogs. III. 6’-N-Methylbutirosins and 3’,4’-dideoxy-6’-C-methyl- butirosins, new semisynthetic aminoglycosides. J Antibiot (Tokyo) 31:1039–1045

    CAS  Google Scholar 

  • Takeda K, Kinumaki A, Hayasaka H, Yamaguchi T, Ito Y (1978 e) Mutational biosynthesis of butirosin analogs. II. 3’,4’-Dideoxy-6’-C-methyl-butirosins, new semisynthetic aminoglycosides. J Antibiot (Tokyo) 31:1031–1038

    CAS  Google Scholar 

  • Takeda K, Aihara K, Furumai T, Ito Y (1979) Biosynthesis of butirosins I. Biosynthetic pathways of butirosins and related antibiotics. J Antibiot (Tokyo) 32:18–28

    CAS  Google Scholar 

  • Taylor HD, Schmitz H (1976) Antibiotics derived from a mutant of Bacillus circulans. J Antibiot (Tokyo) 29:532–535

    CAS  Google Scholar 

  • Testa TR, Tilley BC (1975) Biotransformation, a new approach to aminoglycoside biosynthesis. I. Sisomicin. J Antibiot (Tokyo) 28:573–579

    CAS  Google Scholar 

  • Testa RT, Tilley BC (1976) Biotransformation, a new approach to aminoglycoside biosynthesis. II. Gentamicin. J Antibiot (Tokyo) 29:140–146

    CAS  Google Scholar 

  • Testa RT, Tilley BC (1979) Biosynthesis of sisomicin and gentamicin. Jpn J Antibiot 32: S-47-S-59

    CAS  Google Scholar 

  • Testa RT, Wagman GH, Daniels PJL, Weinstein MJ (1974) Mutamicins. Biosynthetically created new sisomicin analogs. J Antibiot (Tokyo) 27:917–921

    CAS  Google Scholar 

  • Tsukiura H, Saito K, Kobaru S, Konishi M, Kawaguchi H (1973) Aminoglycoside antibiotics. IV. BU-1709 E1 and E2, new aminoglycoside antibiotics related to the butirosins. J Antibiot (Tokyo) 26:386–388

    CAS  Google Scholar 

  • Turner WB (1971) Fungal metabolites. Academic Press, London New York

    Google Scholar 

  • Umbarger E, Davis BD (1962) Pathways of amino acid biosynthesis. In: Gunsalus IC, Stanier RY (eds) Biosynthesis. Academic Press, New York London (The bacteria, a treatise on structure and function, vol III, pp 167–251)

    Google Scholar 

  • Umezawa H (1967) Advances in fundamental research on kanamycin. I. Structure and biosynthesis (in Japanese). J Jpn Med Assoc 58:1328–1334

    CAS  Google Scholar 

  • Umezawa H (1974) Biochemical mechanism of resistance to aminoglycosidic antibiotics. Adv Carbohydr Chem Biochem 30:183–225

    PubMed  CAS  Google Scholar 

  • Umezawa H (1976) Secondary metabolites of microorganisms - plasmids and biologically active products (in Japanese). Kagaku 46:130–134

    CAS  Google Scholar 

  • Umezawa H (1977) Recent advances in bioactive microbial secondary metabolites. Jpn J Antibiot 30:S-138-S-163

    Google Scholar 

  • Umezawa S, Tsuchiya T (1969) Fermentation production of aminosugars and biosynthetic mechanism (in Japanese). J Chem Soc Jpn, Industr Chem Sect 72:425–431

    CAS  Google Scholar 

  • Umezawa S, Umino K, Shibahara S, Hamada M, Omoto S (1967) Fermentation of 3- amino-3-deoxy-D-glucose. J Antibiot (Tokyo) Ser A 20:355–360

    CAS  Google Scholar 

  • Umezawa S, Shibahara S, Omoto S, Takeuchi T, Umezawa H (1968) Studies on biosynthesis of 3-amino-3-deoxy-D-glucose. J Antibiot (Tokyo) 21:485–491

    CAS  Google Scholar 

  • VanÄ›k Z, Majer J (1967) Macrolide antibiotics. In: Gottlieb D, Shaw D (eds) Biosynthesis. Springer, Berlin Heidelberg New York (Antibiotics, vol II, pp 154–188)

    Google Scholar 

  • Virtanen AI, Hietala PK (1955) Enzymic decarboxylation of y-hydroxyglutamic acid to a- hydroxy-y-amino-butyric acid. Acta Chem Scand 9:549–550

    CAS  Google Scholar 

  • Vitális S, Szabó G, Välyi-Nagy T (1963) Comparison of the morphology of streptomycin producing and nonproducing strains of Streptomyces griseus. Acta Biol Acad Sci Hung 14:1–15

    PubMed  Google Scholar 

  • Volk WA (1959) The enzymatic formation of D-arabinose 5-phosphate from L-arabinose and adenosine triphosphate by Propionibacterium pentosaceum. J Biol Chem 234:1931–1936

    PubMed  CAS  Google Scholar 

  • Wagman GH, Marquez JA, Watkins PD, Bailey JV, Gentile F, Weinstein MJ (1973) Neomycin production by Micromonospora species 69–683. J Antibiot (Tokyo) 26:732–736

    CAS  Google Scholar 

  • Wahl HP, Grisebach H (1979) Biosynthesis of streptomycin dTDP-dihydrostreptose synthase from Streptomyces griseus and dTDP-4-keto-L-rhamnose 3,5-epimerase from S. griseus and Escherichia coli Y10. Biochim Biophys Acta 568:243–252

    PubMed  CAS  Google Scholar 

  • Wahl HP, Matern U, Grisebach H (1975) Two enzymes in Streptomyces griseus for the synthesis of dTDP-L-dihydrostreptose from dTDP-6-deoxy-D-xylo-4-hexosulose. Biochem Biophys Res Commun 64:1041–1045

    PubMed  CAS  Google Scholar 

  • Waitz JA, Miller GH, Moss E Jr, Chiu PJS (1978) Chemotherapeutic evaluation of 5-episi- somicin (Sch 22591), a new semisynthetic aminoglycoside. Antimicrob Agents Chemother 13:41–48

    PubMed  CAS  Google Scholar 

  • Walker JB (1958) Further studies on the mechanism of transamidinase action: Trans-amidination in Streptomyces griseus. J Biol Chem 231:1–9

    PubMed  CAS  Google Scholar 

  • Walker JB (1971) Enzymatic reactions involved in streptomycin biosynthesis and metabolism. Lloydia (Cinci) 34:363–371

    CAS  Google Scholar 

  • Walker JB (1974) Biosynthesis of the monoguanidinated inositol moiety of bluensomycin, a possible evolutionary precursor of streptomycin. J Biol Chem 249:2397–2404

    PubMed  CAS  Google Scholar 

  • Walker JB (1975) Pathways of the guanidinated inositol moieties of streptomycin and bluensomycin. Methods Enzymol 43:429–470

    PubMed  CAS  Google Scholar 

  • Walker JB (1978) Biosynthesis of aminocyclitols and guanidinocyclitols. In: Wells WW, Elsenberg F Jr (eds) Cyclitols and phosphoinositides. Academic Press, New York, pp 423–438

    Google Scholar 

  • Walker JB, Skorvaga M (1973 a) Phosphorylation of streptomycin and dihydrostreptomycin by Streptomyces. Enzymatic synthesis of different diphosphorylated derivatives. J Biol Chem 248:2435–2440

    PubMed  CAS  Google Scholar 

  • Walker JB, Skorvaga M (1973 b) Streptomycin biosynthesis and metabolism. Phosphate transfer from dihydrostreptomycin 6-phosphate to inosamines, streptamine and 2-deoxy-streptamine. J Biol Chem 248:2441–2446

    Google Scholar 

  • Walker JB, Walker MS (1967 a) Enzymatic synthesis of streptidine from scyllo-inosamine. Biochemistry 6:3821–3829

    PubMed  CAS  Google Scholar 

  • Walker JB, Walker MS (1967 b) Streptomycin biosynthesis. Enzymatic synthesis of O-phosphorylstreptidine from streptidine and adenosinetriphosphate. Biochem Biophys Acta 148:335–341

    PubMed  CAS  Google Scholar 

  • Walker JB, Walker MS (1967 c) Streptomycin biosynthesis. Participation of a phosphatase, aminating enzyme, and kinase in cell-free synthesis of streptidine-P from inosamine-P. Biochem Biophys Res Commun 26:278–283

    PubMed  CAS  Google Scholar 

  • Walker JB, Walker MS (1968) Streptomycin biosynthesis. Enzymatic synthesis of scyllo-m- osamine from scy/Zo-inosose and L-glutamine. Biochim Biophys Acta 170:219–220

    PubMed  CAS  Google Scholar 

  • Walker JB, Walker MS (1969) Streptomycin biosynthesis. Transamination reactions involving inosamines and inosadiamines. Biochemistry 8:763–770

    PubMed  CAS  Google Scholar 

  • Walker MS, Walker JB (1964) Biosynthesis of streptomycin. Cell-free transamidination in Streptomyces griseus. Biochim Biophys Acta 93:201–203

    PubMed  CAS  Google Scholar 

  • Walker MS, Walker JB (1965) Evidence for participation of a phosphorylated derivative of streptidine in streptomycin biosynthesis. Biochim Biophys Acta 97:397–398

    PubMed  CAS  Google Scholar 

  • Walker MS, Walker JB (1966) Enzymic studies on the biosynthesis of streptomycin. Transamidination of inosamine and streptamine derivatives. J Biol Chem 241:1262–1270

    PubMed  CAS  Google Scholar 

  • Walker MS, Walker JB (1967) Streptomycin biosynthesis. Conversion of myo-inosito to O-phosphorylstreptidine. Biochim Biophys Acta 136:272–278

    PubMed  CAS  Google Scholar 

  • Walker MS, Walker JB (1971) Streptomycin biosynthesis. Separation and substrate specificities of phosphatases acting on guanidino-deoxy-scyllo-inositol phosphate and streptomycin-(streptidino)phosphate. J Biol Chem 246:7034–7040

    PubMed  CAS  Google Scholar 

  • Wee TG, Frey PA (1973) Studies on the mechanism of action of uridine diphosphate galactose 4-epimerase. II. Substrate-dependent reduction by sodium borohydride. J Biol Chem 248:33–40

    PubMed  CAS  Google Scholar 

  • White TJ, Davies J (1978) Possible involvement of plasmids in the biosynthesis of paromomycin. Abstr 79 of the 3rd International Symposium on the Genetics of Industrial Microorganisms, University of Wisconsin, Madison, June 4–9. Available from: Publication Office, American Society for Microbiology, 19131 St., NW, Washington DC 20006

    Google Scholar 

  • Wright LF, Hopwood DA (1976) Identification of the antibiotic determined by the SCP, plasmid of Streptomyces coelicolor A3-2. J Gen Microbiol 95:96–106

    PubMed  CAS  Google Scholar 

  • Xue Y-G, Dong K-N, Li M, Zhu Y-F, Yang N-Q (1978) Genetic evidence of the presence of plasmid in Streptomyces griseus and its relation to the biosynthesis of streptomycin (in Chinese). Wei Sheng Wu Hsueh Pao 18:195–201 (Chem Abstr 89:193699d)

    CAS  Google Scholar 

  • Yagisawa M, Huang T-S R, Davies JE (1978) Possible involvement of plasmids in biosynthesis of neomycin. J Antibiot (Tokyo) 31:809–813

    CAS  Google Scholar 

  • Yasuda H, Suami T, Ishikawa T, Umezawa S (1975) Preparation of aminocyclitol derivatives (in Japanese). Japan Kokai 50–25,793

    Google Scholar 

  • Yasuda H, Suami T, Ishikawa T, Umezawa S, Umezawa H (1978) Aminocyclitol derivatives and production thereof (in Japanese). Japan Kokai 53–34,988

    Google Scholar 

  • Yoshikawa H, Takiguchi H (1976) Effect of alanine in the fermentation of butirosins (in Japanese). Abstr 324 of the 28th Meeting of the Society of Fermentation Technology, Osaka, Oct 25–27. Available from: Business Office, The Society of Fermentation Technology, Japan, Faculty of Engineering, Osaka University, Suitashi, Osaka 565, Japan

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Okuda, T., Ito, Y. (1982). Biosynthesis and Mutasynthesis of Aminoglycoside Antibiotics. In: Umezawa, H., Hooper, I.R. (eds) Aminoglycoside Antibiotics. Handbook of Experimental Pharmacology, vol 62. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68579-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68579-8_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68581-1

  • Online ISBN: 978-3-642-68579-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics