Skip to main content

Reserve Polysaccharides Other Than Starch in Higher Plants

  • Chapter
Plant Carbohydrates I

Part of the book series: Encyclopedia of Plant Physiology ((921,volume 13 / A))

Abstract

Reserve polysaccharides are formed by plant cells at certain physiological stages of development, usually during periods of intense photosynthetic activity, and are later “digested” to deliver carbohydrate monomers which re-enter the cells’ metabolism. They are stored — that is temporarily withdrawn from cellular metabolism — either in the solid state or, less frequently, in a dissolved or highly hydrated colloidal state. Their deposition takes place on the outside of the plasmalemma in the cell wall region, in plastids or in cell vacuoles. As far as we know, starch is the only polysaccharide formed in plastids and the plastids constitute the only cellular compartment which forms starch in higher plants.

Part of this chapter covers extracellular polysaccharides. In their metabolic fate, however, these differ considerably from structural cell wall components. Their relatedness to vacuolar reserve polysaccharides, in addition, made it seem reasonable to put this whole group of compounds together into this more metabolically oriented volume instead of into Volume 13 B on extracellular carbohydrates

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Achtardjiev CZ, Koleva M (1973) A glucomannan from the tubers of Arum orientale. Phytochemistry 12: 2897–2900

    Google Scholar 

  • Anderson E (1949) Endosperm mucilages of legumes. Ind Eng Chem 41: 2887–2890

    CAS  Google Scholar 

  • Andrews P, Hough L, Jones JKN (1952) Mannose-containing polysaccharides. Part 2. The galactomannan of fenugreek seed (Trigonella foenum-graecum). J Chem Soc: 2744–2750

    Google Scholar 

  • Andrews P, Hough L, Jones JKN (1953) Mannose-containing polysaccharides. Part 3., The polysaccharides in the seeds of Iris ochroleuca and I. sibirica. J Chem Soc: 1186–1192

    Google Scholar 

  • Andrews P, Hough L, Jones JKN (1956) Mannose-containing polysaccharides. Part IV. The glucomannans of Lily bulbs. J Chem Soc: 181–188

    Google Scholar 

  • Archbold HK (1940) Fructosans in the monocotyledons. A review. New Phytol 39: 185–219

    CAS  Google Scholar 

  • Arni PC, Percival EGV (1951) Studies on fructosans. Part II. Triticin from the rhizomes of couch grass (Triticum repens L.). J Chem Soc 1822–1830

    Google Scholar 

  • Ashford AE, Jacobson JV (1974) Cytochemical localization of phosphatase in barley aleu- rone cells. The pathway of gibberellic acid-induced enzyme release. Planta 120: 81–105

    CAS  Google Scholar 

  • Aspinall GO, Ferrier RJ (1958) Cereal gums. Part 3. The constitution of an araboxylan from barley flour. J Chem Soc: 638–642

    Google Scholar 

  • Aspinall GO, Gupta Das PC (1959) The structure of the fructosans from Agave vera cruz Mill. J Chem Soc: 718–722

    Google Scholar 

  • Aspinall GO, Hirst EL, Percival EGV, Williamson IR (1953) The mannans of ivory nut (Phytelephas macrocarpa). Part 1. The methylation of mannan A and mannan B. J Chem Soc: 3184–3188

    Google Scholar 

  • Aspinall GO, Rashbrook RB, Kessler G (1958) The mannans of ivory nut (Phytelephas macrocarpa). Part 2. The partial acid hydrolysis of mannans A and B. J Chem Soc: 215–221

    Google Scholar 

  • Bacon JSD (1959 a) Carbohydrates of the rampion, Campanula rapunculus L. Nature (London) 184:1957

    CAS  Google Scholar 

  • Bacon JSD (1959 b) The trisaccharide fraction of some monocotyledons. Biochem J 73:507–514

    PubMed  CAS  Google Scholar 

  • Bacon JSD (1960) The oligofructosides. Bull Soc Chim Biol 42: 1441–1449

    PubMed  CAS  Google Scholar 

  • Bacon JSD, Edelman J (1951) The carbohydrates of the Jerusalem artichoke and other Compositae. Biochem J 48: 114–126

    PubMed  CAS  Google Scholar 

  • Bacon JSD, Loxley R (1952) Seasonal changes in the carbohydrates of the Jerusalem artichoke tuber. Biochem J 51: 208–213

    PubMed  CAS  Google Scholar 

  • Bailey RW (1971) In: Harborne JB, Boulter D, Turner BL (eds) Chemotaxonomy of the leguminosae. Academic Press, London, New York, pp 503–541

    Google Scholar 

  • Balasubramaniam K (1976) Polysaccharides of the kernel of maturing and matured coconuts. J Food Sci 41: 1370–1373

    CAS  Google Scholar 

  • Bamforth CW, Martin HL, Wainwright T (1979) A role for carboxypeptidase in the solubilization of barley β-glucan. J Inst Brewing 85: 334–338

    CAS  Google Scholar 

  • Barnell HR (1936) Seasonal changes in the carbohydrates of the wheat plant. New Phytol 35: 229–266

    CAS  Google Scholar 

  • Barnell HR (1938) Distribution of carbohydrates between component parts of the wheat plant at various times during the season. New Phytol 37: 85–112

    CAS  Google Scholar 

  • Bathgate GN, Palmer GH, Wilson G (1974) Action of endo-β-1,3-glucanases on barley and malt β-glucans. J Inst Brew London 80: 278–285

    CAS  Google Scholar 

  • Bell DJ (1960) Discussion des rapports de JSD Bacon et JE Courtois. Bull Soc Chim Biol 42: 1469–1470

    Google Scholar 

  • Bell DJ, Palmer A (1952) Structural studies on inulin from Inula helenium and on levans from Dactylis glomerata and Lolium italicum. J Chem Soc 3763–3770

    Google Scholar 

  • Belval H (1937) Les fructosides des Amaryllidacées Lycoris et Narcisse. Bull Soc Chim Biol 19: 1158–1163

    CAS  Google Scholar 

  • Belval H (1939) Amaryllidacées et Liliacées. La réserve glucidique de l’Ail et de la Tubereuse. Bull Soc Chim Biol 21: 294–297

    CAS  Google Scholar 

  • Belval H, Merac Du M-L (1946) Les fructosanes et l’hybridisation chez les Graminées. Bull Mus Natl Hist Nat Marseille 18: 460–464

    CAS  Google Scholar 

  • BeMiller JN (1972) Isolation and hydrolysis of alkali-stable inulin. Carbohydr Res 21: 154–155

    PubMed  CAS  Google Scholar 

  • Bender MM, Smith D (1973) Classification of starch- and fructosan-accumulating grasses as C-3 or C-4 species by carbon isotope analysis. J Br Grassl Soc 28: 97–100

    CAS  Google Scholar 

  • Bhatia IS, Nandra KS (1979) Studies on fructosyl transferase from Agave americana. Phytochemistry 18: 923–927

    CAS  Google Scholar 

  • Bhatia IS, Srinivasan M (1953) Polyfructosan from Furcroea gigantea. Curr Sci 22: 236–237

    CAS  Google Scholar 

  • Bhatia IS, Mann SK, Singh R (1974) Biochemical changes in the water-soluble carbohydrates during the development of chicory (Cichorium intybus Linn) roots. J Sci Food Agric 25: 535–539

    PubMed  CAS  Google Scholar 

  • Binet P, Collin A (1974) Cycle annuel des fructosanes chez Aster tripolium L. Bull Soc Bot Fr 121: 324–328

    Google Scholar 

  • Boggs LA, Smith F (1956) The constitution of the glucofructan of the tuber of the Hawaiian “TI” plant (Cordyline terminalis). J Am Chem Soc 78: 1880–1885

    CAS  Google Scholar 

  • Bourdu R (1954) Sur le métabolisme glucidique des Boraginacées vivaces. CR 239: 1524–1526

    CAS  Google Scholar 

  • Bourdu R (1957) Contribution a l’étude du métabolisme glucidique des Boraginacées. Rev Gen Bot 64:153–192 and 197–260

    CAS  Google Scholar 

  • Bourdu R (1958) Sur les glucofructosides de Symphytum officinale L. et leur métabolisme. CR 246: 973–976

    CAS  Google Scholar 

  • Brown HT, Morris GH (1890) Researches on the germination of some of the Gramineae. J Chem Soc 57: 458–528

    CAS  Google Scholar 

  • Buchala A J, Franz G, Meier H (1974) A glucomannan from the tubers of Orchis morio. Phytochemistry 13: 163–166

    CAS  Google Scholar 

  • Campbell J (1978) The biosynthesis of storage galactomannan in developing seeds of fenugreek (Trigonella foenum-graecum, Leguminosae) and related chemotaxonomic studies. Ph D Thesis, Univ Stirling, Scotland

    Google Scholar 

  • Carles J (1935) Chimisme et classification chez les Iris. Rev Gen Bot 47:5–22, 87–95, 144–159, 215–229, 294–307, 363–477

    CAS  Google Scholar 

  • Carlson WS, Ziegenfuss EM, Overton JD (1962) Compatibility and manipulation of guar gum. Food Technol 16: 50–54

    Google Scholar 

  • Chandorkar KR, Collins FW (1974) Enzymological aspects of de novo synthesis of fructooligosaccharides in leaf disks of certain Asteraceae. IV. The activity of sucrose-sucrose-1-fructosyltransferase. Can J Bot 52: 1369–1377

    CAS  Google Scholar 

  • Chubey BB, Dorrell DG (1977) Chicory, another potential fructose crop. J Inst Can Sci Technol Aliment 10: 331–332

    Google Scholar 

  • Chudzikowski RJ (1971) Guar gum and its applications. J Soc Cosmet Chem 22: 43–60

    CAS  Google Scholar 

  • Colin H, Belval H (1923) Les hydrocarbones solubles du grain de blé au cours du développement. CR 177: 343–346

    CAS  Google Scholar 

  • Colin H, Chollet MM (1939) L’inulinogénése chez les plantes annuelles. CR 208: 549–552

    CAS  Google Scholar 

  • Courtois J-E, Dizet le P (1974) Étude de la structure de la galactoxyloglucane (amyloïde) des graines de balsamine (Impatiens balsamina). CR (C) 278: 81–83

    CAS  Google Scholar 

  • Courtois JE, Chararas C, Debris MM (1961) Recherches préliminaires sur l’attaque enzymatique des glucides par un coléoptère xylophage: Ips typographus. Bull Soc Chim Biol 43: 1173–1187

    PubMed  CAS  Google Scholar 

  • Courtois J-E, Dizet le P, Robic D (1976) Étude complémentaire de la structure de trois galactoxyloglucanes (amyloïdes) de graines. Carbohydrate Research 49: 439–449

    PubMed  CAS  Google Scholar 

  • Cugnac de A (1931) Les glucides des Graminées. Importance de fructoholosides. Bull Soc Chim Biol 13: 125–132

    Google Scholar 

  • Cumming DF (1970) Separation and identification of soluble nucleotides in cambial and young xylem tissue of Larix decidua Mill. Biochem J 116: 189–198

    PubMed  CAS  Google Scholar 

  • Curtis EJC, Cantlon JE (1966) Cell wall of Melampyrum lineare seed: carbohydrate components. Science 151: 580–581

    PubMed  CAS  Google Scholar 

  • Daoud KM (1932) The reserve polysaccharide of the seeds of fenugreek: its digestibility and its fate during germination. Biochem J 26: 255–263

    PubMed  CAS  Google Scholar 

  • Darbyshire B, Henry RJ (1978) The distribution of fructans in onions. New Phytol 81: 29–34

    CAS  Google Scholar 

  • Darbyshire B, Henry RJ (1981) Differences in fructan content and synthesis in some Allium species. New Phytol 87: 249–256

    CAS  Google Scholar 

  • Das NN, Das A (1978) Structure of the D-fructan isolated from garlic (Allium sativum) bulbs. Carbohydr Res 64: 155–167

    CAS  Google Scholar 

  • Dea ICM, Morrison A (1975) Chemistry and interactions of seed galactomannans. Adv Carbohydr Chem Biochem 31: 241–312

    CAS  Google Scholar 

  • Dey PM (1978) Biochemistry of plant galactomannans. Adv Carbohydr Chem Biochem 35: 341–376

    CAS  Google Scholar 

  • Diskus A, Kiermayer O (1954) Die Raphidenzellen von Haemaria discolor bei Vitalfarbung. Protoplasma 43: 450–454

    Google Scholar 

  • Dizet le P (1972) Quelques précisions sur la structure de l’amyloïde de capucine. Carbohydr Res 24: 505–509

    PubMed  Google Scholar 

  • Dovletmuradov K (1970) Study of the structure of the heteropolysaccharide (glucomannan) from the roots of Eremurus spectabilis M.B. Izv Akad Nauk Turkm SSR Ser Biol Nauk 3:46–53. Cited in Biol Abstr (1972) 53: 33637

    Google Scholar 

  • Eagles CF (1967) Variation in the soluble carbohydrate content of climatic races of Dactylis glomerata (cocksfoot) at different temperatures. Ann Bot 31: 645–651

    CAS  Google Scholar 

  • Edelman J, Jefford TG (1964) The metabolism of fructose polymers in plants. Biochem J 93: 148–161

    PubMed  CAS  Google Scholar 

  • Edelman J, Jefford TG (1968) The mechanism of fructosan metabolism in higher plants as exemplified in Helianthus tuberosus. New Phytol 67: 517–531

    CAS  Google Scholar 

  • Ekstrand AG, Johanson CJ (1887) Zur Kenntnis der Kohlehydrate. Ber Dtsch Chem Ges 20: 3310–3317

    Google Scholar 

  • Elfert T (1894) Über die Auflösungsweise der sekundären Zellmembranen der Samen bei ihrer Keimung. Bibl Bot 30: 1–25

    Google Scholar 

  • El Khadem H, Sallam MAE (1967) The carbohydrate component of the doun-palm kernel. Characterization and identification of a mannan. Carbohydr Res 4: 387–391

    Google Scholar 

  • Ervin EL, Syperda G (1971) Seasonal effects on soluble sugars and cytological aspects of Polygonatum canaliculatum rhizomes. Bull Torrey Bot Club 98: 162–167

    CAS  Google Scholar 

  • Escalada JA, Moss DN (1976) Changes in non-structural carbohydrate fractions of developing spring wheat kernels. Crop Sci 16: 627–631

    CAS  Google Scholar 

  • Fincher GB (1975) Morphology and chemical composition of barley endosperm cell walls. J Inst Brew London 81: 116–122

    CAS  Google Scholar 

  • Fischer H (1902) Über das Inulin, sein Verhalten auβerhalb und innerhalb der Pflanze. Beitr Biol Pflanz 8: 53–110

    Google Scholar 

  • Foglietti M-J, Percheron F (1972) Presence d’une oligomannoside β-1,4 orthophosphate mannosyl transférase (oligomannosyl β-1,4 phosphorylase) dans les graines germées de fenugrec Trigone lia foenum-graecum L. CR (D) 274: 130–132

    CAS  Google Scholar 

  • Forrest IS, Wainwright T (1977) Mode of binding of β-glucans and pentosans in barley endosperm cell walls. J Inst Brew London 83: 279–286

    CAS  Google Scholar 

  • Franz G (1966) Die Schleimpolysaccharide von Althaea officinalis L. und Malva silvestris L. Planta Med 14: 90–110

    CAS  Google Scholar 

  • Franz G (1973) Biosynthesis of Salep mannan. Phytochemistry 12: 2369–2373

    CAS  Google Scholar 

  • Franz G (1979) Metabolism of reserve polysaccharides in tubers of Orchis morio L. Planta Med 36: 68–73

    PubMed  CAS  Google Scholar 

  • Franz G, Meier H (1971) Bildung und Abbau des Schleimpolysaccharids (Salepmannan) von Orchideenknollen. Planta Med 19: 326–332

    CAS  Google Scholar 

  • Fulcher RG, Setterfield G, McCully ME, Wood PJ (1977) Observations on the aleurone layer. 2. Fluorescence microscopy of the aleurone sub-aleurone junction with emphasis on possible β-1,3 glucan deposits in barley. Aust J Plant Physiol 4: 917–928

    CAS  Google Scholar 

  • Glicksman M (1953) Gum technology in the food industry. Academic Press, London New York

    Google Scholar 

  • Goldberg R (1969) Étude des polysaccharides de réserve de deux graines de liliacées: Asparagus officinalis L., et Endymion nutans. Dumort. Phytochemistry 8: 1783–1792

    CAS  Google Scholar 

  • Goldberg R, Roland JC (1971) Etude de l’utilisation des glucomannanes au cours de la germination des graines d’Asparagus officinalis. Rev Gen Bot 78: 75–102

    CAS  Google Scholar 

  • Gonzales NS, Pontis HG (1963) Uridine diphosphate fructose and uridine diphosphate acetylgalactosamine from Dahlia tubers. Biochim Biophys Acta 69: 179–181

    Google Scholar 

  • Gould SEB, Rees DA, Wight NJ (1971) Polysaccharides in germination. Xyloglucans (amyloids) from the cotyledons of white mustard. Biochem J 124: 47–53

    PubMed  CAS  Google Scholar 

  • Gowda DC, Neelisiddaiah B, Anjaneyalu YV (1979) Structural studies of polysaccharides from Aloe vera. Carbohydr Res 72: 201–205

    CAS  Google Scholar 

  • Grafe V, Vouk V (1912) Untersuchungen über den Inulinstoffwechsel bei Cichorium intybus L. (Cichorie). Biochem Z 43: 424–433

    Google Scholar 

  • Groteluschen RD, Smith D (1968) Carbohydrates in grasses. III. Estimations of the degree of polymerization of the fructosans in the stem bases of timothy and bromegrass near seed maturity. Crop Sci 8: 210–212

    Google Scholar 

  • Guess JW, Hall NA, Rising LW (1960) A gum from rain lily (Cooperia pedunculata). J Am Pharm Assoc 49: 102–105

    CAS  Google Scholar 

  • Halmer P, Bewley JD, Thorpe TA (1975) Enzyme to break down lettuce endosperm cell wall during gibberellin and light-induced germination. Nature (London) 258: 716–718

    CAS  Google Scholar 

  • Halmer P, Bewley JD, Thorpe TA (1976) An enzyme to degrade lettuce endosperm cell walls. Appearance of a mannanase following phytochrome- and gibberellin-induced germination. Planta 130: 189–196

    CAS  Google Scholar 

  • Halmer P, Bewley JD, Thorpe TA (1978) Degradation of the endosperm cell walls of Lactuca sativa L., cv Grand Rapids. Timing of mobilisation of soluble sugars, lipid and phytate. Planta 139: 1–8

    CAS  Google Scholar 

  • Hammer H (1970) Oligo- and polyfructosides from the bulbs of two Leucojum species. Acta Chem Scand 24: 1294–1300

    PubMed  CAS  Google Scholar 

  • Hegi G (1935) Flora von Mittel-Europa, 2nd edn, Vol. II, part 3. Lehmann, Munich Hegnauer R ( 1962 to 1973 ) Chemotaxonomie der Pflanzen, vols I–VI. Birkhäuser, Basel Stuttgart

    Google Scholar 

  • Hegnauer R (1962 to 1973) Chemotaxonomie der Pflanzen, vols I–VI. Birkhäuser, Basel Stuttgart

    Google Scholar 

  • Heinricher E (1888) Zur Biologie der Gattung Impatiens. Flora (Jena) 71: 163–185

    Google Scholar 

  • Hérissey H (1903) Recherches chimiques et physiologiques sur la digestion des mannanes et des galactanes. Rev Gen Bot 15:345–392, 406–417, 444–464

    Google Scholar 

  • Hirst EL (1957) Some aspects of the chemistry of fructosans. Proc Chem Soc 193–204

    Google Scholar 

  • Hirst EL, Jones JKN, Walder WO (1947) Pectic substances. Part 7. The constitution of the galactan from Lupinus albus. J Chem Soc 1225–1229

    Google Scholar 

  • Hirst EL, McGilvray DI, Percival EGV (1950) Studies on fructosans. Part I. Inulin from Dahlia tubers. J Chem Soc 1297–1302

    Google Scholar 

  • Holligan PM, Chen C, Lewis DH (1973) Changes in the carbohydrate composition of leaves of Tussilago farfara during infection by Puccinia poarum. New Phytol 72: 947–955

    CAS  Google Scholar 

  • Hopf H (1973) Biosynthese, Physiologie und Verbreitung von Oligosacchariden in Umbellifloren. Doct Thesis, Univ Munich, Germany

    Google Scholar 

  • Hopf H, Kandier O (1977) Characterization of the ‘reserve cellulose’ of the endosperm of Carum carvi as a β(1 — 4)-mannan. Phytochemistry 16: 1715–1717

    CAS  Google Scholar 

  • Hunter RA, Mclntyre BL, Mcllroy RJ (1970) Water-soluble carbohydrates of tropical pasture grasses and legumes. J Sci Food Agric 21: 400–405

    CAS  Google Scholar 

  • Hylin JW, Sawai K (1964) The enzymatic hydrolysis of Leucaena glauca galactomannan. Isolation of crystalline galactomannan depolymerase. J Biol Chem 239: 990–992

    PubMed  CAS  Google Scholar 

  • Igamberdieva MI, Rakimov DA, Ismailov ZF (1977) Structure of glucomannan from Eremurus altaicus tubers. Khim Prir Soedin (Tashk) 2:189–195. Cited in Biol Abstr (1978) 65: 61110

    Google Scholar 

  • Ishii J (1895) Über das Vorkommen von Mannan in den Samen der Kakifrüchte. Landwirtsch Vers-Stn 45: 435–336

    Google Scholar 

  • Jakimow-Barras (1973) Les polysaccharides des graines de quelques liliacées et iridacées. Phytochemistry 12: 1331–1339

    CAS  Google Scholar 

  • Janiesch P (1971) Zur Physiologie der Nachreife von Umbelliferen nitrophiler Säume. Flora (Jena) Abt B 160: 518–525

    CAS  Google Scholar 

  • Jaretzky R, Bereck E (1938) Der Schleim in den Knollen von Orchis purpureus Hnds und Piatanthera bifolia (L.). Arch Pharm 276: 17–27

    CAS  Google Scholar 

  • Jefford TG, Edelmann J (1963) Metabolism of fructose polymers in plants 2. Effect of temperature on the carbohydrate changes and morphology of stored tubers of Helianthus tuberosus. J Exp Bot 14: 56–62

    CAS  Google Scholar 

  • Kato K, Matsuda K (1973) Isolation of oligosaccharides corresponding to the branching point of Konjak mannan. Agrie Biol Chem 37: 2045–2051

    CAS  Google Scholar 

  • Kato K, Kawaguchi Y, Mizuno T (1973) Structural analysis of Suisen glucomannan. Carbohydr Res 29: 469–476

    CAS  Google Scholar 

  • Kato K, Yamaguchi Y, Mutoh K, Ueno Y (1976) Structural analysis of lily glucomannan. Agrie Biol Chem 40: 1393–1398

    CAS  Google Scholar 

  • Keegan PQ (1916) Notes on plant chemistry. Chem News 113: 85–87

    Google Scholar 

  • Keusch L (1968) Die Mobilisierung des Reservemannans im keimenden Dattelsamen. Planta 78: 321–350

    CAS  Google Scholar 

  • Khanna SN, Gupta PC (1967) The structure of a galactomannan from the seeds of Ipomoea muricata. Phytochemistry 6: 605–609

    CAS  Google Scholar 

  • Kishida N, Okimasu S, Kamata T (1978) Weight and intrinsic viscosity of Konjak glucomannan. Agrie Biol Chem 42: 1645–1650

    CAS  Google Scholar 

  • Klages F (1934a) Zur Kenntniss der Steinnussmannane 1. Die Konstitution von Mannan A. Ann Chem 509: 159–81

    CAS  Google Scholar 

  • Klages F (1934b) Die Konstitution von Mannan B. Ann Chem 512: 185–194

    CAS  Google Scholar 

  • Klages F, Niemann R (1936) Über die Konstitution des Salepmannans und die übrigen Kohlenhydrate aus Tubera Salep. Ann Chem 523: 224–234

    CAS  Google Scholar 

  • Kohl FG (1899) Untersuchungen über die Raphidenzellen. Bot Centralbl 79: 273–282

    Google Scholar 

  • Koleva M, Achtardjiev C (1975) Untersuchungen über ein Glucomannan in den Knollen von Arum maculatum L. Pharmazie 30: 111–113

    PubMed  CAS  Google Scholar 

  • Kooiman P (1960) On the occurrence of amyloids in plant seeds. Acta Bot Neerl 9: 208–219

    CAS  Google Scholar 

  • Kooiman P (1961) The constitution of Tamarindus-amyloid. Ree Trav Chim Pays-Bas 80: 849–865

    Google Scholar 

  • Kooiman P (1967) The constitution of the amyloid from seeds of Annona muricata L. Phytochemistry 6: 1665–1673

    CAS  Google Scholar 

  • Kooiman P (1971) Structures of the galactomannans from seeds of Annona muricata, Arenga saccharifera, Cocus nucífera, Convolvulus tricolor, and Sophora japónica. Carbohydr Res 20: 329–337

    PubMed  CAS  Google Scholar 

  • Kovacs P (1973) Useful incompatibility of xanthan gum with galactomannans. Food Technol 27: 26–30

    CAS  Google Scholar 

  • Kühbauch W (1974) Fruktosangehalt, -polymerisationsgrad und -struktur in verschiedenen Pflanzenteilen von Lieschgras (Phleum pratense L.). Z Pflanzenphysiol 74: 121–129

    Google Scholar 

  • Kühbauch W, Soberalske RM (1977) Molecular weight and 14C distribution of fructosan in timothy stem bases at three stages of development. Crop Sci 17: 239–242

    Google Scholar 

  • Lee SR (1965) Purification and properties of enzymes which attack guar gum. Ph D Thesis, Univ Minnesota, USA

    Google Scholar 

  • Leung DMW, Reid JSG, Bewley JD (1979) Degradation of the endosperm cell walls of Lactuca sativa L., cv Grand Rapids in relation to the mobilisation of proteins and the production of hydrolytic enzymes in the axis, cotyledons and endosperm. Planta 146: 335–341

    CAS  Google Scholar 

  • Lüdtke M (1927) Zur Kenntnis der pflanzlichen Zellmembran. Über die Kohlenhydrate des Steinnussamens. Ann Chem 456: 201–224

    Google Scholar 

  • MacLeod AM, McCorquodale H (1958) Water soluble carbohydrates of seeds of the Gramineae. New Phytol 57: 168–182

    CAS  Google Scholar 

  • MacLeod AM, Sandie R (1961) Cell wall metabolism 1. Hemicellulases of Bromus seeds. New Phytol 60: 117–128

    CAS  Google Scholar 

  • Madan VK (1972) Polyfructosans of Asparagus racemosus. Z Pflanzenphysiol 68: 272–280

    CAS  Google Scholar 

  • Madan VK (1974) Heat-activated transfructosidation reaction in the tuber of Asparagus racemosus. Z Pflanzenphysiol 72: 89–92

    CAS  Google Scholar 

  • Maekaji K (1978) Determination of acidic component of Konjak mannan. Agric Biol Chem 42: 177–178

    CAS  Google Scholar 

  • Manners DJ, Marshall JJ (1969) Studies on carbohydrate metabolizing enzymes. Part 22. The β-glucanase system of malted barley. J Inst Brew London 75: 550–561

    CAS  Google Scholar 

  • Manners DJ, Wilson G (1976) Purification of malted barley endo-β-D-glucanases by ion exchange chromatography: some properties of an endo-barley-β-glucanase. Carbohydr Res 48: 255–264

    PubMed  CAS  Google Scholar 

  • Mares DJ, Stone BA (1973 a) Studies on wheat endosperm 1. Chemical composition and ultrastructure of the cell walls. Aust J Biol Sci 26: 793–812

    CAS  Google Scholar 

  • Mares DJ, Stone BA (1973 b) Studies on wheat endosperm 2. Properties of the wall components and studies on their organization in the walls. Aust J Biol Sci 26: 813–830

    CAS  Google Scholar 

  • Mares DJ, Stone BA (1973 c) Studies on wheat endosperm 3. Galactose-rich polysaccharides. Aust J Biol Sci 26: 1005–1007

    CAS  Google Scholar 

  • Marloth R (1883) Über mechanische Schutzmittel der Samen gegen schädliche Einflüsse von aussen. Bot Jahrb Syst Pflanzengesch 4: 225–265

    Google Scholar 

  • Matheson NK, Saini HS (1977) Polysaccharide and oligosaccharide changes in germinating lupin cotyledons. Phytochemistry 16: 59–66

    CAS  Google Scholar 

  • Matsuo T, Mizuno T (1974) Changes in the amounts of two kinds of reserve glucose- containing polysaccharides during germination of the Easter lily bulb. Plant Cell Physiol 15: 555–558

    CAS  Google Scholar 

  • McCleary BV, Matheson NK (1974) a-Galactosidase activity and galactomannan and galactosylsucrose oligosaccharide depletion in germinating legume seeds. Phytochemistry 13: 1747–1757

    CAS  Google Scholar 

  • McCleary BV, Matheson NK (1975) Galactomannan structure and β-mannanase and β-mannosidase activity in germinating legume seeds. Phytochemistry 1975: 1187–1194

    Google Scholar 

  • McClendon JH, Nolan WG, Wenzler HF (1976) The role of the endosperm in the germination of legumes: galactomannan, nitrogen and phosphorus changes in the germination of guar (Cyamopsis tetragonoloba; Leguminosae). Am J Bot 63: 790–797

    CAS  Google Scholar 

  • McNeil M, Albersheim P, Taiz L, Jones RL (1975) The structure of plant cell walls 7. Barley aleurone cells. Plant Physiol 55: 64–68

    PubMed  CAS  Google Scholar 

  • Medcalf DG, Cheung PW (1971) Composition and structure of glucofructans from durum wheat flour. Cereal Chem 48: 1–8

    CAS  Google Scholar 

  • Meier H (1958) On the structure of cell walls and cell wall mannans from ivory nuts and from dates. Biochim Biophys Acta 28: 229–240

    PubMed  CAS  Google Scholar 

  • Meier H, Reid JSG (1977) Morphological aspects of the galactomannan formation in the endosperm of Trigonella foenum-graecum L. (Leguminosae). Planta 133: 234–248

    Google Scholar 

  • Middleton E (1977) Molecular configuration of inulin. Implications for ultrafiltration theory and glomerular permeability. J Membr Biol 34: 93–101

    PubMed  CAS  Google Scholar 

  • Miniac de M (1970) Application de la Chromatographie en phase gazeuse a l’étude des glucides du bulbe d’oignon (Allium cepa L.) var. jaune paille des vertus. CR (D) 270: 1583–1586

    Google Scholar 

  • Misaki A, Ito T, Harada T (1972) Constitutional studies on the mucilage of “Yamanoimo”, Dioscorea batatas Decne, forma Tsukune. Agric Biol Chem 36: 761–771

    CAS  Google Scholar 

  • Mitchell EM (1930) A microchemical study of hemicelluloses of endosperms and cotyledons. Am J Bot 17: 117–138

    Google Scholar 

  • Mizuno T, Hayashi K (1955) The carbohydrates of the bulb of Lycoris radiata. VI A new crystalline glucofructan, lycorisin. Nippon Nôgei-Kagaku Kaishi 29: 533–537 (Chem Abstr 52:18682)

    Google Scholar 

  • Mizuno T, Hayashi K (1957) The carbohydrates of the bulb of Lycoris radiata XII A new branched glucomannan, higanbana-mannan. Nippon Nogei-Kagaku Kaishi 31: 138–141 (Chem Abstr 52:18682)

    Google Scholar 

  • Molisch H (1917) Das Plasmamosaik in den Raphidenzellen der Orchideen Haemaria and Anoectochilus. Kaiserliche Akademie Wissensch, Wien Sitzungsberichte Abt I 126: 231–242

    Google Scholar 

  • Molisch H (1921) Mikrochemie der Pflanze, 2. Aufl., Fischer, Jena

    Google Scholar 

  • Mollenhauer HH, Larson DA (1966) Developmental changes in raphid-forming cells of Vanilla planifolia and Monstera deliciosa. J Ultrastruct Res 16: 55–70

    PubMed  CAS  Google Scholar 

  • Montgomery R, Smith F (1956) A review of carbohydrates of wheat and other cereal grains. Agric Food Chem 4: 716–720

    CAS  Google Scholar 

  • Montgomery R, Smith F (1957) The carbohydrates of gramineae. IX. The constitution of a glucofructan of the endosperm of wheat (Triticum vulgare). J Am Chem Soc 79: 446–450

    CAS  Google Scholar 

  • Morimoto JY, Unrau AM (1962) Observations on the gums (galacto-mannans) of some legume seeds. Hawaii Farm Sci 11: 6–8

    Google Scholar 

  • Morrall P, Briggs DE (1978) Changes in cell wall polysaccharides of germinating barley grains. Phytochemistry 17: 1495–1502

    CAS  Google Scholar 

  • Mukherjee AK, Rao CVN (1962) A mannan from the kernel of coconut (Cocos nucifera). J Indian Chem Soc 10: 687–692

    Google Scholar 

  • Mukherjee AK, Choudhury D, Bagchi P (1961) Constitution of the galactomannoglycan from the kernel of green palmyra palm nut. Can J Chem 39: 1408–1418

    CAS  Google Scholar 

  • Nadelmann (1890) Über die Schleimendosperme der Leguminosen. Jahrb Wiss Bot 21: 1–83

    Google Scholar 

  • Nitsch E, Iwanov W, Lederer K (1979) Molecular characterization of sinistrin. Carbohydr Res 72: 1–12

    CAS  Google Scholar 

  • Nürnberg E, Rettig E (1974) On the characterisation of hydrocolloidal slow-release tablets illustrated for the example “Danaden® retard” tablets. Drugs Made Ger 17: 26–31

    Google Scholar 

  • Parker ML (1976) A study of cotyledonary changes during seedling development in Lupinus. Ph D Thesis, Univ Wales, Bangor

    Google Scholar 

  • Paulsen BS, Fagerheim E, Overbye E (1978) Structural studies of the polysaccharide from Aloe plicatilis Miller. Carbohydr Res 60: 345–351

    CAS  Google Scholar 

  • Pettigrew CJ, Watson L (1977) On the classification of Caesalpinioideae. Taxon 26: 57–64

    Google Scholar 

  • Pollock CJ (1979) Pathway of fructosan synthesis in leaf bases of Dactylis glomerata. Phytochemistry 18: 777–779

    CAS  Google Scholar 

  • Pollock CJ, Jones T (1979) Seasonal patterns of fructan metabolism in forage grasses. New Phytol 83: 9–15

    CAS  Google Scholar 

  • Pollock CJ, Ruggles PA (1976) Cold-induced fructosan synthesis in leaves of Dactylis glomerata. Phytochemistry 15: 1643–1646

    CAS  Google Scholar 

  • Pollock CJ, Hall MA, Roberts DP (1979) Structural analysis of fructose polymers by gas-liquid chromatography and gel filtration. J Chromatogr 171: 411–415

    CAS  Google Scholar 

  • Pontis H G (1970) The role of sucrose and fructosylsucrose in fructosan metabolism. Physiol Plant 23: 1089–1100

    CAS  Google Scholar 

  • Preece IA (1957) Cereal carbohydrates. R Inst Chem Lect Monogr Rep London 2:1–4

    Google Scholar 

  • Pringsheim H, Seifert K (1922) Zur Kenntnis des Steinnussmannans. Hoppe-Seylers Z Physiol Chem 123: 205–212

    Google Scholar 

  • Puriewitsch K (1898) Physiologische Untersuchungen über die Entleerung der Reservestoffbehälter. Jahrb Wiss Bot 31: 1–76

    Google Scholar 

  • Quillet M (1957) Separation des glucofructosanes et des fruetosanes par la Chromatographie bidimensionnelle. Comparaison de l’extrait fructosidique naturel du tubercule de Topinambur et de l’hydrolysat d’inuline par l’acide dilué. CR 244: 2177–2180

    CAS  Google Scholar 

  • Reid JSG (1971) Reserve galactomannan metabolism in germinating seeds of Trigonella foenum-graecum L. (Leguminosae). Planta 100: 131–142

    CAS  Google Scholar 

  • Reid JSG, Bewley JD (1979) A dual rôle for the endosperm and its galactomannan reserves in the germinative physiology of fenugreek (Trigonella foenum-graecum L.) an endospermic leguminous seed. Planta 147: 145–150

    CAS  Google Scholar 

  • Reid JSG, Meier H (1970 a) Chemotaxonomic aspects of the reserve galactomannan in leguminous seeds. Z Pflanzenphysiol 62: 89–92

    Google Scholar 

  • Reid JSG, Meier H (1970 b) Formation of reserve galactomannan in the seeds of Trigonella foenum-graecum. Phytochemistry 9: 513–520

    CAS  Google Scholar 

  • Reid JSG, Meier H (1972) The function of the aleurone layer during galactomannan mobilisation in germinating seeds of fenugreek (Trigonella foenum-graecum L.), crimson clover (Trifolium incarnatum L.) and lucerne (Medicago sativa L.): a correlative biochemical and ultrastructural study. Planta 106: 44–60

    CAS  Google Scholar 

  • Reid JSG, Meier H (1973a) Formation of the endosperm galactomannan in leguminous seeds: preliminary communications. Caryologia Suppl 25: 219–222

    Google Scholar 

  • Reid JSG, Meier H (1973 b) Enzymic activities and galactomannan mobilisation in germinating seeds of fenugreek (Trigonella foenum-graecum L. Leguminosae). Secretion of a-galactosidase and β-mannosidase by the aleurone layer. Planta 112: 301–308

    Google Scholar 

  • Reid JSG, Davies C, Meier H (1977) Endo-β-mannanase, the leguminous aleurone layer and the storage galactomannan in germinating seeds of Trigonella foenum-graecum L. Planta 133: 219–222

    CAS  Google Scholar 

  • Reiss R (1889) Über die Natur der Reservecellulose und über ihre Auflösungsweise bei der Keimung der Samen. Landwirtsch Jahrb 18: 711–765

    Google Scholar 

  • Rijven AHGC (1972) Control of the activity of the aleurone layer of fenugreek, Trigonella foenum-graecum L. Acta Bot Neerl 21: 381–386

    CAS  Google Scholar 

  • Robic D, Percheron P (1973) Structure de la mannane du palmier Erythrea edulis. Phytochemistry 12: 1369–1372

    CAS  Google Scholar 

  • Rocher J-P (1967) Les lévanes de Lolium italicum. Synthese dans les organes végétatifs. Physiol Veg 5: 71–80

    CAS  Google Scholar 

  • Rose (1804) Über eine eigenthümliche vegetabilische Substanz. Gehlens Neues Allg J Chem 3: 217–219

    Google Scholar 

  • Rubat du Merac M-L (1949) Recherches sur le metabolisme glucidique du genre Allium et en particulier d’Allium ursinum L. Thèse, Fac Sci, Univ Paris

    Google Scholar 

  • Rutherford PP, Deacon AC (1972 a) β-Fructofuranosidases from roots of dandelion (Tara¬xacum officinale Weber). Biochem J 126: 569–573

    PubMed  CAS  Google Scholar 

  • Rutherford PP, Deacon AC (1972 b) The mode of action of dandelion root β-fruetofuranosidases on inulin. Biochem J 129: 511–512

    PubMed  CAS  Google Scholar 

  • Rutherford PP, Deacon AC (1974) Seasonal variation in dandelion roots of fructosan composition, metabolism and response to treatment with 2,4-dichlorophenoxyacetic acid. Ann Bot 38: 251–260

    CAS  Google Scholar 

  • Rutherford PP, Flood AE (1971) Seasonal changes in the invertase and hydrolase activities of Jerusalem artichoke. Phytochemistry 10: 953–956

    CAS  Google Scholar 

  • Rutherford PP, Phillips DE (1975) Carbohydrate changes in chicory during forcing. J Hortic Sci 550: 463–473

    Google Scholar 

  • Sachs J (1862) Zur Keimungsgeschichte der Dattel. Bot Ztg 20: 241–246, 250–252

    Google Scholar 

  • Sachs J (1864) Über die Sphärokristalle des Inulins und dessen mikroskopische Nachweisung in den Zellen. Bot Ztg 22:77–81, 85–89

    Google Scholar 

  • Saxena VK (1965) Guar gum, a versatile product. Res Ind 10: 101–106

    CAS  Google Scholar 

  • Schellenberg HC (1904) Die Reservecellulose der Plantaginaceen. Ber Dtsch Bot Ges 22: 9–17

    Google Scholar 

  • Schlubach HH (1958) Der Kohlenhydratstoffwechsel der Gräser. Fortschr Chem Org Natur st 15: 1–30

    CAS  Google Scholar 

  • Schlubach HH (1961) Der Kohlenhydratstoffwechsel im Roggen und Weizen. Fortschr Chem Org Naturst 19: 291–315

    CAS  Google Scholar 

  • Schlubach HH, Berndt J (1961) Untersuchungen über Polyfructosane. LIX. Der Kohlenhydrat-Stoffwechsel im Hafer. Ann Chem 647: 41–50

    CAS  Google Scholar 

  • Schiubach H, Flörsheim W (1931) Untersuchungen über natürliche Polylävane. II. Über die Polylävane der Blätter von Yucca filamentosa. Hoppe-Seyler’s Z Physiol Chem 198: 153–158

    Google Scholar 

  • Schiubach HH, Haberland E (1958 a) Untersuchungen über Polyfructosane. LIV. Über das Graminin B. Ann Chem 614: 123–125

    Google Scholar 

  • Schlubach HH, Haberland E (1958 b) Untersuchungen über Polyfructosane. LIII. Über das Kritesin und Hordeacin der Gerste. Ann Chem 614: 119–123

    Google Scholar 

  • Schlubach HH, Koehn HOA (1957) Über die niedermolekularen Kohlenhydrate in Avena flavescens. Ann Chem 606: 130–137

    CAS  Google Scholar 

  • Schlubich HH, Koehn HO (1958) Die Bildung der verzweigten Polyfructosane in den Roggenhalmen. Ann Chem 614: 126–136

    Google Scholar 

  • Schlubach HH, Lederer F (1960) Untersuchungen über Polyfructosane. LVIII. Der Kohlenhydratstoffwechsel im Weizen. Ann Chem 635: 154–165

    CAS  Google Scholar 

  • Schlubach HH, Lendzian H (1937) Untersuchungen über Fructose-anhydride. II. Die Konstitution des Asphodelins. Ann Chem 532: 200–207

    CAS  Google Scholar 

  • Schlubach HH, Müller H (1952) Untersuchungen über Polyfructosane. XXIX. Über das Sitosin. Ann Chem 578: 194–198

    CAS  Google Scholar 

  • Schlubach HH, Rathje E (1949) Untersuchungen über Fructoseanhydride. XXIV. Über das Kritesin. Ann Chem 561: 180–186

    CAS  Google Scholar 

  • Schlubach HH, Sinh OK (1940) Untersuchungen über Fructoseanhydride. XXIV. Die Gruppe der natürlichen Polyfructosane. Ann Chem 544: 111–116

    CAS  Google Scholar 

  • Schlubach HH, Lübbers H, Borowski H (1955) Untersuchungen über Polyfructosane. XLIV. Die niedermolekularen Kohlenhydrate in Lolium perenne. Ann Chem 595: 229–236

    CAS  Google Scholar 

  • Schulze C, Tollens B (1892) Vergleichende Behandlung von Arabinose und Xylose mit verdünnter Schwefelsäure. Landwirtsch Vers-Stn 40: 379–381

    Google Scholar 

  • Schulze E (1895-96) Über die Zellwandbestandtheile der Cotyledonen von Lupinus luteus und Lupinus angustifolius und über ihr Verhalten während des Keimungsvorganges. Hoppe-Seyler’s Z Physiol Chem 21:392–411

    Google Scholar 

  • Schulze E, Steiger E (1889) Untersuchungen über die stickstofffreien Reservestoffe der Samen von Lupinus luteus und über die Umwandlungen derselben während des Keimungsprozesses. Landwirtsch Vers-Stn 36: 391–476

    Google Scholar 

  • Schulze E, Steiger E (1892) Zur Kenntnis des Paragalaktans. Landwirtsch Vers-Stn 41: 223–229

    Google Scholar 

  • Seiler A (1977) Galaktomannanabbau in keimenden Johannisbrotsamen (Ceratonia siliqua L.). Planta 134: 209–221

    CAS  Google Scholar 

  • Shimahara H, Suzuki H, Sugiyama N, Nisizawa K (1975 a) Isolation and characterization of hydrolysate of Konjak glucomannan. Agric Biol Chem 39: 293–299

    Google Scholar 

  • Shimahara H, Suzuki H, Sugiyama N, Nisizawa K (1975b) Partial purification of β-mannanases from the Konjac tubers and their substrate specificity in relation to the structure of Konjac glucomannan. Agric Biol Chem 39: 301–312

    CAS  Google Scholar 

  • Singh R, Bhatia IS (1971) Isolation and characterization of fructosyltransferase from chicory roots. Phytochemistry 10: 495–502

    CAS  Google Scholar 

  • Sioufi A, Percheron F, Courtois JE (1970) Nucleoside-diphosphateoses et metabolism glucidique au cours de la germination chez le fenugrec. Phytochemistry 9: 991–999

    CAS  Google Scholar 

  • Smith AE (1976) β-Fructofuranosidase and invertase activity in tall fescue culm bases. J Agric Food Chem 24:476–478

    Google Scholar 

  • Smith AE (1977) Influence of temperature on tall fescue forage quality and culm base carbohydrates. Agron J 69: 745–747

    CAS  Google Scholar 

  • Smith D (1967) Carbohydrates in grasses. II. Sugar and fructosan composition of the stem bases of bromegrass and timothy at several growth stages and in different plant parts at anthesis. Crop Sci 7: 62–67

    CAS  Google Scholar 

  • Smith D (1968) Classification of several native North American grasses as starch or fructosan accumulators in relation to taxonomy. J Br Grassi Soc 23: 306–309

    Google Scholar 

  • Smith D (1973) The nonstructural carbohydrates. In: Butler GW, Bailey RW (eds) Chemistry and biochemistry of herbages. Academic Press, London New York, pp 105–155

    Google Scholar 

  • Smith D, Groteluschen RD (1966) Carbohydrates in grasses. I. Sugar and fructosan composition of the stem bases of several northern-adapted grasses at seed maturity. Crop Sci 6: 263–266

    CAS  Google Scholar 

  • Smith DL (1974) A histological and histochemical study of the cotyledons of Phaseolus vulgaris L. during germination. Protoplasma 79: 41–57

    PubMed  CAS  Google Scholar 

  • Smith F, Srivastava HC (1956) Acetolysis of the glucomannan of lies mannan. J Am Chem Soc 78: 1404–1408

    CAS  Google Scholar 

  • Sömme R (1971) The correlation between the mono-, oligo- and polysaccharides and the glycosidases present in clover seeds. Acta Chem Scand 25: 759–761

    Google Scholar 

  • Srepel B, Mijatovic D (1975) Rezervni polisaharidi plodova roda Berberis. Acta Pharm Jugosl 25: 189–191

    Google Scholar 

  • Srinivasan M, Bhatia IS (1953) The carbohydrates of Agave vera cruz Mill, Biochem J 55: 286–289

    PubMed  CAS  Google Scholar 

  • Staesche K (1966) Die jahresperjodische Entwicklung des Wurzel- und Sprosssystems von Symphytum officinale L. und ihre Beziehung zu Speicherung und Verbrauch der Kohlenhydrate. Planta 71: 268–282

    CAS  Google Scholar 

  • Stepanenko BN (1960) Galactomannans and glucomannans of seeds, bulbs and rhizomes. Bull Soc Chim Biol 42: 1519–1536

    CAS  Google Scholar 

  • Sugiyama N, Shimahara H, Andoh T, Takemoto M (1973) Studies on mannan and related compounds 3. Konjac-mannanase from tubers of Amorphophallus konjac C Koch. Agric Biol Chem 37: 9–17

    CAS  Google Scholar 

  • Szejtli J, Henriques RD, Castimeira M (1971) The acid hydrolysis of inulin. Acta Chim Acad Sci Hung 70: 379–389

    CAS  Google Scholar 

  • Taiz L, Honigman WA (1976) Production of cell wall hydrolyzing enzymes by barley aleurone lacers in response to gibberellic acid. Plant Physiol 58: 380–386

    PubMed  CAS  Google Scholar 

  • Taiz L, Jones RL (1970) Gibberellic acid, β-1,3-glucanase and the cell walls of barley aleurone layers. Planta 92: 73–84

    CAS  Google Scholar 

  • Thompson JL, Jones JKN (1964) The glucomannan of bluebell seed (Scylla nonscripta L.). Can J Chem 42: 1088–1091

    CAS  Google Scholar 

  • Tomasic J, Jennings HJ, Glaudemans CPJ (1978) Evidence for a single type of linkage in a fructofuranan from Lolium perenne. Carbohydr Res 62: 127–133

    CAS  Google Scholar 

  • Tomoda M, Kaneko S (1976) Plant mucilages. XIII. Isolation and characterization of a mucous polysaccharide, “Lilium-S-glucomannan”, from the bulbs of Lilium speciosum. Chem Pharm Bull 24: 2157–2162

    CAS  Google Scholar 

  • Tomoda M, Kimura S (1976) Plant mucilages XII. Oligosaccharides obtained from Bletilla-glucomannan by partial acetolysis. Chem Pharm 24: 1807–1812

    CAS  Google Scholar 

  • Tomoda M, Odaka C (1978) Plant mucilages. XXI. Isolation and characterization of a mucous polysaccharide, “Lilium-Maglucomannan”, from the bulbs of Lilium maculatum. Chem Pharm Bull 26: 3373–3377

    CAS  Google Scholar 

  • Tomoda M, Satoh N (1979) Plant mucilages XXII. Isolation and characterization of a mucous polysaccharide, “Lilium-J-glucomannan”, from the bulbs of Lilium japonicum. Chem Pharm Bull 27: 46–373

    Google Scholar 

  • Tomoda M, Satoh N, Sugiyama A (1973) Isolation and characterization of fructans from Polygonatum odoratum var. japonicum rhizomes. Chem Pharm Bull 21: 1806–1810

    CAS  Google Scholar 

  • Tomoda M, Kaneko S, Nakatsuka S (1975) Plant mucilages. X. Isolation and characterization of a mucous polysaccharide, “Lilium-A-glucomannan” from the bulbs of Lilium auratum. Chem Pharm Bull 23: 430–436

    CAS  Google Scholar 

  • Tomoda M, Kaneko S, Ohmori C, Shiozaki T (1976) Isolation and characterization of a mucous polysaccharide, “Lilium-La-glucomannan”, from the bulbs of Lilium lancifolium. Chem Pharm Bull 24: 274–750

    Google Scholar 

  • Tomoda M, Satoh N, Ohmori C (1978) Plant mucilages. XIX. Isolation and characterization of a mucous polysaccharide, “Lilium-Loglucomannan”, from the bulbs of Lilium longiflorum. Chem Pharm Bull 26: 2768–2773

    CAS  Google Scholar 

  • Tschirch A (1889) Angewandte Pflanzenanatomie. Urban and Schwarzenberg, Vienna Leipzig

    Google Scholar 

  • Tschirch A (1912) Handbuch der Pharmakognosie, vol II, part 1. Tauschnitz, Leipzig

    Google Scholar 

  • Uebelmann G (1978) Samenkeimung bei Trigone IIa foenum-graecum L: Aufnahme der beim Galaktomannanabbau im Endosperm freiwerdenden Zucker durch den Embryo. Z Pflanzenphysiol 88: 235–253

    CAS  Google Scholar 

  • Umemura Y, Nakamura M, Funahashi S (1967) Isolation and characterization of uridine diphosphate fructose from tubers of Jerusalem artichoke (Helianthus tuberosus L.). Arch Biochem Biophys 119: 240–252

    PubMed  CAS  Google Scholar 

  • Vogel T, Schleiden MJ (1839) Über das Amyloid, eine neue Pflanzensubstanz. Poggendorf’s Ann Physik Chem 327–330

    Google Scholar 

  • Vries de H (1877) Keimungsgeschichte des Rothen Klees. Landwirtsch Jahrb 6: 485–487

    Google Scholar 

  • Waite R, Boyd J (1953) The water-soluble carbohydrates of grasses. I. Changes occurring during the normal life-cycle. J Sci Food Agric 4: 197–204

    CAS  Google Scholar 

  • Weber H (1955) Haben die Marcgraviaceen Inulinblätter? Ber Dtsch Bot Ges 68: 408–412

    CAS  Google Scholar 

  • Wiebe HH (1966) Matric potential of several plant tissues and biocolloids. Plant Physiol 41: 1439–1442

    PubMed  CAS  Google Scholar 

  • Wille F (1917) Anatomisch-physiologische Untersuchungen am Gramineenrhizom. Beih Bot Zentralbl 33: 1–70

    Google Scholar 

  • Winterstein E (1893) Über das pflanzliche Amyloid. Hoppe-Seyler’s Z Physiol Chem 17: 353–380

    Google Scholar 

  • Wolf DD, Ellmore TL (1975) Automated hydrolysis of nonreducing sugars and fructosans from plant tissue. Crop Sci 15: 775–777

    CAS  Google Scholar 

  • Wolfrom ML, Patin DL (1965) Carbohydrates of the coffee bean. 4. An arabinogalactan. J Org Chem 30: 4060–1063

    CAS  Google Scholar 

  • Wolfrom ML, Laver ML, Patin DL (1961) Carbohydrates of the coffee bean. 2. Isolation and characterisation of a mannan. J Org Chem 26: 4533–4535

    CAS  Google Scholar 

  • Yagi A, Makino K, Nishioka I, Kuchino Y (1977) Aloe mannan, polysaccharide from Aloe arborescens var. natalensis. Planta Med 31: 17–20

    PubMed  CAS  Google Scholar 

  • Yomo H, Varner JE (1971) Hormonal control of a secretory tissue. Curr Top Dev Biol 6: 111–144

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Meier, H., Reid, J.S.G. (1982). Reserve Polysaccharides Other Than Starch in Higher Plants. In: Loewus, F.A., Tanner, W. (eds) Plant Carbohydrates I. Encyclopedia of Plant Physiology, vol 13 / A. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68275-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68275-9_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68277-3

  • Online ISBN: 978-3-642-68275-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics