Skip to main content

The Role of Cyclic Nucleotides in the Control of Anterior Pituitary Gland Activity

  • Chapter
Cyclic Nucleotides

Overview

The anterior pituitary gland secretes six known polypeptide hormones: ACTH (adrenocorticotropin), GH (growth hormone), PRL (prolactin), TSH (thyrotropin), LH (luteinizing hormone), and FSH (follicle-stimulating hormone). The rate of secretion of these individual polypeptides is specifically controlled by neurohormones released from the hypothalamus and transported to their adenohypophyseal site of action by a short portal blood system (Schally et al. 1968). The secretion of LH, FSH, and ACTH is known to be under only positive hypothalamic control, whereas that of GH, TSH, and PRL results from the balance of action of inhibitory and stimulatory neurohormones (Fig. 1). The overall influence of the hypothalamus on GH and TSH secretion is stimulatory, whereas it is inhibitory on PRL secretion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams TE, Nett TM (1979) Interaction of GnRH with anterior pituitary. III. Role of divalent cations, microtubules and microfilaments in the GnRH activated gonadotroph. Biol Reprod 21:1073–1086

    PubMed  CAS  Google Scholar 

  • Adams TE, Wagner TOF, Sawyer HR, Nett TM (1979) GnRH interaction with anterior pituitary. II. Cyclic AMP as an intracellular mediator in the GnRH activated gonadotroph. Biol Reprod 21:735–747

    PubMed  CAS  Google Scholar 

  • Aiyer BS, Chiappa SA, Fink G, Greig FJ (1973) A priming effect of luteinizing hormone releasing factor on the anterior pituitary gland in the female rat. J Physiol (Lond) 234:81P–82P

    CAS  Google Scholar 

  • Baker HWG, Bremner WJ, Burger HG et al. (1976) Recent Prog Horm Res 32:429–476

    PubMed  CAS  Google Scholar 

  • Barden N, Labrie F (1973) Cyclic adenosine 3′,5′-monophosphate-dependent phosphorylation of ribosomal proteins from bovine anterior pituitary gland. Biochemistry 12:3096–3102

    PubMed  CAS  Google Scholar 

  • Barden N, Bergeron L, Betteridge A (1976) Effects of prostaglandin synthetase inhibitors and prostaglandin precursors on anterior pituitary cyclic AMP and hormone secretion. In: Samuelson B and Paoletti R (eds) Advances in Prostaglandin Thromboxane Res. Raven Press NY, p 341

    Google Scholar 

  • Barnes GD, Brown BL, Gard TG, Atkinson D, Ekins RP (1978) Effect of TRH and dopamine on cyclic AMP levels in enriched mammotroph and thyrotroph cells. Mol Cell Endocrinol 12:273–275

    PubMed  CAS  Google Scholar 

  • Baumann R, Kuhl H (1980) Effect of LHRH and of a highly potent LHRH analog upon pituitary adenyl cyclase activity. Horm Metab Res 12:128–130

    PubMed  CAS  Google Scholar 

  • Beaulieu M, Labrie F, Coy DH, Coy EJ, Schally AV (1975) Parallel inhibition of LHRH-induced cyclic AMP accumulation and LH and FSH release by LHRH antagonists in vitro. J Cyclic Nucleotide Res 1:243–250

    PubMed  CAS  Google Scholar 

  • Bédard P, Langelier P, Villeneuve A (1977) Estrogens and the extra-pyramidal system. Lancet 1:1367

    Google Scholar 

  • Bédard P, Dankova J, Boucher R, Langelier P (1978) Effect of estrogens on apomorphineinduced circling behavior in the rat. Can J Physiol Pharmacol 56:538–541

    PubMed  Google Scholar 

  • Bélanger A, Labrie F, Borgeat P et al. (1974) Inhibition of growth hormone and thyrotropin release by growth hormone-release inhibiting hormone. J Mol Cell Endocrinol 1:329–339

    Google Scholar 

  • Ben-Jonathan N, Oliver C, Weiner HJ, Mical RS, Porter JC (1977) Dopamine in hypophyseal portal plasma of the rat during the estrous cycle and throughout pregnancy. Endocrinology 100:452–458

    PubMed  CAS  Google Scholar 

  • Bergeron L, Barden N (1975) Stimulation of cyclic AMP accumulation by arachidonic and 8,11,14-eicosatrienoic acids in rat anterior pituitary gland. Mol Cell Endocrinol 2:253–260

    PubMed  CAS  Google Scholar 

  • Betteridge A, Wallis M (1977) Role of prostaglandins and adenosine 3′,5′-cyclic monophosphate in the control by insulin of growth hormone synthesis in vitro. Biochem Soc Trans 5:224–226

    PubMed  CAS  Google Scholar 

  • Betteridge A, Wallis M (1978) Stimulation of anterior pituitary prostaglandin E content and somatotropin (growth hormone) synthesis by phospholipase A. Biochem J 176:319–323

    PubMed  CAS  Google Scholar 

  • Betteridge A, Wallis M (1979) Involvement of prostaglandins in the inhibition of growth hormone production in cultured pituitary cells by insulin. J Endocrinol 80:239–248

    PubMed  CAS  Google Scholar 

  • Bicknell RJ, Schofield JG (1976) Mechanism of action of somatostatin: inhibition of ionophore A 23187-induced release of growth hormone from dispersed bovine pituitary cells. FEBS Lett 68:23–26

    PubMed  CAS  Google Scholar 

  • Boler J, Enzman F, Folkers K, Bowers CY, Schally AV (1969) The identity of chemical and hormonal properties of the thyrotropin-releasing hormone and pyroglutamyl-histidylproline amide. Biochem Biophys Res Commun 37:705–710

    PubMed  CAS  Google Scholar 

  • Borgeat P, Chavancy G, Dupont A, Labrie F, Arimura A, Schally AV (1972) Stimulation of adenosine 3′,5′-cyclic monophosphate accumulation in anterior pituitary gland in vitro by synthetic luteinizing hormone-releasing hormone/follicle-stimulating hormone (LHRH/FSH-RH). Proc Natl Acad Sci USA 69:2677–2681

    PubMed  CAS  Google Scholar 

  • Borgeat P, Labrie F, Poirier G, Chavancy G, Schally AV (1973) Stimulation of adenosine 3′,5′-cyclic monophosphate accumulation in anterior pituitary gland by purified growth hormone-releasing hormone. Trans Assoc Am Physicians 86:284–299

    PubMed  CAS  Google Scholar 

  • Borgeat P, Labrie F, Côté J et al. (1974 a) Parallel stimulation of cyclic AMP accumulation and LH and FSH release by analogs of LHRH in vitro. J Mol Cell Endocrinol 1:7–20

    CAS  Google Scholar 

  • Borgeat P, Labrie F, Drouin J et al. (1974 b) Inhibition of adenosine 3′,5′-monophosphate accumulation in anterior pituitary gland in vitro by growth hormone release-inhibiting hormone. Biochem Biophys Res Commun 56:1052–1059

    PubMed  CAS  Google Scholar 

  • Borgeat P, Garneau P, Labrie F (1975 a) Calcium requirement for stimulation of cyclic AMP accumulation in anterior pituitary by LHRH. Mol Cell Endocrinol 2:117–124

    PubMed  CAS  Google Scholar 

  • Borgeat P, Labrie F, Garneau P (1975 b) Characteristics of action of prostaglandins on cyclic AMP accumulation in rat anterior pituitary gland. Can J Biochem 53:455–460

    PubMed  CAS  Google Scholar 

  • Bowers CY (1971) The role of cyclic AMP in the release of anterior pituitary hormones. Ann NY Acad Sci 185:263–290

    PubMed  CAS  Google Scholar 

  • Brattin WJ Jr, Portanova R (1981) Dibutyryl cyclic AMP-induced phosphorylation of specific proteins in adenohypophysial cells. Mol Cell Endocrinol 23:77–90

    PubMed  CAS  Google Scholar 

  • Brazeau P, Vale W, Burgus R, Ling N, Butcher M, Rivier J, Guillemin R (1973) Hypothalamic polypeptide that inhibits the secretion of immunoreactive growth hormone. Science 179:77–79

    PubMed  CAS  Google Scholar 

  • Brown MR, Hedge GA (1974) In vivo effects of prostaglandins on TRH-induced TSH secretion. Endocrinology 95:1392–1397

    PubMed  CAS  Google Scholar 

  • Brown GM, Seeman P, Lee T (1976) Dopamine neuroleptics receptors in basal hypothalamus and pituitary. Endocrinology 99:1407–1410

    PubMed  CAS  Google Scholar 

  • Burgus R, Dunn TF, Desiderio D, Guillemin R (1969) Structure moléculaire du facteur hypothalamique TRF d’origine ovine: mise en évidence par spectrométrie de masse de la séquence PCP-His-Pro, NH2. CR Acad Sci [D] (Paris) 269:1870–1873

    CAS  Google Scholar 

  • Burgus R, Butcher M, Ling N et al. (1971) Structure moléculaire du facteur hypothalamique (LRF) d’origine ovine contrôlant la sécrétion de l’hormone gonadotrope hypophysaire. CR Acad Sci [D] (Paris) 273:1611–1613

    CAS  Google Scholar 

  • Calabro MA, MacLeod RM (1978) Binding of dopamine to bovine anterior pituitary gland membranes. Neuroendocrinology 25:32–46

    PubMed  CAS  Google Scholar 

  • Caron MG, Beaulieu M, Raymond V, Gagné B, Drouin J, Lefkowitz RJ, Labrie F (1978) Dopaminergic receptors in the anterior pituitary gland. Correlation of [3H]dihydroergocryptine binding with the dopaminergic control of prolactin release. J Biol Chem 254:2244–2253

    Google Scholar 

  • Castro-Vasquez A, McCann SM (1975) Cyclic variations in the increased responsiveness of the pituitary to luteinizing hormone releasing hormone (LHRH) indicated by LHRH. Endocrinology 97:13–19

    Google Scholar 

  • Cehovic G (1969) Role de l’adénosine 3′,5′-monophosphate cyclique dans la libération de TSH hypophysaire. CR Acad Sci [D] (Paris) 268:2929–2931

    CAS  Google Scholar 

  • Cehovic G, Lewis UJ, Vander Laan WP (1970) Etude de l’action adénosine 3′,5′-monophosphate cyclique sue la libération de l’hormone de croissance et de la prolactine in vitro. CR Acad Sci [D] (Paris) 270:3119–3122

    CAS  Google Scholar 

  • Chen L, Meites J (1970) Effects of estrogen and progesterone on serum and pituitary prolactin levels in ovariectomized rats. J Endocrinol 86:503–505

    CAS  Google Scholar 

  • Cheung WY, Lynch TJ, Wallace RW (1978) An endogenous Ca2+-dependent activator protein of brain adenylate cyclase and cyclic nucleotide phosphodiesterase. Adv Cyclic Nucleotide Res 9:233–251

    PubMed  CAS  Google Scholar 

  • Chobsieng P, Naor Z, Koch Y, Zor U, Lindner HR (1975) Stimulatory effect of prostaglandin E2 on LH release in the rat: evidence for hypothalamic site of action. Neuroendocrinology 17:12–17

    PubMed  CAS  Google Scholar 

  • Clayton RN, Catt KJ (1980) Receptor binding affinity of gonadotropin-releasing hormone analogs: analysis by radioligand-receptor assay. Endocrinology 106:1154–1159

    PubMed  CAS  Google Scholar 

  • Clayton RN, Shakespear RA, Marshall JC (1978) LHRH binding to purified pituitary plasma membranes: absence of adenylate cyclase activation. Mol Cell Endocrinol 11:63–78

    PubMed  CAS  Google Scholar 

  • Clayton EN, Shakespear RA, Duncan JA, Marshall JC (1979) Radioiodinated nondegradable gonadotropin-releasing hormone analogs: new probes for the investigation of pituitary gonadotropin-releasing hormone receptors. Endocrinology 105:1369–1381

    PubMed  CAS  Google Scholar 

  • Conn PM, Morrell DV, Dufau ML, Catt KJ (1979) Gonadotropin-releasing action in cultured pituicytes: independence of luteinizing hormone release and adenosine 3′,5′-monophosphate production. Endocrinology 104:448–453

    PubMed  CAS  Google Scholar 

  • Cooper RH, McPherson M, Schofield JG (1972) The effect of prostaglandins on pituitary content of adenosine 3′,5′-cyclic monophosphate and the release of growth hormone. Biochem J 127:143–154

    PubMed  CAS  Google Scholar 

  • De Camilli P, Macconi D, Spada A (1979) Dopamine inhibits adenylate cyclase in human prolactin-secreting pituitary adenomas. Nature 278:252–254

    PubMed  Google Scholar 

  • De Lange RJ, Kamp RG, Riley WD, Cooper WD, Krebs RG (1968) Activation of skeletal muscle Phosphorylase kinase by adenosine 3′,5′-monophosphate. J Biol Chem 243:2200–2208

    Google Scholar 

  • Deery DJ, Howell SL (1973) Rat anterior pituitary adenyl cyclase activity. GTP requirement of prostaglandin E1 and E2 and synthetic luteinizing hormone-releasing hormone activation. Biochim Biophys Acta 329:17–22

    PubMed  CAS  Google Scholar 

  • Deery DJ, Jones AC (1975) Effects of hypothalamic extracts, neurotransmitters and synthetic hypothalamic releasing hormones on adenylyl cyclase activity in the lobes of the pituitary of the dogfish (Scylrorhinus canicula L.). J Endocrinol 64:49–57

    PubMed  CAS  Google Scholar 

  • De Wied D, Witter A, Versteeg DHG, Mulder AH (1969) Release of ACTH by substances of central nervous system origin. Endocrinology 85:561–569

    PubMed  Google Scholar 

  • Drouin J, Labrie F (1976 a) Selective effect of androgens on LH and FSH release in anterior pituitary cells in culture. Endocrinology 98:1528–1524

    PubMed  CAS  Google Scholar 

  • Drouin J, Labrie F (1976 b) Specificity of the stimulatory effect of prostaglandins on hormone release in anterior pituitary cells in culture. Prostaglandins 11:355–366

    PubMed  CAS  Google Scholar 

  • Drouin J, Lagacé L, Labrie F (1976 a) Estradiol-induced increase of the LH responsiveness to LHRH in anterior pituitary cells in culture. Endocrinology 99:1477–1481

    PubMed  CAS  Google Scholar 

  • Drouin J, De Léan A, Rainville R, Lachance R, Labrie F (1976 b) Characteristics of the interaction between TRH and somatostatin for thyrotropin and prolactin release. Endocrinology 98:514–521

    PubMed  CAS  Google Scholar 

  • Drouin J, Ferland L, Bernard J, Labrie F (1976 c) Site of the in vivo stimulatory effect of prostaglandins on LH release. Prostaglandins 11:367–376

    PubMed  CAS  Google Scholar 

  • Drouin J, Lavoie M, Labrie F (1978) Effect of gonadal steroids on the LH and FSH response to 8-Br cyclic AMP in anterior pituitary cells in culture. Endocrinology 102:358–361

    PubMed  CAS  Google Scholar 

  • Dubois P, Varques-Regairas H, Dubois MP (1973) Human foetal anterior pituitary immunofluorescent evidence for corticotropin and melanotropin activities. Z Zellforsch Mikrosk Anat 145:131–143

    PubMed  CAS  Google Scholar 

  • Dufau ML, Horner KA, Yayashi K, Tsuruhara T, Conn PM, Catt KJ (1978) Actions of choleragen and gonatropin in isolated Leydig cells. Functional compartimentalization of the hormone-activated cyclic AMP response. J Biol Chem 253:3721–3729

    PubMed  CAS  Google Scholar 

  • Eto S, Fleischer N (1976) Regulation of thyrotropin (TSH) release and production in monolayer cultures of transplantable TSH-producing mouse tumors. Endocrinology 98:114–122

    PubMed  CAS  Google Scholar 

  • Euvrard C, Labrie F, Boissier JR (1979) Antagonism between estrogens and dopamine in the rat striatum. In: Usdin E (ed) Catecholamines: basic and clinical frontiers. Pergamon, Oxford New York, p 1263

    Google Scholar 

  • Ferland L, Labrie F, Coy DH, Coy EJ, Schally AV (1975 a) Inhibitory activity of four analogs of luteinizing hormone-releasing hormone in vivo. Fertil Steril 26:889–893

    PubMed  CAS  Google Scholar 

  • Ferland L, Borgeat P, Labrie F, Bernard J, De Léan A, Raynaud JP (1975 b) Changes in pituitary sensitivity to LHRH during the estrous cycle. Mol Cell Endocrinol 2:107–115

    PubMed  CAS  Google Scholar 

  • Ferland L, Drouin J, Labrie F (1976) Role of sex steroids on LH and FSH secretion in the rat. In: Labrie F, Meites J, Pelletier G (eds) Hypothalamus and endocrine functions. Plenum, Oxford New York, p 191

    Google Scholar 

  • Ferland L, Labrie F, Euvrard C, Raynaud JP (1979) Antidopaminergic activity of estrogens on prolactin release at the pituitary level in vivo. Mol Cell Endocrinol 14:199–204

    PubMed  CAS  Google Scholar 

  • Fleischer H, Donald RA, Butcher RW (1969) Involvement of adenosine 3′,5′-monophosphate in release of ACTH. Am J Physiol 5:1287–1291

    Google Scholar 

  • Franchimont P (1972) Human gonadotropin secretion. J R Coll Physicians Lond 6:283–295

    PubMed  CAS  Google Scholar 

  • Franchimont P, Chari S, Demoulin A (1975) Hypothalamus-pituitary-testis interaction. J Reprod Fertil 44:335–350

    PubMed  CAS  Google Scholar 

  • Franchimont P, Verstraelen-Proyard J, Hazee-Hagelstein MT, Renard CH, Demoulin A, Bourguignon JP, Hustin J (1979) Inhibin. From concept to reality. Vitam 37:243–302

    CAS  Google Scholar 

  • Frantz AG, Kleinberg DL, Noel GL (1972) Studies on prolactin in man, Recent Prog Horm Res 28:527–590

    PubMed  CAS  Google Scholar 

  • Gautvick KM, Tashjian AH Jr (1973) Effects of cations and colchicine on the release of prolactin and growth hormone by functional pituitary cells in culture. Endocrinology 93:793–799

    Google Scholar 

  • Gershengorn MC, Rebecchi MJ, Geras E, Arevalo CO (1980) Thyrotropin-releasing hormone (TRH) action in mouse thyrotropic tumor cells in culture: evidence against a role for adenosine 3′,5′-monophosphate as a mediator of TRH-stimulated thyrotropin release. Endocrinology 107:665–670

    PubMed  CAS  Google Scholar 

  • Giguere V, Cote J, Labrie F (1981) Characteristics of the α-adrenergic stimulation of adrenocorticotropin secretion in rat anterior pituitary cells. Endocrinology 109:757–762

    PubMed  CAS  Google Scholar 

  • Godbout M, Labrie F (1982) Inhibitory effects of porcine follicular fluid “inhibin” on pituitary cyclic AMP levels. Mol Cell Endocrinol, in press

    Google Scholar 

  • Goodyer CG, St George Hall C, Guyda H, Robert F, Giroud CJP (1977) Human fetal pituitary in culture: hormone secretion and response to somatostatin, luteinizing hormone releasing factor, thyrotropin-releasing factor and dibutyryl cyclic AMP. J Clin Endocrinol Metab 45:73–85

    PubMed  CAS  Google Scholar 

  • Gordon JH, Reichlin S (1974) Changes in pituitary responsiveness to luteinizing hormonereleasing factor during the estrous cycle. Endocrinology 94:974–978

    PubMed  CAS  Google Scholar 

  • Grant G, Vale W, Guillemin R (1972) Interaction of thyrotropin releasing factors with membrane receptors of pituitary cells. Biochem Biophys Res Commun 46:28–30

    PubMed  CAS  Google Scholar 

  • Grant G, Vale W, Rivier J (1973) Pituitary binding sites for [3H]labelled luteinizing hormone-releasing factor (LRF). Biochem Biophys Res Commun 50:771–778

    PubMed  CAS  Google Scholar 

  • Grumbach M, Roth JC, Kaplan SL, Kelch P (1974) Hypothalamic-pituitary regulation of puberty: evidence and concepts derived from clinical research, In: Grumbach G, Grave G, Mayer FE (eds) The Control of the onset of puberty. John Wiley and Sons, New York Chichester, p 115

    Google Scholar 

  • Harms PG, Ojeda SR, McCann SM (1973) Prostaglandin involvement in hypothalamic control of gonadotropin and prolactin release. Science 181:760–761

    PubMed  CAS  Google Scholar 

  • Harms PG, Ojeda SR, McCann SM (1974) Prostaglandin-induced release of pituitary gonadotropins: central nervous system and pituitary sites of action. Endocrinology 94:1459–1464

    PubMed  CAS  Google Scholar 

  • Heber D, Odell WD (1978) Pituitary receptor binding activity of active, inactive, superactive and inhibitory analogs of gonadotropin-releasing hormone. Biochem Biophys Res Commun 82:67–73

    PubMed  CAS  Google Scholar 

  • Hedge GA (1972) The effects of prostaglandins on ACTH secretion. Endocrinology 91:925–933

    PubMed  CAS  Google Scholar 

  • Hertelendy F (1971) Studies on growth hormone secretion. II. Stimulation by prostaglandins in vitro. Acta Endocrinol (Copenh) 68:355–362

    CAS  Google Scholar 

  • Hertelendy P, Peake GT, Todd H (1971) Studies on growth hormone secretion: inhibition of prostaglandin, theophylline and cyclic AMP stimulated growth hormone release by valinomycin in vitro. Biochem Biophys Res Commun 44:253–260

    PubMed  CAS  Google Scholar 

  • Hertelendy F, Todd H, Ehrhart K, Blute R (1972) Studies on growth hormone secretion. IV. In vivo effects of prostaglandin E1. Prostaglandins 2:79–91

    Google Scholar 

  • Hertelendy F, Todd H, Marconis RJ Jr (1978) Studies on growth hormone secretion. IX. Prostaglandins do not act like ionophores. Prostaglandins 15:575–581

    PubMed  CAS  Google Scholar 

  • Hoffman BB, De Léan A, Wood CL, Schocken DO, Lefkowitz RJ (1979) Alpha-adrenergic receptor subtypes: quantitative assessment by ligand binding. Life Sci 24:1739–1746

    PubMed  CAS  Google Scholar 

  • Jakobs KH (1979) Inhibition of adenylate cyclase by hormones and neurotransmitters. Mol Cell Endocrinol 16:147–156

    PubMed  CAS  Google Scholar 

  • Jolicoeur P, Labrie F (1974) Phosphorylation of nuclear proteins from bovine anterior pituitary gland induced by adenosine 3′,5′-monophosphate. Eur J Biochem 48:1–9

    PubMed  CAS  Google Scholar 

  • Jutisz M, Paloma de la Llosa M (1970) Requirement of Ca++ and Mg++ ions for the in vitro release of follicle-stimulating hormone from rat pituitary gland and its subsequent biosynthesis. Endocrinology 86:761–768

    PubMed  CAS  Google Scholar 

  • Kaneko T, Saito S, Oka H, Oda T, Yanaihara N (1973) Effects of synthetic LHRH and its analogs on rat anterior pituitary cyclic AMP and LH and FSH release. Metabolism 22:77–78

    PubMed  CAS  Google Scholar 

  • Kato Y, Dupré J, Beck JC (1973) Plasma growth hormone in the anesthetized rat: effects of dibutyryl cyclic AMP, prostaglandin E, adrenergic agents, vasopressin, chlorpromazine, amphetamine and L-Dopa. Endocrinology 93:135–146

    PubMed  CAS  Google Scholar 

  • Kawakami M, Kimura F (1980) Stimulation of guanosine 3′,5′-monophosphate accumulation in anterior pituitary glands in vivo by synthetic luteinizing hormone-releasing hormone. Endocrinology 106:626–630

    PubMed  CAS  Google Scholar 

  • Kebabian JW (1973) Biochemical regulation and physiological significance of cyclic nucleotides in the nervous system, Cyclic Nucleotide Res 8:421

    Google Scholar 

  • Kebabian JW, Calne DB (1979) Multiple receptors for dopamine. Nature 277:93–96

    PubMed  CAS  Google Scholar 

  • Kebabian JW, Petzold GL, Greengard P (1977) Dopamine sensitive adenylate cyclase in caudate nucleus of rat brain and its similarity to the dopamine receptor. Proc Natl Acad Sci USA 69:2145–2149

    Google Scholar 

  • Kraicer J, Milligan JV, Gosbee JL, Conrad RG, Branson CM (1969) In vitro release of ACTH: effects of potassium, calcium and corticosterone. Endocrinology 85:1144–1153

    PubMed  CAS  Google Scholar 

  • Kunze H (1970) Formation of [I-14C]prostaglandin E2 and two prostaglandins metabolites from [I-14C] arachidonic acid during vascular perfusion of the frog intestine. Biochim Biophys Acta 202:180–183

    PubMed  CAS  Google Scholar 

  • Labrie F, Béraud G, Gauthier M, Lemay A (1971 a) Actinomycin-insensitive stimulation of protein synthesis in rat anterior pituitary in vitro by dibutyryl adenosine 3′,5′-monophosphate. J Biol Chem 246:1902–1908

    PubMed  CAS  Google Scholar 

  • Labrie F, Lemaire S, Courte C (1971 b) Adenosine 3′,5′-monophosphate-dependent protein kinase from bovine anterior pituitary gland. I. Properties. J Biol Chem 246:7293–7302

    PubMed  CAS  Google Scholar 

  • Labrie F, Barden N, Poirier G, De Léan A (1972) Characteristics of binding of [3H]thyrotropin-releasing hormone to plasma membranes of bovine anterior pituitary gland. Proc Natl Acad Sci USA 69:283–287

    PubMed  CAS  Google Scholar 

  • Labrie F, Pelletier G, Lemay A et al. (1973 a) Control of protein synthesis in anterior pituitary gland. Karolinska Symp Res Methods Reprod Endocrinol: 301

    Google Scholar 

  • Labrie F, Gauthier M, Pelletier G, Borgeat P, Lemay A, Gouge JJ (1973 b) Role of microtubules in basal and stimulated release of growth hormone and prolactin in rat adenohypophysis in vitro. Endocrinology 93:903–914

    PubMed  CAS  Google Scholar 

  • Labrie F, Pelletier G, Borgeat P, Drouin J, Savary M, Côté J, Ferland L (1975 a) Aspects of the mechanism of action of hypothalamic hormone (LHRH), In: Thomas JA, Singhal RL (eds) Gonadotropins and gonadal functions, vol 1. University Park Press, Baltimore, p 77

    Google Scholar 

  • Labrie F, Borgeat P, Lemay A et al. (1975 b) Role of cyclic AMP in the action of hypothalamic regulatory hormones. Adv Cyclic Nucleotide Res 5:787

    PubMed  CAS  Google Scholar 

  • Labrie F, De Léan A, Drouin J et al. (1976 a) New aspects of the mechanism of action of hypothalamic regulatory hormones. In: Labrie F, Meites J, Pelletier G (eds) Hypothalamus and endocrine functions. Raven, New York, p 147

    Google Scholar 

  • Labrie F, Pelletier G, Borgeat P, Drouin J, Ferland L, Bélanger A (1976 b) Mode of action of hypothalamic regulatory hormones. Neuroendocrinol 4:63

    CAS  Google Scholar 

  • Labrie F, Savary M, Coy DH, Coy EJ, Schally AV (1976 c) Inhibition of LH release by analogs of LH-releasing hormone (LHRH) in vitro. Endocrinology 98:289–294

    PubMed  CAS  Google Scholar 

  • Labrie F, Beaulieu M, Caron MG, Raymond V (1978 a) The adenohypophyseal dopamine receptor: specificity and modulation of its activity by estradiol. In: Robyn C, Harter M (eds) Progress in prolactin physiology and pathology. Elsevier North-Holland Biomedical, Amsterdam Oxford New York, p 121

    Google Scholar 

  • Labrie F, Lagacé L, Ferland et al. (1978 b) Interactions between LHRH, sex steroids and “inhibin” in the control of LH and FSH secretion. Int J Andrology [Suppl] 2:81

    CAS  Google Scholar 

  • Lagacé L, Labrie F, Lorenzen J, Schwartz NB, Channing CP (1979 a) Selective inhibitory effect of porcine follicular fluid on FSH secretion in anterior pituitary cells in culture. Clin Endocrinol 10:401–406

    Google Scholar 

  • Lagacé L, Massicotte J, Drouin J, Giguère V, Dupont A, Labrie F (1979 b) Interactions between LHRH, sex steroids and “inhibin” at the pituitary level in the control of LH and FSH secretion in the rat. In: Talwar GP (ed) Recent advances in reproduction and regulation of fertility. Elsevier North-Holland Biochemical, Amsterdam Oxford New York, p 73

    Google Scholar 

  • Lefkowitz RJ, Williams LT (1976) Alpha-adrenergic receptor identification by [3H]dihydroergocryptine. Science 192:791–793

    PubMed  Google Scholar 

  • Lefkowitz RJ, Roth J, Pastan I (1970) Effects of calcium on ACTH stimulation of the adrenal separation of hormone binding from adenyl cyclase activation. Nature 228:864–866

    PubMed  CAS  Google Scholar 

  • Lemaire S, Pelletier G, Labrie F (1971) Adenosine 3′,5′-monophosphate-dependent protein kinase from bovine anterior pituitary gland. II. Subcellular distribution. J Biol Chem 246:7303–7310

    PubMed  CAS  Google Scholar 

  • Lemaire S, Labrie F, Gauthier M (1974) Adenosine 3′,5′-monophosphate-dependent protein kinase from bovine anterior pituitary gland. III. Structural specificity of the ATP site of the catalytic subunit. Can J Biochem 52:137–141

    PubMed  CAS  Google Scholar 

  • Lemay A, Labrie F (1972) Calcium-dependent stimulation of prolactin release in rat anterior pituitary in vitro by N6-monobutyryl adenosine 3′,5′-monophosphate. FEBS Lett 20:7–10

    PubMed  CAS  Google Scholar 

  • Lemay A, Deschenes M, Lemaire S, Poirier G, Poulin L, Labrie F (1974) Phosphorylation of adenohypophyseal plasma membranes and properties of associated protein kinase. J Biol Chem 248:323–328

    Google Scholar 

  • Levitzki A, Atlas D, Steer ML (1974) The binding characteristics and number of β-adrenergic receptors on the turkey erythrocyte. Proc Natl Acad Sci USA 71:2773–2776

    PubMed  CAS  Google Scholar 

  • Lippmann W, Sestanj K, Nelson VR, Immer HV (1976) Antagonism of prostaglandin-induced cyclic AMP accumulation in the rat anterior pituitary in vitro by somatostatin analogues. Experientia 32:1034–1036

    PubMed  CAS  Google Scholar 

  • MacLeod RM, Lehmeyer JE (1970) Release of pituitary growth hormone by prostaglandins and dibutyryl adenosine cyclic 3′,5′-monophosphate in the absence of protein synthesis. Proc Natl Acad Sci USA 67:1172–1179

    PubMed  CAS  Google Scholar 

  • MacLeod RM, Leymeyer JE (1974) Restoration of prolactin synthesis and release by the administration of monoaminergic blocking agents to pituitary tumor-bearing rats. Cancer Res 34:345–350

    PubMed  CAS  Google Scholar 

  • Mains RE, Eipper BA, Ling N (1977) Common precursor to corticotropins and endorphins. Proc Natl Acad Sci USA 74:3014–3018

    PubMed  CAS  Google Scholar 

  • Makino T (1973) Study of the intracellular mechanism of LH release in the anterior pituitary. Am J Obstet Gynecol 115:606–614

    PubMed  CAS  Google Scholar 

  • Marshall JC, Odell WD (1975) Preparation of biologically active 125I-LHRH suitable for membrane binding studies. Proc Soc Exp Biol Med 149:351–355

    PubMed  CAS  Google Scholar 

  • Marshall JC, Shakespear RA, Odell WD (1976) LHRH-pituitary membrane binding: the presence of specific binding sites in other tissues. Clin Endocrinol 5:671–677

    CAS  Google Scholar 

  • Massicotte J, Veilleux R, Lavoie M, Labrie F (1980) An LHRH agonist inhibits FSH-induced cyclic AMP accumulation and steroidogenesis in porcine granulosa cells in culture. Biochem Biophys Res Commun 94:1362–1366

    PubMed  CAS  Google Scholar 

  • Matsuo H, Baba Y, Nair RMG, Arimura A, Schally AV (1971) Structure of the porcine LH-and FSH-releasing hormone. I. The proposed amino acid sequence. Biochem Biophys Res Commun. 43:1334–1339

    PubMed  CAS  Google Scholar 

  • McCullagh DR (1932) Dual endocrine activity of the testis. Science 76:19–20

    PubMed  CAS  Google Scholar 

  • Menon KMJ, Guanaja KP, Azhar S (1977) GnRH action in rat anterior pituitary gland: regulation of protein glycoprotein and LH synthesis. Acta Endocrinol (Copenh) 86:473–481

    CAS  Google Scholar 

  • Milligan JV, Kraicer J, Fawcett CP, Illner P (1972) Purified growth hormone releasing factor increases 45Ca uptake into pituitary cells. Can J Physiol Pharmacol 50:613–619

    PubMed  CAS  Google Scholar 

  • Mira-Moser F, Schofield JG, Orci L (1976) Modification in the release of rat growth hormone in vitro and the morphology of rat anterior pituitaries incubated in various ionophores. Eur J Clin Invest 6:103–111

    PubMed  CAS  Google Scholar 

  • Moriarty G (1973) Adenohypophysis: ultrastructural cytochemistry. A review. J Histochem 21:855–894

    CAS  Google Scholar 

  • Moriarty CM (1977) Involvement of intracellular calcium in hormone secretion from rat pituitary cells. Mol Cell Endocrinol 6:349–361

    PubMed  CAS  Google Scholar 

  • Mukherjee C, Caron MG, Coverstone M, Lefkowitz RJ (1975) Identification of adenylate cyclase-coupled beta-adrenergic receptors in frog erythrocytes with (minus)-[3H]alprenolol. J Biol Chem 250:5849–4876

    Google Scholar 

  • Nakano H, Fawcett CP, Kimura F, McCann SM (1978) Evidence for the involvement of guanosine 3′,5′-cyclic monophosphate in the regulation of gonadotropin release. Endocrinology 103:1527–1533

    PubMed  CAS  Google Scholar 

  • Naor Z, Koch Y, Chobsieng P, Zor U (1975 a) Pituitary cyclic AMP production and mechanism of luteinizing hormone release. FEBS Lett 58:318–321

    PubMed  CAS  Google Scholar 

  • Naor F, Koch Y, Bauminger S, Zor U (1975 b) Action of luteinizing hormone and synthesis of prostaglandins in the pituitary gland. Prostaglandins in the pituitary gland. Prostaglandins 9:211–219

    PubMed  CAS  Google Scholar 

  • Naor Z, Snyder G, Fawcett CP, McCann SM (1978) A possible role for cyclic GMP in mediating the effect of luteinizing hormone releasing hormone on gonadotropin release in dispersed pituitary cells of the female rat. J Cyclic Nucleotide Res 4:475–486

    PubMed  CAS  Google Scholar 

  • Naor Z, Fawcett CP, McCann SM (1979) Differential effects of castration and testosterone replacement on basal and LHRH-stimulated cAMP and cGMP accumulation and on gonadotropin release from the pituitary of the male rat. Mol Cell Endocrinol 14:191–198

    PubMed  CAS  Google Scholar 

  • Nillius SJ, Wide L (1971) Induction of a midcycle-like peak of luteinizing hormone in young women by exogenous estradiol-17β. J Obstet Gynaecol Br Commonw 78:822–827

    PubMed  CAS  Google Scholar 

  • Ojeda SR, Harms PG, McCann SM (1974) Central effect of prostaglandin E1 (PGE1) on prolactin release. Endocrinology 95:613–618

    PubMed  CAS  Google Scholar 

  • Ojeda SR, Naor Z, McCann S (1978) Prostaglandin E levels in hypothalamus, median eminence and anterior pituitary of rats of both sexes. Brain Res 149:274–277

    PubMed  CAS  Google Scholar 

  • Orczyk GP, Behrman HR (1972) Ovulation blockade by aspirin or indomethacin. In vivo evidence for a role of prostaglandin in gonadotropin secretion. Prostaglandins 1:3–20

    Google Scholar 

  • Pace-Asciak C, Wolfe LS (1970) Biosynthesis of prostaglandins E2 and F from tritiumlabelled arachidonic acid by rat stomach homogenates. Biochim Biophys Acta 218:539–542

    PubMed  CAS  Google Scholar 

  • Parsons JA (1969) Calcium ion requirement for prolactin secretion by rat adenohypophyses in vitro. Am J Physiol 217:1599–1603

    PubMed  CAS  Google Scholar 

  • Pedroza E, Vilchez-Martinez JA, Fishback J, Arimura A, Schally AV (1977) Binding capacity of luteinizing hormone-releasing hormone and its analogues for pituitary receptor sites. Biochem Biophys Res Commun 79:234–238

    PubMed  CAS  Google Scholar 

  • Pelletier G, Lemay A, Béraud G, Labrie F (1972) Ultrastructural changes accompanying the stimulatory effect of N6-monobutyryl adenosine 3′,5′-monophosphate on the release of growth hormone, prolactin, and adrenocorticotropic hormone in rat anterior pituitary gland in vitro. Endocrinology 91:1355–1371

    PubMed  CAS  Google Scholar 

  • Pelletier G, Leclerc R, Labrie F, Côté J, Chretien M, Lis M (1977) Immunohistochemical localization of β-lipotropic hormone in the pituitary gland. Endocrinology 100:770–776

    PubMed  CAS  Google Scholar 

  • Peng TS, Six KM, Munson PK (1970) Effects of prostaglandin E1 on the hypothalamo-hypophyseal-adrenocortical axis in rats. Endocrinology 86:202–206

    PubMed  CAS  Google Scholar 

  • Phifer RF, Orth DN, Spicer S (1974) Specific demonstration of the human hypophyseal adrenocortico-melanotropic (ACTH-MSH) cell. J Clin Endocrinol Metab 39:684–692

    PubMed  CAS  Google Scholar 

  • Poirier G, Labrie F, Barden N, Lemaire S (1972) Thyrotropin-releasing hormone receptor: its partial purification from bovine anterior pituitary gland and its close association with adenyl cyclase. FEBS Lett 20:283–286

    PubMed  CAS  Google Scholar 

  • Ratner A (1970) Stimulation of luteinizing hormone release in vitro by dibutyryl cyclic AMP and theophylline. Life Sci 9:1221–1226

    CAS  Google Scholar 

  • Ratner A, Wilson MC, Srivastava L, Peake GT (1974) Stimulatory effects of prostaglandin E1 on rat anterior pituitary cyclic AMP and luteinizing hormone release. Prostaglandins 5:165–167

    CAS  Google Scholar 

  • Raymond V, Beaulieu M, Labrie F (1978) Potent antidopaminergic activity of estradiol at the pituitary level on prolactin release. Science 200:1173–1175

    PubMed  CAS  Google Scholar 

  • Raymond V, Lépine J, Lissitzky JC, Côté J, Labrie F (1979) Parallel release of ACTH, β-endorphin, α-MSH and β-MSH-like immunoreactivities in rat anterior pituitary cells in culture. Mol Cell Endocrinol 16:113–122

    PubMed  CAS  Google Scholar 

  • Reeves JR, Séguin C, Lefebvre FA, Kelly PA, Labrie F (1980) Similar LHRH binding sites in the rat anterior pituitary and ovary. Proc Natl Acad Sci USA 77:5567–5571

    PubMed  CAS  Google Scholar 

  • Rigler GL, Peake GT, Ratner A (1978) Effect of luteinizing hormone releasing hormone on accumulation of pituitary cyclic AMP and GMP in vitro. J Endocrinol 76:367–372

    PubMed  CAS  Google Scholar 

  • Roberts JL, Herbert E (1977) Characterization of a common precursor to corticotropin and beta-lipotropin: cell-free synthesis of the precursor and identification of corticotropin peptides in the molecule. Proc Natl Acad Sci USA 74:4826–4830

    PubMed  CAS  Google Scholar 

  • Rose JC, Conklin PM (1978) TSH and ACTH secretion and cyclic adenosine 3′,5′-monophosphate content following stimulation with TRH or lysine vasopressin in vitro: suppression by thyroxine and dexamethasone (40239). Proc Soc Exp Biol 158:524–529

    PubMed  CAS  Google Scholar 

  • Samli MH, Geschwind LL (1968) Some effects of energy-transfer inhibitors and of Ca++-free and K+-enhanced media on the release of luteinizing hormone (LH) from the rat pituitary gland in vitro. Endocrinology 82:225–231

    PubMed  CAS  Google Scholar 

  • Sato T, Hirono M, Juyjo T, Iseka T, Taya K, Igarashi M (1975) Direct action of prostaglandins on rat pituitary. Endocrinology 96:45–49

    PubMed  CAS  Google Scholar 

  • Scarpa A, Baldassare J, Inesi G (1972) The effect of calcium ionophores on fragmented sacroplasmic reticulum. J Gen Physiol 60:735–749

    PubMed  CAS  Google Scholar 

  • Schally AV, Arimura A, Bowers CY, Kastin AJ, Sawano AS, Redding TW (1968) Hypothalamic neurohormones regulating anterior pituitary function. Recent Prog Horm Res 24:497–588

    PubMed  CAS  Google Scholar 

  • Schally AV, Dupont A, Arimura A, Redding TW, Linthicum GL (1975) Isolation of porcine GH-release inhibiting hormone. Fed Proc Fed Am Soc Exp Biol 34:584–586

    Google Scholar 

  • Schally AV, Coy DH, Meyers CA (1978) Hypothalamic regulatory hormones. Ann Rev Biochem 47:89–128

    PubMed  CAS  Google Scholar 

  • Schlender KK, Wei SH, Villar-Palassi C (1969) VDP-glucose: glycogen alpha-4-glucosyl-transferase I kinase activity of purified muscle protein kinase. Cyclic nucleotide specificity. Biochim Biophys Acta 191:272–278

    PubMed  CAS  Google Scholar 

  • Schofield JG (1967) Measurement of growth hormone released by ox anterior pituitary slices in vitro. Biochem J 103:331–341

    PubMed  CAS  Google Scholar 

  • Schofield JG (1970) Prostaglandin E1 and the release of growth hormone in vitro. Nature 228:179–180

    PubMed  CAS  Google Scholar 

  • Shaar CJ, Clemens JA (1974) The role of catecholamines in the release of anterior pituitary prolactin in vitro. Endocrinology 95:1202–1212

    PubMed  CAS  Google Scholar 

  • Sheterline P, Schofield JG (1975) Endogenous phosphorylation and dephosphorylation of microtubule-associated proteins isolated from bovine anterior pituitary. FEBS Lett 56:297–302

    PubMed  CAS  Google Scholar 

  • Spence JW, Sheppard MS, Kraicer J (1980) Release of growth hormone from purified somatotrophs: interrelation between CA2+ and adenosine 3′5′-monophosphate. Endocrinology 106:764–769

    PubMed  CAS  Google Scholar 

  • Spona J (1973) LHRH interaction with the pituitary plasma membrane. FEBS Lett 34:24–26

    PubMed  CAS  Google Scholar 

  • Spona J (1975) LHRH sensitive adenylate cyclase in isolated plasma membranes of rat adenohypophyses. Endocrinol Exp (Bratisl) 9:27–33

    CAS  Google Scholar 

  • Steiner AL, Peake GJ, Utiger RD, Karl IE, Kipnis DM (1970) Hypothalamic stimulation of growth hormone and thyrotropin release in vitro and pituitary 3′,5′-adenosine cyclic monophosphate. Endocrinology 86:1354–1360

    PubMed  CAS  Google Scholar 

  • Strittmatter WJ, Davies JN, Lefkowitz RJ (1977 a) Alpha-adrenergic receptor in rat parotid cells 1. Correlation of L-tritiated dehydroergocryptine binding and catecholamine stimulated potassium efflux. J Biol Chem 252:5472–5477

    PubMed  CAS  Google Scholar 

  • Strittmatter WJ, Davies WJ, Lefkowtiz RJ (1977 b) Alpha-adrenergic receptor in rat parotid cells. II. Desensitization of receptor binding sites and potassium release. J Biol Chem 252:5478–5482

    PubMed  CAS  Google Scholar 

  • Sundberg DK, Fawcett CP, McCann SM (1976) The involvement of cyclic 3′,5′-cyclic AMP in the release of hormones from the anterior pituitary in vitro. Proc Soc Exp Biol Med 151:149–154

    PubMed  CAS  Google Scholar 

  • Swerdloff RS, Odell WD (1968) Feedback control of male gonadotropin secretion. Lancet 2:683–687

    PubMed  CAS  Google Scholar 

  • Swerdloff RW, Walsh PC, Odell WD (1970) Control of LH and FSH secretion in the male: evidence that aromatization of androgens to estradiol is not required for inhibition of gonadotropin secretion. Steroids 20:13–22

    Google Scholar 

  • Takahara J, Arimura A, Schally AV (1974) Suppression of prolactin release by a purified porcine PIF preparation and catecholamines infused into a rat hypophyseal portal vessel. Endocrinology 95:462–465

    PubMed  CAS  Google Scholar 

  • Tal E, Friedman S (1978) Correlation between 3′,5′-cyclic AMP levels and thyrotropin in separated rat pituitary thyrotropin cells. Experientia 34:1286–1288

    PubMed  CAS  Google Scholar 

  • Tal E, Szabo M, Burke G (1974) TRH and prostaglandin action on rat anterior pituitary: dissociation between cyclic AMP levels and TSH release. Prostaglandins 5:175–182

    CAS  Google Scholar 

  • Theoleyre M, Berault A, Gamier J, Jutisz M (1976) Binding of LHRH to pituitary plasma membranes and the problem of adenylate cyclase stimulation. Mol Cell Endocrinol 5:365–377

    PubMed  CAS  Google Scholar 

  • Titeler M, List S, Seeman P (1980) High affinity dopamine receptors (D3) in rat brain. Commun Psychopharmacol 3:411–420

    Google Scholar 

  • Tsafriri A, Koch Y, Lindner HR (1973) Ovulation rate and serum LH levels in rats treated with indomethacin or prostaglandin E2. Prostaglandins 3:461–467

    PubMed  CAS  Google Scholar 

  • Vale W, Guillemin R (1967) Potassium-induced stimulation of thyrotropin release in vitro. Requirement for presence of calcium and inhibition by thyroxine. Experientia 23:855–857

    PubMed  CAS  Google Scholar 

  • Vale W, Rivier C (1976) Regulation of ACTH secretion by anterior pituitary cells in culture. Fed Proc 35:2209–2214

    Google Scholar 

  • Vale W, Rivier J (1977) Substances modulating the secretion of ACTH by cultured anterior pituitary cells. Fed Proc 36:2094–2099

    PubMed  CAS  Google Scholar 

  • Vale W, Burgus R, Guillemin R (1967) Presence of calcium ions as a requisite for the in vitro stimulation of TSH release by hypothalamic TRF. Experientia 23:853–855

    PubMed  CAS  Google Scholar 

  • Vale W, Grant G, Amoss M, Blackwell R, Guillemin R (1972) Culture of enzymatically dispersed pituitary cells: functional validation of a method. J Clin Endocrinol Metab 91:562–572

    CAS  Google Scholar 

  • Vale W, Rivier C, Yang L, Minick S, Gillemin R (1978) Effects of purified hypothalamic corticotropin-releasing factor and other substances on the secretion of adrenocorticotropin and β-endorphin like immunoactivities in vitro. Endocrinology 103:1910–1915

    PubMed  CAS  Google Scholar 

  • Vale W, Spiess C, Rivier C, Rivier J (1981) Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and β-endorphin. Science 2213:1394

    Google Scholar 

  • Wagner TO, Adams TE, Nett TM (1979) GnRH interactions with anterior pituitary. I. Determination of the affinity and number of receptors for GnRH in ovine anterior pituitary. Biol Reprod 20:140–149

    PubMed  CAS  Google Scholar 

  • Waisman DM, Singh TJ, Wang JH (1978) The modulator-dependent protein kinase. A multi-functional protein kinase activable by the Ca2+-dependent modulator protein of the cyclic nucleotide system. J Biol Chem 253:3387–3390

    PubMed  CAS  Google Scholar 

  • Wakabayashi K, Kamberi IA, McCann SM (1969) In vitro response of the rat pituitary to gonadotrophin-releasing factors and to ions. Endocrinology 85:1046–1056

    PubMed  CAS  Google Scholar 

  • Wakabayashi K, Date Y, Tamaoki B (1973) On the mechanism of action of luteinizing hormone-releasing factor and prolactin release inhibiting factor. Endocrinology 92:698–704

    PubMed  CAS  Google Scholar 

  • Wilber JF, Seibel MJ (1973) Thyrotropin releasing hormone interactions with an anterior pituitary membrane receptor. Endocrinology 92:888–893

    PubMed  CAS  Google Scholar 

  • Wilber JF, Peake GT, Mariz I, Utiger RD, Daughaday WH (1968) Theophylline and epinephrine effect upon the secretion of growth hormone (GH) and thyrotropin (TSH) in vitro. Clin Res 16:277–280

    Google Scholar 

  • Wilber JF, Peake GT, Utiger RD (1969) Thyrotropin release in vitro: stimulation by cyclic 3′,5′-adenosine monophosphate. Endocrinology 84:758–760

    PubMed  CAS  Google Scholar 

  • Williams LT, Mullikin D, Lefkowitz RJ (1978) Magnesium-dependence of agonist binding to adenylate cyclase-coupled hormone receptors. J Biol Chem 253:2984–2989

    PubMed  CAS  Google Scholar 

  • Wolfe DJ, Brostrom CO (1979) Properties and functions of the calcium-dependent regulator. Adv Cyclic Nucleotide Res 11:27–88

    Google Scholar 

  • Yates FE, Maran JW (1974) In: Knobil E, Sawyer WH (eds) The pituitary gland and its neuroendocrine control, part 2. American Physiological Society, Washington, DC (Handbook of physiology, sect 1, vol IV, chap 36, pp 367–404)

    Google Scholar 

  • Yen SSC, Tsai CC, Vandenberg G, Rebar R (1972) Gonadotropin dynamics in patients with gonadal dysgenesis: a model for the study of gonadotropin regulation. J Clin Endocrinol Metab 35:897–904

    PubMed  CAS  Google Scholar 

  • Zimmerman G, Gleischer N (1970) Role of calcium ions in the release of ACTH from rat pituitary tissue in vitro. Endocrinology 87:426–429

    PubMed  CAS  Google Scholar 

  • Zor U, Kaneko T, Schneider HPG, McCann SM, Field JB (1969) Stimulation of anterior pituitary adenyl cyclase activity and adenosine 3′,5′-cyclic phosphate by hypothalamic extract and prostaglandin E1. Proc Natl Acad Sci USA 63:918–625

    PubMed  CAS  Google Scholar 

  • Zor U, Kaneko T, Schneider HPG, McCann SM, Field JB (1970) Further studies of stimulation of anterior pituitary cyclic adenosine 3′,5′-monophosphate formation by hypothalamic extract and prostaglandins. J Biol Chem 245:2883–2888

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Labrie, F. et al. (1982). The Role of Cyclic Nucleotides in the Control of Anterior Pituitary Gland Activity. In: Kebabian, J.W., Nathanson, J.A. (eds) Cyclic Nucleotides. Handbook of Experimental Pharmacology, vol 58 / 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68393-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68393-0_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68395-4

  • Online ISBN: 978-3-642-68393-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics