Skip to main content

Structures of Biological Minerals

  • Conference paper
Biological Mineralization and Demineralization

Part of the book series: Dahlem Workshop Reports ((DAHLEM LIFE,volume 23))

Abstract

The basic chemical and physical properties of ionic crystals reside in their structures. Structures of the following compounds of biological interest are described: calcium phosphates, a urate, calcium carbonates, and calcium oxalates. To a considerable degree their properties are affected by the presence of impurities and lattice defects in the crystals. In keeping with this, the kinds and locations of impurities and defects in hydroxyapatite are discussed, with special reference to how these affect the transport of ions along the hexagonal channels of hydroxyapatite. The crystal structure of octacalcium phosphate, which has a special relationship to that of hydroxyapatite, is described. The ways in which octacalcium phosphate may affect the growth mechanisms, impurity-defect content, morphology, stoichiometry, and chemical properties of hydroxyapatite are described. It is shown that much of the variability in the chemistry of the β-Ca3(PO4)2-whitlockite series of compounds resides in one of the 21 calciums in a unit cell. It is suggested that the hydrated compounds in all these series of biominerals may have special roles during the nucleation stage, and subsequently because they usually grow more rapidly than the anhydrous forms. The structure of CaCO3·6H2O contains CaCO3 ion pairs entirely isolated from each other by surrounding water molecules; this structural unit may participate in various important biochemical processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arends, J., and Jongebloed, W.L. 1979. Ultrastructural studies of synthetic apatite crystals. J. Dent. Res. 58(B); 837–842.

    Article  PubMed  CAS  Google Scholar 

  2. Bonel, G. 1972. Contribution de l’etude de la carbonatation des apatites. I. Syntheses et etude des proprietes physico chimiques des apatites carbonatees de type A. Ann. Chim. 7: 65–88.

    CAS  Google Scholar 

  3. Bragg, W.L. 1965. The Crystalline State, vol. 4. Ithaca, NY: Cornell University Press.

    Google Scholar 

  4. Brown, W.E. 1962. Crystal structure of octacalcium phosphate. Nature 196: 1048–1050.

    Article  CAS  Google Scholar 

  5. Brown, W.E. 1966. Crystal growth of bone mineral. Clin. Orthop. 44: 205–220.

    PubMed  CAS  Google Scholar 

  6. Brown, W.E.; Mathew, M.; and Tung, M.S. 1981. Crystal chemistry of octacalcium phosphate. In Prog. Crystal Growth Charact., vol. 4, pp. 59–87. Oxford, England: Pergamon Press Ltd.

    Google Scholar 

  7. Brown, W.E.; Schroeder, L.W.; and Ferris, J.S. 1979. Interlayering of crystalline octacalcium phosphate and hydroxylapatite. J. Phys. Chem. 83: 1835.

    Google Scholar 

  8. Brown, W.E.; Smith, J.P.; Lehr, J.R.; and Frazier, A.W. 1958. Crystallography of hydrated monocalcium phosphates containing potassium or ammonium. J. Phys. Chem. 62: 625–627.

    Article  CAS  Google Scholar 

  9. Brown, W.E.; Smith, J.P.; Lehr, J.R.; and Frazier, A.W. 1962. Crystallographic and chemical relations between octacalcium phosphate and hydroxyapatite. Nature 196: 1050–1054.

    Article  CAS  Google Scholar 

  10. Buerger, M.J. 1963. Elementary Crystallography, p. 306. New York: John Wiley.

    Google Scholar 

  11. Calvo, C., and Gopal, R. 1975. The crystal structure of whitlockite from the Palermo Quarry. Am. Min. 60: 120–133.

    CAS  Google Scholar 

  12. Deganello, S. 1980. The basic and derivative structures of calcium oxalate monohydrate. Z. Krist. 152: 247–252.

    Article  CAS  Google Scholar 

  13. Deganello, S.; Kampf, A.R.; and Moore, P.B. 1981. The crystal structure of calcium oxalate trihydrate: Ca(H2O)3(C2O4). Am. Min. 66: 859–865.

    CAS  Google Scholar 

  14. Deganello, S., and Piro, O.E. 1981. The crystal structure of calcium oxalate monohydrate (whewellite). N. Jb. Miner Mh. 2: 81–88.

    Google Scholar 

  15. Dickens, B.; Bowen, J.S.; and Brown, W.E. 1972. A refinement of the crystal structure of CaHPO4 (synthetic monetite). Acta Cryst. B28: 797–806.

    Google Scholar 

  16. Dickens, B., and Brown, W.E. 1970. The crystal structure of calcium carbonate hexahydrate at ~-120°. Inorg. Chem. 9: 480–486.

    Article  CAS  Google Scholar 

  17. Dickens, G.; Schroeder, L.W.; and Brown, W.E. 1974. Crystallographic studies of the role of Mg as a stabilizing impurity in β-Ca3(PO4)2 — I. The crystal structure of pure β-Ca3(PO4)2. J. Solid State Chem. 10: 232–248.

    Article  CAS  Google Scholar 

  18. Eanes, E.D., and Meyer, J.L. 1977. The maturation of crystalline calcium phosphates in aqueous suspensions at physiologic pH. Calcif. Tiss. Res. 23: 259–269.

    Article  CAS  Google Scholar 

  19. Elliott, J.C. 1964. The crystallographic structure of dental enamel and related apatites. Ph.D. Thesis, University of London, London, England.

    Google Scholar 

  20. Elliott, J.C.; Bonel, G.; and Trombe, J.C. 1980. Space group and lattice constants of Ca10(PO4)6CO3. J. Appl. Cryst. 13: 618–621.

    Article  CAS  Google Scholar 

  21. Elliott, J.C., and Mackie, P.E. 1975. Monoclinic hydroxyapatite. Physico-Chimie et Cristollographie des Apatites D’Interet Biologique. Colloques Internationaux C.N.R.S. (Paris) 230: 69–70.

    CAS  Google Scholar 

  22. Elliott, J.C.; Mackie, P.E.; and Young, R.A. 1973. Monoclinic hydroxyapatite. Science 180: 1055–1057.

    Article  PubMed  CAS  Google Scholar 

  23. Elliott, J.C., and Young, R.A. 1967. Conversion of single crystals of chlorapatite into single crystals of hydroxyapatite. Nature 214: 904–906.

    Article  CAS  Google Scholar 

  24. Gregory, T.M.; Moreno, E.C.; Patel, J.M.; and Brown, W.E. 1974. Solubility of β-Ca3(PO4)2 in system Ca(OH2-H3PO4-H2O at 5, 15, 25 and 37ºC. J. Res. Nat. Bur. Stand. (USA) 78A(6): 667–674.

    CAS  Google Scholar 

  25. Hallsworth, A.S.; Weatherell, J.S.; and Robinson, C. 1973. Loss of carbonate during the first stages of caries attack. Caries Res. 7: 345–348.

    Article  PubMed  CAS  Google Scholar 

  26. Holcomb, D.W., and Young, R.A. 1980. Thermal decomposition of human tooth enamel. Calcif. Tiss. Intl. 31: 189–201.

    Article  CAS  Google Scholar 

  27. Ingraham, G.S. 1973. The role of carbonate in dental minerals. Caries Res. 7: 217–230.

    Article  Google Scholar 

  28. Konjiki, T.; Sudo, T.; and Kohyama, N. 1980. Mineral-ogical notes of apatites in urinary calculi. Calcif. Tiss. Intl. 30: 101–107.

    Article  CAS  Google Scholar 

  29. LeGeros, R.Z.; Trautz, O.R.; Klein, E.; and LeGeros, J.P. 1969. Two types of carbonate substitutions in the apatite structure. Separatum Experientia 24: 5.

    Article  Google Scholar 

  30. Lowenstam, H.A. 1981. Minerals formed by organisms. Science 211; 1126.

    Article  PubMed  CAS  Google Scholar 

  31. Mandel, N.S. 1975. The crystal structure of calcium pyrophosphate dihydrate. Acta Cryst. B31: 1731–1734.

    Google Scholar 

  32. Mandel, N.S. 1976. The structural basis of crystal-induced membranolysis. Arthrit. Rheum. 19: 440–445.

    Google Scholar 

  33. Mandel, N.S., and Mandel, G.S. 1976. Monosodium urate monohydrate, the gout culprit. J. Am. Chem. Soc. 98: 2319–2323.

    Article  PubMed  CAS  Google Scholar 

  34. Mathew, M.; Schroeder, L.W.; Dickens, B.; and Brown, W.E. 1977. The crystal structure of α-Ca3(PO4)2. Acta Cryst. B33: 1325–1333.

    CAS  Google Scholar 

  35. Nelson, D. 1981. The influence of carbonate on the atomic structure and reactivity of hydroxyapatite. J. Dent. Res. 60(C): 1621–1629.

    PubMed  CAS  Google Scholar 

  36. Roux, P., and Bonel, G. 1980. Etude par diffraction des rayons X et par spectrometric d’assorption infrarouge des apatites carbonatees de type A phospho-calcique et arsenio-calcique “haute pression”. Bull. Min. 101: 448–452.

    Google Scholar 

  37. Roux, P.; Louer, D.; and Bonel, G. 1978. Chimie Minerale — sur une nouvelle forme cristalline de phosphate tricalcique. C. E. Acad. Sc. Paris 286: 549–551.

    CAS  Google Scholar 

  38. Sudarsanan, K., and Young, R.A. 1978. Structural interactions of F, Cl and OH in apatites. Acta Cryst. B34: 1401–1407.

    CAS  Google Scholar 

  39. Tazzoli, V., and Domeneghetti, C. 1980. The crystal structures of whewellite and weddellite: re-examination and comparison. Am. Min. 65: 327–334.

    CAS  Google Scholar 

  40. Tomazic, B., and Nancollas, G.H. 1979. The kinetics of dissolution of calcium oxalate hydrates. J. Cryst. Growth 46: 355–361.

    Article  CAS  Google Scholar 

  41. Trombe, H.C., and Montel, G. 1978. Some features of the incorporation of oxygen in different oxidation states in the apatitic lattice — I. On the existence of calcium and strontium oxyapatites. J. inorg. nucl. Chem. 40: 15–21.

    Article  CAS  Google Scholar 

  42. Verbeek, R.M.H.; Heiligers, H.J.M.; Driessens, F.C.M.; and Schaeken, H.C. 1980. Effect of dehydration of calcium hydroxyl apatite on its cell perimeters. Z. anorg. allg. Chem. 466: 76–80.

    Article  Google Scholar 

  43. Wallace, B.M., and Brown, W.E. 1971. Stoichiometric composition of whitlockite. J. Dent. Res. 50: 343–346.

    Article  PubMed  CAS  Google Scholar 

  44. Weissmann, G., and Rita, C.A. 1972. Molecular basis of gouty inflammation: interaction of monosodium urate crystals with lysosomes and lipsomes. Nature 240: 167–172.

    Article  CAS  Google Scholar 

  45. Wells, A.F. 1962. Structural Inorganic Chemistry, 3rd ed. Oxford, England: Oxford University Press.

    Google Scholar 

  46. Young, R.A. 1975. Some aspects of crystal structural modeling of biological apatites. Physico-Chemie et Crystallographie des Apatites D’Interet Biologique. Colloques Internationaux C.N.R.S. (Paris) 230: 21–39.

    CAS  Google Scholar 

  47. Young, R.A.; Bartlett, M.L.; Spooner, S.; Mackie, P.E.; and Bonel, G. 1981. Reversible high temperature exchange of carbonate and hydroxyl ions in tooth enamel and synthetic hydroxyapatite. J. Biol. Phys. 9: 1–26.

    Article  CAS  Google Scholar 

  48. Young, R.A., and Mackie, P.E. 1980. Crystallography of human tooth enamel: initial structure refinement. Mat. Res. Bull. 15: 17–29.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Dr. S. Bernhard, Dahlem Konferenzen, Berlin

About this paper

Cite this paper

Young, R.A., Brown, W.E. (1982). Structures of Biological Minerals. In: Nancollas, G.H. (eds) Biological Mineralization and Demineralization. Dahlem Workshop Reports, vol 23. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68574-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68574-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68576-7

  • Online ISBN: 978-3-642-68574-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics