Skip to main content

Reserve Carbohydrates of Algae, Fungi, and Lichens

  • Chapter
Plant Carbohydrates I

Part of the book series: Encyclopedia of Plant Physiology ((921,volume 13 / A))

Abstract

In higher land plants, there is a clear-cut distinction between starch or certain fructans which function as the major reserve carbohydrate, and structural polysaccharides such as cellulose, the hemicelluloses, and the pectic substances. Moreover, there is normally little difficulty in obtaining adequate amounts of plant tissue from which the various polysaccharides can be isolated and then characterized. By contrast, in the lower plant kingdom, several different types of polysaccharide may occur within the same plant tissue, and while a structural function for some polysaccharides is obvious, the functions of others (which may be water-soluble) are not always evident. With some algae, fungi, and lichens, some polysaccharides are believed to have a reserve function, although metabolic evidence is not available, and their inclusion or exclusion from this review is based on somewhat tenuous experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Akai H, Kobayashi K, Misaki A, Harada T (1971) Complete hydrolysis of branching linkages in glycogen by Pseudomonas isoamylase. Distribution of linear chains. Biochim Biophys Acta 237: 422–429

    Article  PubMed  CAS  Google Scholar 

  • Algranati ID, Cabib E (1960) The synthesis of glycogen in yeast. Biochim Biophys Acta 43: 141–142

    Article  PubMed  CAS  Google Scholar 

  • Algranati ID, Cabib E (1962) Uridine diphosphate D-glucose-glycogen glucosyltransferase from yeast. J Biol Chem 237: 1007–1013

    PubMed  CAS  Google Scholar 

  • Anderson DMW, King NJ (1961) Preliminary examination of a starch-type polysaccharide from Nitella translucens. J Chem Soc 2914–2919

    Google Scholar 

  • Annan WD, Hirst E, Manners DJ (1965a) The constitution of laminarin, Part IV. The minor component sugars. J Chem Soc 220–226

    Google Scholar 

  • Annan WD, Hirst E, Manners DJ (1965 b) The constitution of laminarin, Part V. The location of (116)-glucosidic linkages. J Chem Soc 885–891

    Google Scholar 

  • Archer SA, Clamp JR, Migliore D (1977) Isolation and partial characterization of an extracellular branched D-glucan from Monilinia fructigena. J Gen Microbiol 102: 157–167

    CAS  Google Scholar 

  • Archibald AR, Hirst EL, Manners DJ, Ryley JF (1960) The molecular structure of a starch-type polysaccharide from Chilomonas paramaecium. J Chem Soc 556–560

    Google Scholar 

  • Archibald AR, Fleming ID, Liddle AM, Manners DJ, Mercer G, Wright A (1961) The absorption spectra of glycogen and amylopectin-iodine complexes. J Chem Soc 1183–1190

    Google Scholar 

  • Archibald AR, Cunningham WL, Manners DJ, Stark JR, Ryley JF (1963) The molecular structure of the reserve polysaccharides from Ochromonas malhamensis and Peranema trichophorum. Biochem J 88: 444–451

    PubMed  CAS  Google Scholar 

  • Banks GT, Mantle PG, Szczyrbak CA (1974) Large scale production of clavine alkaloids by Claviceps fusiformis. J Gen Microbiol 82: 345–361

    PubMed  CAS  Google Scholar 

  • Barker SA, Bourne EJ, Stacey M (1953) Studies of Aspergillus niger, Part 1. The structure of the polyglucosan synthesized by Aspergillus niger 152. J Chem Soc 3084–3090

    Google Scholar 

  • Barker SA, Bourne EJ, O’Mant DM, Stacey M (1957) Studies of Aspergillus niger, Part VI. The separation and structures of oligosaccharides from nigeran. J Chem Soc 2448–2454

    Google Scholar 

  • Barras DR, Stone BA (1969a) M,3-Glucan hydrolases from Euglena gracilis I. The nature of the hydrolases. Biochim Biophys Acta 191: 329–341

    PubMed  CAS  Google Scholar 

  • Barras DR, Stone BA (1969b) β-1,3-Glucan hydrolases from Euglena gracilis II. Purification and properties of the β-1,3-glucan exohydrolase. Biochim Biophys Acta 191: 342–353

    PubMed  CAS  Google Scholar 

  • Barras DR, Stone BA (1969c) Carbohydrate composition and metabolism in Euglena: The biology of Euglena, Vol. 2, Academic Press, New York, pp 149–191

    Google Scholar 

  • Barry VC, Halsall TG, Hirst EL, Jones JKN (1949) The polysaccharides of the Floridean starch. J Chem Soc 1468–1470

    Google Scholar 

  • Beattie A, Hirst EL, Percival E (1961) Comparative structural investigations on leucosin (chrysolaminarin) separated from diatoms and laminarin from the brown algae. Biochem J 79: 531–537

    PubMed  CAS  Google Scholar 

  • Bebbington A, Bourne EJ, Wilkinson IA (1952) The conversion of amylose into amylopectin by the Q-enzyme of Polytomella coeca. J Chem Soc 246–253

    Google Scholar 

  • Bhavanandan UP, Bouveng HO, Lindberg B (1964) Polysaccharides from Polyporus giganteus. Acta Chem Scand 18: 504–512

    Article  CAS  Google Scholar 

  • Bidwell RGS, Ghosh NR (1963) Respiration and metabolism of 14C-labelled glucose and organic acids supplied to Fucus vesiculosus. Can J Bot 41: 155–163

    Article  CAS  Google Scholar 

  • Bidwell RGS, Craigie JS, Krotkov G (1958) Biosynthesis of radioactive mannitol from 14C02 by Fucus vesiculosus. Science 128: 776

    Article  PubMed  CAS  Google Scholar 

  • Bidwell RGS, Percival E, Smestad B (1972) Incorporation of 14C into the polysaccharides metabolized by Fucus vesiculosus during pulse labeling experiments. Can J Bot 50: 191–197

    Article  CAS  Google Scholar 

  • Bjorndal H, Eriksson KE, Garegg PJ, Lindberg B, Swan B (1965) Studies on the xylan from the red seaweed Rhodymenia palmata. Acta Chem Scand 19: 2309–2315

    Article  Google Scholar 

  • Black WAP, Cornhill WJ, Dewar ET, Woodward FN (1951) Laboratory scale isolation of laminarin from brown marine algae. J Appl Chem 1: 505–517

    CAS  Google Scholar 

  • Blumenthal HJ (1976) Reserve carbohydrates in fungi. In: Smith JE, Berry D (eds) The filamentous fungi. Biosynthesis and metabolism. Wiley, New York, Vol. 2, pp 292–307

    Google Scholar 

  • Bobbitt TF, Nordin JH, Roux M, Revol JF, Marchessault RH (1977) Distribution and conformation of crystalline nigeran in hyphal walls of Aspergillus niger and Aspergillus awamori. J Bacteriol 132: 691–703

    PubMed  CAS  Google Scholar 

  • Borovsky D, Smith EE, Whelan WJ, French D, Kikumoto S (1979) The mechanism of Q-enzyme action and its influence on the structure of amylopectin. Arch Biochem Biophys 198: 627–631

    Article  PubMed  CAS  Google Scholar 

  • Bourne EJ, Stacey M, Wilkinson IA (1950) The composition of the polysaccharide synthesized by Polytomella coeca. J Chem Soc 2694–2698

    Google Scholar 

  • Bourne EJ, Percival E, Smestad B (1972) Carbohydrates of Acetabularia species Part 1. A. crenulata. Carbohyd Res 22: 75–82

    Article  CAS  Google Scholar 

  • Brammer GL, Rougvie MA, French D (1972) Distribution of a-amylase resistant regions in the glycogen molecule. Carbohyd Res 24: 343–354

    Article  CAS  Google Scholar 

  • Buck KW, Chen AW, Dickerson AG, Chain EB (1968) Formation and structure of extracellular glucans produced by Claviceps species. J Gen Microbiol 51: 337–352

    PubMed  CAS  Google Scholar 

  • Budd J A (1974) Uptake and turnover of D-[14C]-glucose by yeast during wort fermentation. J Inst Brew 80: 333–342

    CAS  Google Scholar 

  • Budd J A (1975) The uptake and incorporation of 14C-labelled sugars into polysaccharides during wort fermentation by a synchronous culture of brewer’s yeast. J Gen Microbiol 90: 293–302

    Google Scholar 

  • Bull AT, Chesters CGC (1966) The biochemistry of laminarin and the nature of laminarinase. Adv in Enzymol 28: 325–364

    CAS  Google Scholar 

  • Cabib E, Rothman-Denes LB, Huang K (1973) The regulation of glycogen synthesis in yeast. Ann NY Acad Sci 210: 192–206

    Article  PubMed  CAS  Google Scholar 

  • Cantino EC, Goldstein A (1961) Bicarbonate-induced synthesis of polysaccharide during morphogenesis by synchronous single generation of Blastocladiella emersonii. Arch Mikrobiol 39: 43–54

    Article  PubMed  CAS  Google Scholar 

  • Chanda NB, Hirst EL, Manners DJ (1957) A comparison of isolichenin and lichenin from Iceland moss ( Cetraria islandica ). J Chem Soc 1951–1958

    Google Scholar 

  • Chao L, Bowen CC (1971) Purification and properties of glycogen isolated from a blue-green alga Nostoc muscorum. J Bact 105: 331–338

    PubMed  CAS  Google Scholar 

  • Clarke AE, Stone BA (1960) Structure of the paramylon from Euglena gracilis. Biochim Biophys Acta 44: 161–163

    Article  PubMed  CAS  Google Scholar 

  • Coulter DB, Aronson JM (1977) Glycogen and other soluble glucans from chytridomycete and oomycete species. Arch Mikrobiol 115: 317–322

    CAS  Google Scholar 

  • Craigie JS (1974) Storage products. In: Stewart WDP (ed) Algal physiology and biochemistry. Blackwell, Oxford, pp 206–235

    Google Scholar 

  • Cunningham WL, Manners DJ (1964) The hydrolysis of lichenin by enzyme preparations from malted-barley and Rhizopus arrhizus. Biochem J 90: 596–602

    PubMed  CAS  Google Scholar 

  • Davis EN, Rhodes RA, Shulke HR (1965) Fermentative production of exocellular glucans by fleshy fungi. Appl Microbiol 13: 267–271

    PubMed  CAS  Google Scholar 

  • Dickerson AG, Mantle PG, Szczyrbak CA (1970) Autolysis of extracellular glucans produced in vitro by a strain of Claviceps fusiformis. J Gen Microbiol 60: 403–415

    PubMed  CAS  Google Scholar 

  • Dodd JL, McCracken DA (1972) Starch in fungi. Its molecular structure in three genera and a hypothesis concerning its physiological role. Mycologia 64: 1341–1343

    Article  PubMed  CAS  Google Scholar 

  • Dox AW (1915) Influence of autolysis on the mycodextran content of Aspergillus niger. J Biol Chem 20: 83–85

    CAS  Google Scholar 

  • Duncan WAM, Manners DJ, Ross AG (1956) The carbohydrase activities of unfractionated extracts of Cladophora rupestris, Laminaria digitata, Rhodymenia palmata and Ulva lactuca. Biochem J 63: 44–51

    PubMed  CAS  Google Scholar 

  • Eddy BP, Fleming ID, Manners DJ (1958) The molecular structure of a starch-type polysaccharide from Dunaliella bioculata. J Chem Soc 2827–2830

    Google Scholar 

  • Ergle DR (1947) The glycogen content of Phymatotrichum sclerotia. J Am Chem Soc 69: 2061–2062

    Article  PubMed  CAS  Google Scholar 

  • Evans RB, Manners DJ (1971) Observations on the purity of some yeast glycogen preparations. Biochem J 125: 31 P

    Google Scholar 

  • Fanshawe RS, Percival E (1958) Analysis of the carbohydrates of Cladestephus sp. J Sci Food Agric 9: 241–243

    Article  CAS  Google Scholar 

  • Faro S (1972 a) The role of a cytoplasmic glucan during morphogenesis of sex organs in Achlya. Am J Bot 59:919–923

    Article  CAS  Google Scholar 

  • Faro S (1972b) A soluble β-(113)-glucan found in selected genera of Oomycetes. J Gen Microbiol 72: 393–394

    CAS  Google Scholar 

  • Fleming ID, Hirst EL, Manners DJ (1956) A re-examination of the molecular structure of floridean starch. J Chem Soc 2831–2836

    Google Scholar 

  • Fleming M, Manners DJ (1966a) The fine structure of isolichenin. Biochem J 100:24P

    Google Scholar 

  • Fleming M, Manners DJ (1966 b) A comparison of the fine-structure of lichenin and barley glucan. Biochem J 100: 4–5 P

    Google Scholar 

  • Fleming M, Hirst E, Manners DJ (1966) The fine structure of soluble laminarin. Proc Fifth Int Seaweed Symp 255–260

    Google Scholar 

  • Fontana JD, Zancan GT (1977) Characterization of a glucan from Polyporus circinatus. J Bacteriol 129: 1645–1647

    PubMed  CAS  Google Scholar 

  • Ford CW, Percival E (1965) Preliminary examination of Phaeodactylum tricornutumand characterization of low molecular weight material and of a glucan. J Chem Soc 7035–7041

    Google Scholar 

  • Fredrick JF (1971) Polyglucan branching isoenzymes of algae. Physiol Plant 24: 55–58

    Article  CAS  Google Scholar 

  • Fredrick JF (1972) A non-primer requiring α-1,4-glucan phosphorylase of Cyanidium caldarium. Phytochemistry 11: 3259–3262

    Article  Google Scholar 

  • Fredrick JF (1973) A primordal bifunctional polyglucan-forming enzyme. Ann NY Acad Sci 210: 254–264

    Article  PubMed  CAS  Google Scholar 

  • French D (1972) Fine structure of starch and its relationship to the organization of starch granules. J Jpn Soc Starch Sci 19: 8–25

    CAS  Google Scholar 

  • Furlong CE, Preiss J (1969) The regulation of the biosynthesis of a-l,4-glucans in photosynthetic systems. Progr Photosynthesis Res 3: 1604–1617

    CAS  Google Scholar 

  • Gold MH, Mitzel DL, Segel IH (1973) Regulation of nigeran accumulation by Aspergillus aculeatus. J Bacteriol 113: 856–863

    PubMed  CAS  Google Scholar 

  • Gold MH, Larson S, Segal IH, Stocking CR (1974) Intracellular localization of nigeran in the wall of Aspergillus aculeatus by autoradiography with an electron microscope. J Bacteriol 118: 1176–1178

    PubMed  CAS  Google Scholar 

  • Goldstein A, Cantino EC (1962) Light-stimulated polysaccharide and protein synthesis by synchronous single generations of Blastocladiella emersonii. J Gen Microbiol 28: 689–699

    PubMed  CAS  Google Scholar 

  • Goldstein I J, Smith F, Unrau AM (1959) Constitution of laminarin. Chem Ind 124–125

    Google Scholar 

  • Gorin PAJ, Spencer JFT (1968) Structural chemistry of fungal polysaccharides. Adv Carbohydr Chem 23: 367–418

    CAS  Google Scholar 

  • Greenwood CT, Thomson J (1961) Some physical properties of floridean starch and the characterization of structure-type of branched α-1,4-glucans. J Chem Soc 1534–1537

    Google Scholar 

  • Gunja-Smith Z, Smith EE (1974) Evidence for the periplasmic location of glycogen in Saccharomyces. Biochem Biophys Res Commun 56: 588–592

    Article  PubMed  CAS  Google Scholar 

  • Gunja-Smith Z, Marshall JJ, Mercier C, Smith EE, Whelan WJ (1970) A revision of the Meyer-Benfeld model of glycogen and amylopectin. FEBS Lett 12: 101–104

    Article  PubMed  Google Scholar 

  • Gunja-Smith Z, Marshall J J, Smith EE (1971) Enzymatic determination of the unit chain length of glycogen and related polysaccharides. FEBS Lett 13: 309–311

    Article  CAS  Google Scholar 

  • Gunja-Smith Z, Patil NB, Smith EE (1977) Two pools of glycogen in Saccharomyces. J Bacteriol 130: 818–825

    PubMed  CAS  Google Scholar 

  • Hammond JBW, Nichols R (1976) Glycogen in Agaricus bisporus. Trans Br Mycol Soc 66: 325–327

    Article  Google Scholar 

  • Handa N, Nisizawa K (1961) Structural investigation of a laminaran isolated from Eisenia bicyclis. Nature (London) 192: 1078–1080

    Article  CAS  Google Scholar 

  • Hawthorne DB, Sawyer WH, Grant BR (1979) The structure of the low molecular weight glucans isolated from the siphonous green algae Caulerpa simpliciuscula. Carbohyd Res 77: 157–167

    Article  CAS  Google Scholar 

  • Hellerqvist CG, Lindberg B, Samuelsson K (1968) Methylation analysis of pustulan. Acta Chem Scand 22: 2736–2737

    Article  CAS  Google Scholar 

  • Hirst E, Manners DJ, Pennie IR (1972) The molecular structure of starch-type polysaccharides from Haematococcus pluvalis and Tetraselmis cateriiformis. Carbohyd Res 22: 5–11

    Article  CAS  Google Scholar 

  • Hirst EL, O’Donnell JJ, Percival E (1958) Barry degradation of laminarin. Chem Ind 834

    Google Scholar 

  • Hough L, Jones JKN, Wadman WH (1952) An investigation of the polysaccharide components of certain fresh water algae. J Chem Soc 3393–3399

    Google Scholar 

  • Hranisavljevic-Jakovljevic M, Miljkovic-Stojanovic J, Dimitrijevic R, Micovic V (1975) Water- and alkali-soluble glucans from oak lichen. Carbohyd Res 39: 115–123

    Article  CAS  Google Scholar 

  • Johnston CS, Jones RG, Hunt RD (1977) A seasonal carbon budget for a laminarian population in a Scottish sea loch. Helgol Wiss Meeresunters 30: 527–545

    Article  CAS  Google Scholar 

  • Kalyuzhnyi MY, Petrushko GM, Novikova GP (1965) Flocculation of Candida utilis and Candida tropicalis yeast cells and its relation to floatation. Microbiology 34: 800–805

    Google Scholar 

  • Keunzi MT, Fietcher A (1969) Changes in the carbohydrate composition and trehalase activity during the budding cycle of Saccharomyces cerevisiae. Arch Mikrobiol 64: 396–407

    Article  Google Scholar 

  • Keunzi MT, Fietcher A (1972) Regulation of the carbohydrate composition of Saccharomyces cerevisiae under growth limitations. Arch Mikrobiol 84: 254–265

    Article  Google Scholar 

  • Kimbrough JW (1970) Current trends in the classification of Discomycetes. Bot Rev 36: 91–161

    Article  Google Scholar 

  • Kjolberg O, Manners DJ (1962) Structural analysis of glycogen on a milligram scale. J Chem Soc 4596–4600

    Google Scholar 

  • Kobayashi T, Inone M, Tanabe I, Onishi H, Fukui S (1978) Effect of cultural temperature on the properties of Chlorella starch. J Jpn Soc Starch Sci 25: 186–192

    Google Scholar 

  • Lindberg B, Lönngren J (1978) Methylation analysis of complex carbohydrates. Methods Enzymol 50: 3–33

    Article  PubMed  CAS  Google Scholar 

  • Lindberg B, Silvander B-G, Wachtmeister CA (1964) Mannitol glycosides in Peltigera species. Acta Chem Scand 18: 213–216

    Article  CAS  Google Scholar 

  • Love J, Mackie W, McKinnell JW, Percival E (1963) Starch-type polysaccharides isolated from the green seaweeds Enteromorpha compressa, Ulva lactuca, Cladophora rupestris, Codium fragile and Chaetomorpha capillaris. J Chem Soc 4177–4182

    Google Scholar 

  • Mackie IM, Percival E (1959) The constitution of xylan from the green seaweed Caulerpa filiformis. J Chem Soc 1151–1156

    Google Scholar 

  • Mackie IM, Percival E (1960) Polysaccharides from the green seaweed Caulerpa filiformis Part II. A glucan of amylopectin type. J Chem Soc 2381–2384

    Google Scholar 

  • McCracken DA, Badenhuizen NP (1970) The use of Polytoma uvella as a source of NDPG-glucosyltransferases and some properties of the enzymes. Staerke 22: 289–291

    Article  CAS  Google Scholar 

  • McCracken DA, Dodd JL (1971) Molecular structure of starch type polysaccharides from Hericium ramosum and Hericium corraloides. Science 174: 419

    Article  PubMed  CAS  Google Scholar 

  • McCracken DA, Nadakavukaren MJ, Dodd JL (1973) Starch in fungi II. Introduction of amyloidity in members of diverse genera. Am J Bot 60: 940–943

    Article  Google Scholar 

  • Maeda M, Nisizawa K (1968 a) Fine structure of laminaran of Eisenia bicyclis. J Biochem 63: 199–206

    PubMed  CAS  Google Scholar 

  • Maeda M, Nisizawa K (1968 b) Laminaran of Ishige okamurai. Carbohyd Res 7: 97–99

    Article  CAS  Google Scholar 

  • Maeda M, Maeda M, Nisizawa K (1968) Laminaran of Ishige okamurai. Sci Rep Saitama Univ Ser B 5: 101–115

    CAS  Google Scholar 

  • Mangat BS, Badenhuizen NP (1970) Changes in amylose content and enzyme activities in cultures of Polytoma uvella. Staerke 22: 329–333

    Article  CAS  Google Scholar 

  • Mangat BS, Badenhuizen NP (1971) The effect of temperature on enzyme activities and amylose content. Can J Bot 49: 1787–1792

    Article  CAS  Google Scholar 

  • Manners DJ (1957) The molecular structure of glycogens. Adv Carbohyd Chem 12: 262–298

    Google Scholar 

  • Manners DJ (1971) The structure and biosynthesis of storage carbohydrates in yeast. In: Rose AH, Harrison JS (eds) The Yeasts. Academic Press, New York, Vol 2, pp 419–439

    Google Scholar 

  • Manners DJ (1974) The structure and metabolism of starch. Essays Biochem 10: 37–71

    PubMed  CAS  Google Scholar 

  • Manners DJ, Mitchell JP (1967) Studies on plant β-D-xylosidases. Biochem J 103: 43 P

    Google Scholar 

  • Manners DJ, Stark JR (1974) The iodine staining properties of linear maltosaccharides. Staerke 26: 78–81

    Article  CAS  Google Scholar 

  • Manners DJ, Taylor DC (1967) Specificity of laminaribiose Phosphorylase from Astasiaocellata. Arch Biochem Biophys 121: 443–451

    Article  PubMed  CAS  Google Scholar 

  • Manners DJ, Wright A (1962) The interaction of concanavalin-A with glycogens. J Chem Soc 4592–4595

    Google Scholar 

  • Manners DJ, Mercer GA, Stark JR, Ryley JF (1965) The molecular structure of a starch-type polysaccharide from Polytoma uvella. Biochem J 96: 530–532

    PubMed  CAS  Google Scholar 

  • Manners DJ, Ryley JF, Stark JR (1966) The molecular structure of the reserve polysaccharide from Astasia ocellata. Biochem J 101: 323–327

    PubMed  CAS  Google Scholar 

  • Manners DJ, Pennie IR, Ryley JF (1973) The molecular structures of a glucan and a galactan synthesised by Prototheca zopfii. Carbohyd Res 29: 63–77

    Article  CAS  Google Scholar 

  • Marchessault RH, Deslandes Y (1979) Fine structure of (1 3)-β-D-glucans: curdlan and paramylon. Carbohyd Res 75: 231–242

    Article  CAS  Google Scholar 

  • Marechal LR (1967a) β-1,3-0ligoglucan; orthophosphate glucosyltransferases from Euglena gracilis I. Isolation and some properties of a β-1,3-oligoglucan phosphorylase. Biochim Biophys Acta 146: 417–430

    PubMed  CAS  Google Scholar 

  • Marechal LR (1967b) β-1,3-0ligoglucan: orthophosphate glucosyltransferaes from Euglena gracilis II. Comparative studies between laminaribiose - and β-1,3-oligoglucan phosphorylase. Biochim Biophys Acta 146:431–442

    PubMed  CAS  Google Scholar 

  • Marechal LR, Goldemberg SH (1964) Uridine diphosphate glucose-β-1,3-glucan β-3-glucosyltransferase from Euglena gracilis. J Biol Chem 239: 3163–3167

    PubMed  CAS  Google Scholar 

  • Meeuse BJD (1962) Storage products. In: Lewin RA (ed) Physiology and biochemistry of algae. Academic Press, New York, pp 289–313

    Google Scholar 

  • Meeuse BJD, Hall DM (1973) Studies on the cell wall starch of Hericium. Ann NY Acad Sci 210: 39–45

    Article  PubMed  CAS  Google Scholar 

  • Meeuse BJD, Smith BN (1962) A note on the amylolytic breakdown of some raw algal starches. Planta 57: 624–635

    Article  CAS  Google Scholar 

  • Meeuse BJD, Andries M, Wood JA (1960) Floridean starch. J Exp Bot 11: 129–140

    Article  CAS  Google Scholar 

  • Nagashima H, Nakamura S, Nisizawa K (1968) Biosynthesis of floridean starch by chloroplast preparations from a marine red alga Serraticardia maxima Bot Mag 81: 411–413

    CAS  Google Scholar 

  • Nagashima H, Ozaki H, Nakamura S, Nisizawa K (1969) Physiological studies on floridean starch, floridoside and trehalose in a red alga Serraticardia maxima. Bot Mag 82: 462–473

    CAS  Google Scholar 

  • Nelson TE, Lewis BA (1974) Separation and characterization of the soluble and insoluble components of insoluble laminaran. Carbohyd Res 33: 63–74

    Article  CAS  Google Scholar 

  • Norrman J, Wober G, Cantino EC (1975) Variation in average unit chain length of glycogen in relation to developmental stage in Blastocladiella emersonii. Mol Cell Biochem 9: 141–148

    Article  PubMed  CAS  Google Scholar 

  • Olaitan SA, Northcote DH (1962) Polysaccharides of Chlorella pyrenoidosa. Biochem J 82: 509–519

    PubMed  CAS  Google Scholar 

  • Patel GB, Ingledew WM (1975 a) The relationship of acid-soluble glycogen to yeast flocculation. Can J Microbiol 21: 1608–1613

    Article  PubMed  CAS  Google Scholar 

  • Patel GB, Ingledew WM (1975 b) Glycogen - a physiological determinant of yeast flocculation. Can J Microbiol 21: 1614–1621

    Article  PubMed  CAS  Google Scholar 

  • Paulsen BS, Myklestad S (1978) Structural studies of the reserve glucan produced by the marine diatom Skeletonema costatum. Carbohyd Res 62: 386–388

    Article  Google Scholar 

  • Peat S, Rees DA (1961) Carbohydrase and sulphatase activities of Porphyra umbilicalis. Biochem J 79: 7–12

    PubMed  CAS  Google Scholar 

  • Peat S, Whelan WJ, Roberts JG (1957) The structure of lichenin. J Chem Soc 3916–3924

    Google Scholar 

  • Peat S, Whelan WJ, Lawley HG (1958) The structure of laminarin, Part II. The minor structural features. J Chem Soc 729–737

    Google Scholar 

  • Peat S, Turvey JR, Evans JM (1959 a) Linkage analysis of floridean starch by partial acid hydrolysis. J Chem Soc 3223–3227

    Google Scholar 

  • Peat S, Turvey JR, Evans JM (1959 b) Enzymic hydrolysis of floridean starch and other studies. J Chem Soc 3341–3344

    Google Scholar 

  • Peat S, Whelan WJ, Turvey JR, Morgan K (1961) The structure of isolichenin. J Chem Soc 623–629

    Google Scholar 

  • Percival E (1963) Algal polysaccharides and their biological relationships. Proc Fourth Int Seaweed Symp 18–35

    Google Scholar 

  • Percival E, McDowell RH (1967) Chemistry and enzymology of marine algal polysaccharides. Academic Press, New York

    Google Scholar 

  • Percival E, Young M (1971a) Low molecular weight carbohydrates and water-soluble polysaccharide metabolized by the Cladophorales. Phytochemistry 10: 807–812

    Article  CAS  Google Scholar 

  • Percival E, Young M (1971 b) Characterization of sucrose lactate and other oligosaccharides found in the Cladophorales. Carbohyd Res 20: 217–223

    Article  CAS  Google Scholar 

  • Perlin AS, Suzuki S (1962) The structure of lichenin: selective enzymolysis studies. Can J Chem 40: 50–56

    Article  CAS  Google Scholar 

  • Plessman Camargo E, Meuser R, Sonneborn D (1969) Kinetic analyses of the regulation of glycogen synthetase activity in zoospores and growing cells of the water mould, Blastocladiella emersonii. J Biol Chem 244: 5910–5919

    Google Scholar 

  • Polacheck I, Rosenberger RF (1977) Aspergillus nidulans mutant lacking α(113), melanin and cleistothecia. J Bacteriol 132: 650–656

    PubMed  CAS  Google Scholar 

  • Preiss J, Greenberg E (1967) Purification and properties of the adenosine diphosphoglucose: α-1,4-glucan, α-4-glucosyltransferase from Chlorella. Arch Biochem Biophys 118: 702–708

    Article  PubMed  CAS  Google Scholar 

  • Reese ET, Mandels M (1964) A new a-glucanase: mycodextranase Can J Microbiol 10: 103–114

    Article  PubMed  CAS  Google Scholar 

  • Rogerson CT (1970) The hypocrealean fungi (Ascomycetes, Hypocreales). Mycologia 62: 865–910

    Article  PubMed  CAS  Google Scholar 

  • Rothman LB, Cabib E (1967 a) Allosteric properties of yeast glycogen synthetase I. General kinetic study. Biochemistry 6: 2098–2106

    Article  PubMed  CAS  Google Scholar 

  • Rothman LB, Cabib E (1967 b) Allosteric properties of yeast glycogen synthetase II. The effect of pH on inhibition and its physiological implications. Biochemistry 6: 2107–2112

    Article  CAS  Google Scholar 

  • Sanwal GG, Preiss J (1967) Regulation of ATP; α-D-glucose 1-phosphate adenyl transferase (ADP-glucose pyrophosphorylase) by inorganic phosphate and 3-phosphoglycerate. Arch Biochem Biophys 119: 454–469

    Article  PubMed  CAS  Google Scholar 

  • Schrantz JP (1970) Étude cytologique, en microscopie optique et électronique de quelques Ascomycètes II. La paroi. Rev Cytol Biol Vég 33: 111–168

    Google Scholar 

  • Sentheshanmuganathan S, Nickerson WJ (1962 a) Composition of cells and cell walls of triangular and ellipsoidal forms of Trigonopsis variabilis. J Gen Microbiol 27: 451–464

    CAS  Google Scholar 

  • Sentheshanmuganathan S, Nickerson WJ (1962 b) Nutritional control of cellular form in Trigonopsis variabilis. J Gen Microbiol 27: 437–449

    PubMed  CAS  Google Scholar 

  • Smestad B, Percival E, Bidwell RGS (1972) Metabolism of soluble carbohydrates in Acetabularia mediterranea cells. Can J Bot 50: 1357–1361

    Article  CAS  Google Scholar 

  • Smith F, Unrau AM (1959 a) Presence of D-mannose residues in laminarin. Chem Ind 636

    Google Scholar 

  • Smith F, Unrau AM (1959 b) On the presence of (1 6)-linkages in laminarin. Chem Ind 881

    Google Scholar 

  • Stark JR (1976) A new method for the analysis of laminarins and for preparative scale fractionation of their components. Carbohyd Res 47: 176–178

    Article  CAS  Google Scholar 

  • Stark JR (1977) Isolation of three water-soluble glucan components from Pelvetia canaliculata. Carbohyd Res 57: C11–C12

    Article  CAS  Google Scholar 

  • Stewart CM, Higgins HG (1960) Carbohydrates of Ecklonia radiata. Nature (London) 187: 511

    Article  CAS  Google Scholar 

  • Sundararajan PR, Marchessault RH, Quigley GJ, Sarko A (1973) Crystalline chain conformation of mycodextran. J Am Chem Soc 95: 2001–2008

    Article  PubMed  CAS  Google Scholar 

  • Szaniszlo PJ, Wirsen C, Mitchell R (1968) Production of a capsular polysaccharide by a marine filamentous fungus. J Bacteriol 96: 1474–1483

    PubMed  CAS  Google Scholar 

  • Tabata S, Kiyosaki T, Tsunamoto R, Hizukuri S (1978) Relationship between glycogen structure and the activities of phosphorylase and debranching enzyme in glycogen metabolism of a strain of Saccharomyces cerevisiae. J Soc Ferm Technol 56: 110–115

    CAS  Google Scholar 

  • Takahara H, Matsuda K (1976) The structure of Neurospora crassa glycogen Agric Biol Chem 40: 1699–1703

    Article  CAS  Google Scholar 

  • Taylor KJ, Chanzy H, Marchessault RH (1975) Electron diffraction for hydrated crystalline biopolymers: nigeran. J Mol Biol 92: 165–167

    Article  PubMed  CAS  Google Scholar 

  • Téllez-Inôn MT, Terenzi H, Torres HN (1969) Interconvertible forms of glycogen synthetase in Neurospora crassa. Biochim Biophys Acta 191: 765–768

    PubMed  Google Scholar 

  • Téllez-Inôn MT, Torres HN (1970) Interconvertible forms of glycogen phosphorylase in Neurospora crassa. Proc Natl Acad Sci USA 66: 459–463

    Article  PubMed  Google Scholar 

  • Tokunaga J, Bartnicki-Garcia S (1971a) Cyst wall formation and endogenous carbohydrate utilization during synchronous encystment of Phytophthora palmivora zoospores. Arch Mikrobiol 79: 283–292

    Article  PubMed  CAS  Google Scholar 

  • Tokunaga J, Bartnicki-Garcia S (1971b) Structure and differentation of the cell wall of Phytophthora palmivora cysts, hyphae and sporangia. Arch Mikrobiol 79: 293–310

    Article  PubMed  CAS  Google Scholar 

  • Tomos AD, Northcote DH (1978) A protein-glucan intermediate during paramylon synthesis. Biochem J 174: 283–290

    PubMed  CAS  Google Scholar 

  • Trevelyan WE, Harrison JS (1956) Studies on yeast metabolism, I. Yeast carbohydrate fractions, separation from nucleic acid, analysis, and behaviour during anaerobic fermentation. Biochem J 63: 23–33

    PubMed  CAS  Google Scholar 

  • Tung KK, Rosenthal A, Nordin JH (1972) Purification and properties of mycodextranase, an endo-α-D-(1 4)-glucanase from Pénicillium melinii. J Biol Chem 246: 6722–6736

    Google Scholar 

  • Turian G, Bianchi DE (1972) Conidiation in Neurospora. Bot Rev 38: 119–154

    Article  Google Scholar 

  • Turvey JR (1978) Biochemistry of algal polysaccharides. In: Manners DJ (ed) Biochemistry of carbohydrates II, Int Rev Biochem Vol 16. Univ Park Press, Baltimore, pp 151–177

    Google Scholar 

  • Turvey JR, Simpson PR (1966) Polysaccharides from Corallina officinalis. Proc Fifth Int Seaweed Symp 323–327

    Google Scholar 

  • Turvey JR, Williams EL (1970) The structures of some xylans from red algae. Phytochemistry 9: 2383–2388

    Article  CAS  Google Scholar 

  • Waksman N, de Lederkremer RM, Cerezo S (1977) Structure of an a-D-glucan from Cyttaria harioti. Carbohyd Res 59: 505–515

    Article  CAS  Google Scholar 

  • Wang MC, Bartnicki-Garcia S (1973) Novel phosphoglucans from the cytoplasm of Phytophthora palmivora and their selective occurrence in certain life cycle stages. J Biol Chem 248: 4112–4118

    PubMed  CAS  Google Scholar 

  • Wang MC, Bartnicki-Garcia S (1974) Mycolaminarans Slovage (1W3)-β-D-glucans from the cytoplasm of the fungus Phytophthora palmivora. Carbohyd Res 37: 331–338

    Article  CAS  Google Scholar 

  • Weber M, Wöber G (1975) The fine structure of the branched α-D-glucan from the blue-green alga Anacystis nidulans: Comparison with other bacterial glycogens and phytoglycogen. Carbohyd Res 39: 295–302

    Article  CAS  Google Scholar 

  • Whyte JNC (1971) Polysaccharides of the red seaweed Rhodymenia pertusa. Part I. Water soluble glucan. Carbohyd Res 16: 220–224

    Article  CAS  Google Scholar 

  • Yamaguchi H, Kanda Y, Iwata K (1974) Macromolecular structure and morphology of native glycogen particles isolated from Candida albicans. J Bacteriol 120: 441–449

    PubMed  CAS  Google Scholar 

  • Yamaguchi T, Ikawa T, Nisizawa K (1969) Pathway of mannitol formation during photosynthesis in brown algae. Plant Cell Physiol 10: 425–440

    CAS  Google Scholar 

  • Yokota I, Shibata S, Saito H (1979) A 13C-n.m.r. analysis of linkages in lichen polysaccharides: an approach to chemical taxonomy of lichens. Carbohyd Res 69: 252–258

    Article  CAS  Google Scholar 

  • Zevenhuizen LPTM, Bartnicki-Garcia S (1970) Structure and role of a soluble cytoplasmic glucan from Phytophthora cinnamomi. J Gen Microbiol 61: 183–188

    PubMed  CAS  Google Scholar 

  • Zonneveld BJM (1971) Biochemical analysis of the cell wall of Aspergillus nidulans. Biochim Biophys Acta 249: 506–514

    Article  PubMed  CAS  Google Scholar 

  • Zonneveld BJM (1972) Morphogenesis in Aspergillus nidulans. Biochim Biophys Acta 273: 174–187

    Article  PubMed  CAS  Google Scholar 

  • Zonneveld BJM (1973) Inhibitory effect of 2-deoxy-D-glucose on cell wall α-(113)-glucan synthesis and cleistothecium development in Aspergillus nidulans. Dev Biol 34: 1–8

    Article  PubMed  CAS  Google Scholar 

  • Zonneveld BJM (1974) α-(113)-Glucan synthesis correlated with α-(113)-glucanase synthesis, conidiation and fructification in morphogenetic mutants of Aspergillus nidulans. J Gen Microbiol 81:445–451

    PubMed  CAS  Google Scholar 

  • Zonneveld BJM (1975 a) Sexual differentiation in Aspergillus nidulans. The requirement for manganese and its effect on 1f3-glucan synthesis. Arch Mikrobiol 105: 101–104

    CAS  Google Scholar 

  • Zonneveld BJM (1975 b) Sexual differentiation in Aspergillus nidulans. The requirement for manganese and the correlation between phosphoglucomutase and synthesising of reserve material. Arch Mikrobiol 105: 105–108

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Manners, D.J., Sturgeon, R.J. (1982). Reserve Carbohydrates of Algae, Fungi, and Lichens. In: Loewus, F.A., Tanner, W. (eds) Plant Carbohydrates I. Encyclopedia of Plant Physiology, vol 13 / A. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68275-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68275-9_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68277-3

  • Online ISBN: 978-3-642-68275-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics