Skip to main content

Productivity of Desert and Mediterranean-Climate Plants

  • Chapter
Physiological Plant Ecology IV

Part of the book series: Encyclopedia of Plant Physiology ((920,volume 12 / D))

Abstract

Mediterranean-climate and desert ecosystems are prominent on all continents at latitudes between approximately 15° and 30° (Brown 1968; McGinnies 1969; Mooney 1977a). Mediterranean-climate systems generally occur at these latitudes on the western or southwestern edges of the continent, whereas towards the more equatorial latitudes and also to the continental interior, there is a transition of vegetation types from mediterranean-climate types to desert forms (Shreve 1936; McGinnies 1969; di Castri and Mooney 1973; Mooney 1977a).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackerman TL, Bamberg SA (1974) Phenological studies in the mojave desert at Rock Valley (Nevada test site). In: Lieth H (ed) Phenology and seasonality modeling. Ecol Stud Vol 8. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Adams MS, Strain BR (1968) Photosynthesis in stems and leaves of Cercidium floridum: spring and summer diurnal field response and relation to temperature. Oecol Plant 3:285–297

    Google Scholar 

  • Armond PA, Mooney HA (1978) Correlation of photosynthetic unit size and density with photosynthetic capacity. Carnegie Inst Wash Yearb 77:234–237

    Google Scholar 

  • Aschmann H (1973) Distribution and peculiarity of mediterranean ecosystems. In: Castri di F, Mooney HA (eds) Mediterraean type ecosystems. Ecol Stud Vol 7. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Barbour MG (1969) Age and space distribution of the desert shrub Larrea divaricata. Ecology 50:679–685

    Google Scholar 

  • Barbour MG (1973) Desert dogma reexamined: root/shoot productivity and plant spacing. Am Midl Nat 89:41–57

    Google Scholar 

  • Beatley JC (1969) Biomass of desert winter annual plant populations in southern Nevada. Oikos 20:261–273

    Google Scholar 

  • Beatley JC (1974) Phenological events and their environmental triggers in Mojave Desert ecosystems. Ecology 55:856–863

    Google Scholar 

  • Begg JE, Torseil BWR (1974) Diaphotonastic and parahelionastic leaf movements in Stylosanthes humilis H.B.K. (Townsville Stylo). R Soc N Z Bull 12:277–283

    Google Scholar 

  • Bjerregaard RS (1971) The nitrogen budget of two salt desert shrub plant communities of western Utah. PhD Diss, Utah State Univ, Logan

    Google Scholar 

  • Björkman O, Pearcy RW, Harrison AT, Mooney HA (1972) Photosynthetic adaptation to high temperatures: a field study in Death Valley, California. Science 175:786–789

    PubMed  Google Scholar 

  • Björkman O, Mooney HA, Ehleringer J (1975) Photosynthetic responses of plants from habitats with contrasting thermal environments. Carnegie Inst Wash Yearb 74:743–748

    Google Scholar 

  • Björkman O, Boynton J, Berry JA (1976) Comparison of heat stability of photosynthesis, chloroplast membrane reactions, photosynthetic enzymes, and soluble protein in leaves of heat-adapted and cold-adapted C4 species. Carnegie Inst Wash Yearb 75:400–407

    Google Scholar 

  • Björkman O, Badger MR, Armond PA (1978) Thermal acclimation of photosynthesis: effect of growth temperature on photosynthetic characteristics and components of the photosynthetic apparatus of Nerium oleander. Carnegie Inst Wash Yearb 77:262–276

    Google Scholar 

  • Brown GW (ed) (1968) Desert biology, vol I. Academic Press, London New York

    Google Scholar 

  • Burrows WH (1972) Productivity of an arid zone shrub (Eremophila gilesii) community in southwestern Queensland. Aust J Bot 20:317–329

    Google Scholar 

  • Cabanettes A (1979) Croissance, biomasse et productivité de Pinus pinea L. en Petite Camargue. Thesis, Univ Montpellier

    Google Scholar 

  • Caldwell MM, Osmond CB, Nott DL (1977 a) C4 pathway photosynthesis at low temperature in cold-tolerant Atriplex species. Plant Physiol 60:157–164

    PubMed  CAS  Google Scholar 

  • Caldwell MM, White RS, Moore RT, Camp LB (1977b) Carbon balance, productivity, and water use of cold-winter desert shrub communities dominated by C3 and C4 species. Oecologia 29:275–300

    Google Scholar 

  • Castri di F, Mooney HA (eds) (1973) Mediterranean type ecosystems: origin and structure. Ecol Stud Vol 7. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Charley JL, Cowling SW (1968) Changes in soil nutrient status resulting from overgrazing and their consequences in plant communities of semi-arid areas. Proc Ecol Soc Aust 3:28–38

    Google Scholar 

  • Chew RM, Chew AE (1965) The primary productivity of a desert shrub (Larrea tridentata) community. Ecol Monogr 35:255–275

    Google Scholar 

  • Cunningham GL, Strain BR (1969) Ecological significance of seasonal variability in a desert shrub. Ecology 50:400–408

    Google Scholar 

  • DeBano LF, Conrad CE (1978) The effects of fire on nutrients in a chaparral ecosystem. Ecology 59:489–497

    CAS  Google Scholar 

  • Depuit EJ, Caldwell MM (1975) Gas exchange of three cool semidesert species in relation to temperature and water stress. J Ecol 63:835–858

    Google Scholar 

  • Duncan DA, Woodmansee RG (1980) Plant biomass, soil water dynamics, and primary production in an annual grassland ecosystem (unpublished)

    Google Scholar 

  • Dunn EL (1970) Seasonal patterns of carbon dioxide metabolism in evergreen sclerophylls in California and Chile. PhD Diss, Univ California, Los Angeles

    Google Scholar 

  • Dunn EL (1975) Environmental stresses and inherent limitations affecting CO2 exchange in evergreen sclerophylls in mediterranean climates. In: Gates DM, Schmerl RB (eds) Perspectives in biophysical ecology. Ecol Stud Vol 12. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Eckardt F, Heim G, Methy M, Sauvezon R (1975) Interception de l’énergie rayonnante, échanges gazeaux et croissance dans une forêt méditerranéenne à feuillage persistant (Quercetum ilicis). Photosynthetica 9:145–156

    Google Scholar 

  • Ehleringer J, Björkman O (1977) Quantum yields for CO2 uptake in C3 and C4 plants: dependence on temperature, CO2, and O2 concentration. Plant Physiol 59:86–90

    PubMed  CAS  Google Scholar 

  • Ehleringer J, Björkman O (1978 a) Pubescence and leaf spectral characteristics in a desert shrub, Encelia farinosa. Oecologia 36:137–148

    Google Scholar 

  • Ehleringer JR, Björkman O (1978 b) A comparison of photosynthetic characteristics of Encelia species possessing glabrous and pubescent leaves. Plant Physiol 62:185–190

    PubMed  CAS  Google Scholar 

  • Ehleringer JR, Mooney HA (1978) Leaf hairs: effects on physiological activity and adaptive value to a desert shrub. Oecologia 37:183–200

    Google Scholar 

  • Ehleringer JR, Björkman O, Mooney HA (1976) Leaf pubescence: effects on absorptance and photosynthesis in the desert shrub. Science 192:376–377

    PubMed  CAS  Google Scholar 

  • Ehleringer JR, Mooney HA, Berry JA (1979) Photosynthesis and microclimate of Camissonia claviformis, a desert winter annual. Ecology 60:280–286

    Google Scholar 

  • Eickmeier WG (1978) Photosynthetic pathway distributions along an aridity gradient in Big Bend National Park, and implications to enhanced resource partitioning. Photosynthetica 12:290–297

    CAS  Google Scholar 

  • Evenari M, Schulze ED, Lange OL (1972) Ecophysiological investigation in the Negev Desert. Part III. The diurnal course of carbon dioxide exchange and transpiration and its balance in regard to primary production. Eco-Physiol Found Ecosyst Prod Arid Zone. Nauka, Moscow Leningrad

    Google Scholar 

  • Evenari M, Schulze ED, Lange OL, Kappen L, Buschbom U (1976) Plant production in arid and semi-arid areas. In: Lange OL, Kappen L, Schulze E-D (eds) Water and plant life. Ecol Stud Vol 19, Springer, Berlin Heidelberg New York

    Google Scholar 

  • Fonteyn PJ, Mahall BE (1978) Competition among desert perennials. Nature (London) 275:544–545

    Google Scholar 

  • Forseth I, Ehleringer JR (1980) Solar tracking response to drought in a desert annual. Oecologia 44:159–163

    Google Scholar 

  • Garcia-Moya E, McKell CM (1970) Contribution of shrubs to the nitrogen economy of a desert-wash plant community. Ecology 51:81–88

    Google Scholar 

  • Gigon A (1979) CO2-gas exchange, water relations and convergence of Mediterranean shrub-types from California and Chile. Oecol Plant 14:129–150

    Google Scholar 

  • Harrison AT (1971) Temperature-related effects on photosynthesis in Heteromeles arbutifolia M. Roem. PhD thesis, Stanford Univ

    Google Scholar 

  • Harrison A, Small E, Mooney HA (1971) Drought relationships and distribution of two mediterranean-climate Californian plant communities. Ecology 52:869–875

    Google Scholar 

  • Hartsock TL, Nobel PS (1976) Watering converts a CAM plant to daytime CO2 uptake. Nature (London) 262:574–576

    CAS  Google Scholar 

  • Hastings JR, Humphrey RR (1969 a) Climatological data and statistics for Sonora and northern Sinoloa. Univ Ariz Inst Atm Phys Tech Rep 19

    Google Scholar 

  • Hastings JR, Humphrey RR (1969 b) Climatological data and statistics for Baja California. Univ Ariz Inst Atm Phys Tech Rep 18

    Google Scholar 

  • Hellmuth EO (1971) Ecophysiological studies on plants in arid and semi-arid regions of western Australia. III. Comparative studies on photosynthesis, respiration and water relations of ten arid zone and two semi-arid zone plants under winter and late summer climatic conditions. J Ecol 59:225–260

    Google Scholar 

  • Kappen L, Lange OL, Schulze ED, Evenari M, Buschbom U (1972) Extreme water stress and photosynthetic activity of the desert plant Artemisia herba-alba Asso. Oecologia 10:177–182

    Google Scholar 

  • Kappen L, Oertli JJ, Lange OL, Schulze E-D, Evenari M, Buschbom U (1975) Seasonal and diurnal courses of water relations of the arido-active plant Hammada scoparia in the Negev Desert. Oecologia 21:175–192

    Google Scholar 

  • Kappen L, Lange OL, Schulze ED, Evenari M, Buschbom U (1979) Ecophysiological investigations on lichens of the Negev Desert. IV. Annual course of the photosynthetic production of Ramalina maciformis (Del.) Bory. Flora 168:85–108

    Google Scholar 

  • Kittredge J (1955) Litter and forest floor of the chaparral in parts of the San Dimas Experimental Forest, California. Hilgardia 23:563–596

    Google Scholar 

  • Kluge M, Ting IP (1978) Crassulacean acid metabolism: analysis of an ecological adaptation. Ecol Stud Vol 30. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Kruger FJ (1977) A preliminary account of aerial plant biomass in fynbos communities of the mediterranean-type climate zone of the Cape Province. Bothalia 12:299–305

    Google Scholar 

  • Kummerow J, Krause D, Jon W (1977) Seasonal changes of fine root density in southern California chaparral. Oecologia 37:201–212

    Google Scholar 

  • Kurochkina LY, Osmanova LT, Borovskaya TA (1972) Bioecological characteristics and productivity of psammophilous communities in the South Balkash area. In: Ecophysiol Found Ecosyst Prod Arid Zone. Nauka, Moscow Leningrad

    Google Scholar 

  • Lange OL, Koch W, Schulze ED (1969) CO2-gas exchange and water relationships of plants in the Negev Desert at the end of the dry period. Ber Dtsch Bot Ges 82:39–61

    CAS  Google Scholar 

  • Lange OL, Schulze ED, Evenari M, Kappen L, Buschbom U (1974) The temperature-related photosynthetic capacity of plants under desert conditions. I. Seasonal changes of the photosynthetic response to temperature. Oecologia 17:97–110

    Google Scholar 

  • Lange OL, Schulze ED, Kappen L, Evenari M, Buschbom U (1975) CO2 exchange pattern under natural conditions of Caralluma negevensis, a CAM plant of the Negev Desert. Photosynthetica 9:318–326

    Google Scholar 

  • Lange OL, Kappen L, Schulze E-D (eds) (1976) Water and plant life. Ecol Stud Vol 19. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Lange OL, Schulze E-D, Evenari M, Kappen L, Buschbom U (1978) The temperature-related photosynthetic capacity of plants under desert conditions. III. Ecological significance of seasonal changes of photosynthetic response to temperature. Oecologia 34:89–100

    Google Scholar 

  • Litvinova NP (1972) Productivity of high mountain deserts (Pamirs). In: Ecophysiological Found. Ecosyst Prod Arid Zone. Nauka, Moscow Leningrad

    Google Scholar 

  • Lossaint P (1973) Soil vegetation relationships in mediterranean ecosystems of southern France. In: Castri di F, Mooney H (eds) Mediterranean type ecosystems. Ecol Stud Vol 7. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Lossaint P, Rapp M (1971) Le cycle du carbone dans les forêts de Pinus halepensis. In: Duvigneaud P (ed) Productivity of forest ecosystems. UNESCO, Paris

    Google Scholar 

  • Margaris N (1975) Effect of photoperiod on seasonal dimorphism of some mediterranean plants. Ber Schweiz Bot Ges 85:96–102

    Google Scholar 

  • Margaris NS (1976) Structure and dynamics in a phryganic (East Mediterranean) ecosystem. J Biogeogr 3:249–259

    Google Scholar 

  • Margaris NS (1977) Physiological and biochemical observations in seasonal dimorphic leaves of Sarcopoterium spinosum and Phlomis fruticosa. Oecol Plant 12:343–350

    CAS  Google Scholar 

  • Martinez P (1979) Photosynthetic responses of different life-forms in a mid-elevation mediterranean matorral of central Chile. PhD thesis, Univ Georgia

    Google Scholar 

  • McGinnies WG (1969) Deserts of the world, an appraisal of research into their physical and biological environments. Univ Ariz Press, Tucson

    Google Scholar 

  • Miller PC, Stoner WA (1979) Canopy structure and environmental interactions. In: Solbrig OT, Jain S, Johnson GB (eds) Topics in plant population biology. Columbia Univ Press, New York

    Google Scholar 

  • Montenegro G, Hoffmann AJ, Aljaro N, Hoffmann AE (1979) Satureja gilliesii, a poikilolydric shrub from the Chilean mediterranean vegetation. Can J Bot 57:1206–1213

    Google Scholar 

  • Mooney HA (ed) (1977 a) Convergent evolution in Chile and California. Dowden Hutchinson & Ross, Stroudsburg

    Google Scholar 

  • Mooney HA (1977 b) The carbon cycle in mediterranean-climate evergreen scrub communities. In: Mooney HA, Conrad E (eds) Proc Symp Environ Consequences Fire Fuel Manag Mediterranean Ecosyst. US For Serv Gen Tech Rep 3:107–115

    Google Scholar 

  • Mooney HA (1980) Seasonality and gradients in the study of stess adaptation. In: Turner N, Kramer P (eds) Adaptation of plants to stress. Wiley and Sons, New York

    Google Scholar 

  • Mooney HA (1981) Primary production in mediterranean-climate regions. In: Castri di F, Goodall DW, Specht RL (eds) Ecosystems of the world, vol 11. Mediterranean type shrublands. Elsevier, Amsterdam

    Google Scholar 

  • Mooney HA, Dunn EL (1970) Photosynthetic systems of mediterranean-climate shrubs and trees of California and Chile. Am Nat 104:447–453

    Google Scholar 

  • Mooney HA, Ehleringer JR (1978) The carbon gain benefits of solar tracking in a desert annual. Plant Cell Environ 1:307–311

    Google Scholar 

  • Mooney HA, West M (1964) Photosynthetic acclimation of plants of diverse origin. Am J Bot 51:825–827

    Google Scholar 

  • Mooney HA, Dunn EL, Shropshire F, Song L (1970) Vegetation comparisons between the mediterranean-climatic areas of California and Chile. Flora 159:480–496

    Google Scholar 

  • Mooney HA, Gulmon SL, Parsons DJ, Harrison AT (1974 a) Morphological changes within the chaparral vegetation type as related to elevational gradients. Madroño 22:281–316

    Google Scholar 

  • Mooney HA, Troughton JH Berry JA (1974b) Arid climates and photosynthetic systems. Carnegie Inst Wash Yearb 73:793–805

    Google Scholar 

  • Mooney HA, Harrison AT, Morrow PA (1975) Environmental limitations of photosynthesis on a California evergreen shrub. Oecologia 19:293–301

    Google Scholar 

  • Mooney HA, Ehleringer J, Berry JA (1976) High photosynthetic capacity of a winter annual in Death Valley. Science 194:322–324

    PubMed  CAS  Google Scholar 

  • Mooney HA, Troughton JH, Berry JA (1977 a) Carbon isotope ratio measurements of succulent plants in southern Africa. Oecologia 30:295–305

    Google Scholar 

  • Mooney HA, Kummerow J, Johnson AW, Parsons DJ, Keeley S, Hoffmann A, Hays RI, Giliberto J, Chu C (1977b) The producers — their resources and adaptive responses. In: Mooney H (ed) Convergent evolution in Chile and California. Dowden, Hutchinson & Ross, Stroudsburg

    Google Scholar 

  • Mooney HA, Ehleringer J, Björkman O (1977c) The energy balance of leaves of the evergreen desert shrub, Atriplex hymenelytra. Oecologia 29:301–310

    Google Scholar 

  • Mooney HA, Björkman O, Collatz GJ (1978) Photosynthetic acclimation of temperature in the desert shrub, Larrea divaricata. Plant Physiol 61:406–410

    PubMed  CAS  Google Scholar 

  • Morrow PA, Mooney HA (1974) Drought adaptations in two Californian evergreen sclerophylls. Oecologia 15:205–222

    Google Scholar 

  • Mulroy TW, Rundel PW (1977) Annual plants: adaptations to desert environments. BioScience 27:109–114

    Google Scholar 

  • Nash TH, White SL, Marsh JE (1977) Lichen and moss distribution and biomass in hot desert ecosystems. Bryologist 80:470–479

    Google Scholar 

  • Naveh Z (1967) Mediterranean ecosystems and vegetation types in California and Israel. Ecology 48:445–459

    Google Scholar 

  • Neales TF, Patterson AA, Hartney VJ (1968) Physiological adaptation to drought in the carbon assimilation and water loss of xerophytes. Nature (London) 219:469–472

    Google Scholar 

  • Nobel PS (1977) Water relations and photosynthesis of a barrel cactus, Ferrocactus acan-thodes, in the Colorado Desert. Oecologia 27:117–133

    Google Scholar 

  • Nobel PS (1978) Microhabitat, water relations, and photosynthesis of a desert fern, Notholaena parryi. Oecologia 31:293–309

    Google Scholar 

  • Nobel PS, Longstreth DL, Hartsock TL (1978) Effect of water stress on the temperature optima of net CO2 exchange for two desert species. Physiol Plant 44:97–101

    Google Scholar 

  • Odening W, Strain BR, Oechel WC (1974) The effects of decreasing water potential on net CO2 exchange of intact desert shrubs. Ecology 55:1086–1095

    Google Scholar 

  • Oechel W (1980a) Carbon allocation and utilization. In: Miller P (ed) Resource use by chaparral and matorral. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Oechel W (1980b) Energy and carbon acquisition. In: Miller P (ed) Resource use by chaparral and matorral. Ecol Stud Vol 39. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Oechel WC, Strain BR, Odening WR (1972) Tissue water potential, photosynthesis, Relabeled photosynthate utilization, and growth in the desert shrub Larrea divaricata. Cav Ecol Monogr 42:127–141

    Google Scholar 

  • Orshan G (1964) Seasonal dimorphism of desert and mediterranean chamaephytes and its significance as a factor in their water economy. In: Rutter AJ, Whitehead FH (eds) The water relations of plants. Blackwell, Oxford

    Google Scholar 

  • Orshan G, Diskin S (1968) Seasonal changes in productivity under desert conditions. In: Eckardt E (ed) Functioning of terrestrial ecosystems at the primary production level. UNESCO, Paris

    Google Scholar 

  • Orshan G, Zand G (1962) Seasonal body reduction of certain desert half shrubs. Bull Res Counc Isr Sect D 110:35–42

    Google Scholar 

  • Patten DT (1978) Productivity and production efficiency of an upper Sonoran Desert ephemeral community. Am J Bot 65:891–895

    Google Scholar 

  • Pearcy RW (1977) Acclimation of photosynthetic and respiratory CO2 exchange rates in coastal and desert races of Atriplex lentiformis. Oecologia 26:245–255

    Google Scholar 

  • Pearcy RW, Harrison AT (1974) Comparative photosynthetic and respiratory gas exchange characteristics of Atriplex lentiformis (Torr.) Wats. in coastal and desert habitats. Ecology 55:1104–1111

    CAS  Google Scholar 

  • Pearcy RW, Harrison AT, Mooney HA, Björkman O (1974) Seasonal changes in net photosynthesis of Atriplex hymenelytra shrubs growing in Death Valley, California. Oecologia 17:111–121

    Google Scholar 

  • Pearcy RW, Berry JA, Fork DC (1977) Effects of growth temperature on the thermal stability of the photosynthetic apparatus of Atriplex lentiformis (Torr.) Wats. Plant Physiol 59:873–878

    PubMed  CAS  Google Scholar 

  • Poole DK, Miller PC (1975) Water relations of selected species of chaparral and coastal sage communities. Ecology 56:1118–1128

    Google Scholar 

  • Rodin LE, Bazilevich NI (1968) Production and mineral cycling in terrestrial vegetation. Oliver and Boyd, London

    Google Scholar 

  • Rodin LE, Bazilevich NI, Miroshnichenko YM (1972) Productivity and biogeochemistry of Artemisia in the mediterranean area. In: Ecophysiol Found Ecosyst Prod Arid Zone. Nauka, Moscow Leningrad

    Google Scholar 

  • Rustanov IG (1972) Phytomass quantitative characteristics and productivity of subshrublet communities of the Krasnovodsk plateau. In: Ecophysiol Found Ecosyst Proc Arid Zone. Nauka, Moscow Leningrad

    Google Scholar 

  • Sampson AW (1944) Plant succession on burned chaparral lands in northern California. Univ Calif Agric Exp Stn Bull 685:144

    Google Scholar 

  • Schaffer WM, Gadgil MD (1975) Selection for optimal life histories in plants. In: Cody ML, Diamond JM (eds) Ecology and evolution of communities. Harvard Univ Press, Cambridge

    Google Scholar 

  • Schlesinger WH, Gill DS (1978) Demographic studies of the chaparral shrub, Ceanothus megacarpus in the Santa Ynez Mountains, California. Ecology 59:1256–1263

    Google Scholar 

  • Schlesinger WH, Gill DS (1980) Biomass, production, and changes in the availability of light, water and nutrients during the development of pure stands of the chaparral shrub, Ceanothus megacarpus, after fire. Ecology 61:781–789

    Google Scholar 

  • Schulze ED, Schulze I (1976) Distribution and control of photosynthetic pathways in plants growing in the Namib Desert, with special regard to Welwitschia mirabilis Hook F. 1. Madoqua 9:5–13

    Google Scholar 

  • Schulze ED, Lange OL, Koch W (1972) Eco-physiological investigations on wild and cultivated plants in the Negev Desert. III. Daily courses of net photosynthesis and transpiration at the end of the dry period. Oecologia 9:317–340

    Google Scholar 

  • Sestark Z, Catsky J, Jarvis PG (1971) Plant photosynthetic production. Manual of methods. Junk, The Hague

    Google Scholar 

  • Shaver GR (1978) Leaf cycle and light absorptance of Arctostaphylos species (Ericaceae) along environmental gradients. Madroño 25:133–138

    Google Scholar 

  • Shreve F (1936) The transition from desert to chaparral in Baja California. Madroño 3:257–264

    Google Scholar 

  • Shreve F, Wiggins IL (1964) Vegetation and flora of the Sonoran Desert. Stanford Univ Press, Stanford

    Google Scholar 

  • Specht RL (1969 a) A comparison of the sclerophyllous vegetation characteristics of mediterranean type climates in France, California and southern Australia. I. Structure, morphology, and succession. Aust J Bot 17:277–292

    Google Scholar 

  • Specht RL (1969 b) A comparison of the sclerophyllous vegetation characteristics of mediterranean type climates in France, California and southern Australia. II. Dry matter, energy, and nutrient accumulation. Aust J Bot 17:293–308

    CAS  Google Scholar 

  • Specht RL (1981) Primary production in mediterranean-climate ecosystems regenerating after fire. In: Castri di F, Goodall DW, Specht RL (eds) Ecosystems of the world, vol II. Mediterranean type shrublands. Elsevier, Amsterdam

    Google Scholar 

  • Specht R, Rayson P, Jackman M (1958) Dark Island Heath (ninety-mile plain, South Australia), VI. Pyric succession: changes in composition, coverage, dry weight, and mineral nutrient status. Aust J Bot 6:59–88

    Google Scholar 

  • Strain BR (1969) Seasonal adaptations in photosynthesis and respiration in four desert shrubs growing in situ. Ecology 50:511–513

    Google Scholar 

  • Strain BR (1970) Field measures of tissue water potential and carbon dioxide exchange in the desert shrubs Prosopis julifera and Larrea divaricata. Photosynthetica 4:118–122

    CAS  Google Scholar 

  • Strain BR, Chase VC (1966) Effect of past and prevailing temperatures on the carbon dioxide exchange capacities of some woody desert perennials. Ecology 47:1043–1045

    Google Scholar 

  • Susmel L, Viola F, Bassata G (1976) Ecologia della lecceta del supramonte di orgosolo. III. Contributo: Produzione primaria, produzione secondaria (erbivori), Condizioni attuali e possibilita di conservazione. CEDAM Padova

    Google Scholar 

  • Syvertsen JP, Nickell GL, Spellenberg RW, Cunningham GL (1976) Carbon reduction pathways and standing crop in three Chihuahuan Desert plant communities. Southwest Nat 21:311–320

    Google Scholar 

  • Szarek SR (1979) Primary production in four North American deserts: indices of efficiency. J Arid Environ 2:187–209

    Google Scholar 

  • Szarek SR, Ting IP (1975) Physiological responses to rainfall in Opuntia basilaris (Cactaceae). Am J Bot 62:602–609

    Google Scholar 

  • Szarek SR, Johnson HB, Ting IP (1973) Drought adaptation in Opuntia basilaris. Plant Physiol 52:539–541

    PubMed  CAS  Google Scholar 

  • Teeri JA, Stowe LG (1976) Climatic patterns and the distribution of C4 grasses in North America. Oecologia 23:1–12

    Google Scholar 

  • Teeri JA, Stowe LG, Murawski DA (1978) The climatology of two succulent plant families, Cactaceae and Crassulaceae. Can J Bot 56:1750–1758

    Google Scholar 

  • Tevis L Jr (1958) A population of desert ephemerals germinated by less than an inch of rain. Ecology 39:681–687

    Google Scholar 

  • Wainwright CM (1977) Sun-tracking and related leaf movements in a desert lupine (Lupinus arizonicus). Am J Bot 64:1032–1041

    Google Scholar 

  • Wallace A, Bamberg SA, Cha JW (1974) Quantitative studies of roots of perennial plants in the Mojave Desert. Ecology 55:1160–1162

    Google Scholar 

  • Walter H, Stadelmann E (1974) A new approach to the water relations of desert plants. In: Brown GW (ed) Desert biology, Vol 2. Academic Press, London New York

    Google Scholar 

  • Went FW (1949) Ecology of desert plants. Part II. The effect of rain and temperature on germination and growth. Ecology 30:1–13

    Google Scholar 

  • Whittaker RH (1975) Communities and Ecosystems. MacMillan, New York

    Google Scholar 

  • Whittaker RH, Niering WA (1975) Vegetation of the Santa Catalina Mountains, Arizona. V. Biomass, production and diversity along the elevation gradient. Ecology 56:771–790

    Google Scholar 

  • Winter K, Troughton JH (1978) Photosynthetic pathways in plants of coastal and inland habitats of Israel and the Sinai. Flora 167:1–34

    CAS  Google Scholar 

  • Woodell SRJ, Mooney HA, Hill AJ (1969) The behaviour of Larrea divaricata (creosote bush) in response to rainfall in California. J Ecol 57:37–44

    Google Scholar 

  • Zohary M (1961) On hydro-ecological relations of Near East desert vegetation. In: Plant-water relationships in arid and semiarid conditions. UNESCO, Paris

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Ehleringer, J., Mooney, H.A. (1983). Productivity of Desert and Mediterranean-Climate Plants. In: Lange, O.L., Nobel, P.S., Osmond, C.B., Ziegler, H. (eds) Physiological Plant Ecology IV. Encyclopedia of Plant Physiology, vol 12 / D. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68156-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68156-1_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68158-5

  • Online ISBN: 978-3-642-68156-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics