Skip to main content

Part of the book series: Encyclopedia of Plant Physiology ((920,volume 12 / C))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albert R, Popp M (1978) Zur Rolle der löslichen Kohlenhydrate in Halophyten des Neusiedlersee-Gebietes (Österreich). Oecol Plant 13: 27–42

    Google Scholar 

  • Anderson WP, House CR (1967) A correlation between structure and function in the root of Zea mays. J Exp Bot 18: 544–55

    Google Scholar 

  • Ashby WC, Beadle NCW (1957) Studies in halophytes. III. Salinity factors in the growth of Australian saltbushes. Ecology 38: 344–52

    CAS  Google Scholar 

  • Atkinson AW, John PCL, Gunning BES (1974) The growth and division of the single mitochondria and other organelles during the cell cycle of Chlorellastudied by quantitative stereology and three-dimensional reconstruction. Protoplasma 81: 77–109

    PubMed  Google Scholar 

  • Atkinson MR, Findlay GP, Hope AB, Pitman MG, Saddler HDW, West KR (1967) Salt regulation in the mangroves Rhizophora mucronataLam. and Aegialitis annulataR. Br. Aust J Biol Sci 20: 589–99

    CAS  Google Scholar 

  • Bangham AD, Papahadjopoulos D (1966) Biophysical properties of phospholipids. 1. Interaction of phosphatidylserine monolayers with metal ions. Biochim Biophys Acta 126: 181–4

    PubMed  CAS  Google Scholar 

  • Bar-Nun N, Poljakoff-Mayber A (1974) Some aspects of protein metabolism in Tamarix tetragynaroots grown in a saline substrate. Aust J Plant Physiol 1:237–46

    CAS  Google Scholar 

  • Batterton JC, Baalen van C (1971) Growth responses of blue-green algae to sodium chloride concentrations. Arch Microbiol 76:151–65

    CAS  Google Scholar 

  • Batterton JC, Baalen van C (1971) Growth responses of blue-green algae to sodium chloride concentrations. Arch Microbiol 76: 151–65

    CAS  Google Scholar 

  • Ben-Amotz A (1975) Adaptation of the unicellular alga Dunaliella parva to a saline environment. J Phycol 11: 50–4

    CAS  Google Scholar 

  • Ben-Amotz A, Avron M (1972) Photo synthetic activities of the halophilic alga Dunaliella parva. Plant Physiol 49: 240–3

    PubMed  CAS  Google Scholar 

  • Bishop DG, Kenrick JR, Bayston JH, Macpherson AS, Johns SR (1980) Monolayer properties of chloroplast lipid. Biochim Biophys Acta 602: 248 - 59

    PubMed  CAS  Google Scholar 

  • Bisson MA, Gutknecht J (1980) Osmotic regulation in algae. In: Spanswick RM, Lucas WJ, Dainty J (eds) Plant membrane transport: current conceptual issues. Elsevier/ North Holland Biomedical Press, Amsterdam New York

    Google Scholar 

  • Black RF (1956) Effect of NaCl in water culture on the ion uptake and growth of Atriplex hastataL. Aust J Biol Sci 9: 67–80

    CAS  Google Scholar 

  • Black RF (1958) Effect of sodium chloride on leaf succulence and area of Atriplex hastataL. Aust J Bot 6: 306–21

    Google Scholar 

  • Borowitzka LJ, Brown AD (1974) The salt relations of marine and halophilic species of the unicellular green alga, Dunaliella. The role of glycerol as a compatible solute. Arch Microbiol 96: 37–52

    CAS  Google Scholar 

  • Borowitzka LJ, Kessly DS, Brown AD (1977) The salt relations of Dunaliella. Further observations on glycerol production and its regulation. Arch Microbiol 113:131–8

    PubMed  CAS  Google Scholar 

  • Breteler H (1973) A comparison between ammonium and nitrate nutrition of young sugar beet plants grown in nutrient solutions at constant acidity. 1. Production of dry matter, ionic balance and chemical composition. Neth J Agric Sci 21:227–44

    CAS  Google Scholar 

  • Bowling DJF, Ansari AQ (1972) Control of sodium transport in sunflower roots. J Exp Bot 23: 241–6

    CAS  Google Scholar 

  • Breteler H (1973) A comparison between ammonium and nitrate nutrition of young sugar beet plants grown in nutrient solutions at constant acidity. 1. Production of dry matter, ionic balance and chemical composition. Neth J Agric Sci 21: 227–44

    CAS  Google Scholar 

  • Bronowski J (1978) The visionary eye. MIT Press, Cambridge Mass Brouwer R 1956 Investigations into the occurrence of active and passive components in the ion uptake by Vicia faba. Acta Bot Neerl 5: 287–314

    Google Scholar 

  • Brown LM, Hellebust JA (1980) The contribution of organic solutes to osmotic balance in some green and eustigmatophyte algae. J Phycol 16:265–70 Brownell PF (1965) Sodium as an essential micronutrient element for a higher plant (Atriplex vesicaria). Plant Physiol 40: 460–8

    Google Scholar 

  • Brownell PF, Crossland CJ (1972) The requirement for sodium as a micronutrient by species having the C4dicarboxylic photosynthetic pathway. Plant Physiol 49: 794–7

    PubMed  CAS  Google Scholar 

  • Brownell PF, Crossland CJ (1974) Growth responses to sodium by Bryophyllum tubiflorumunder conditions inducing Crassulacean acid metabolism. Plant Physiol 54: 416–7

    PubMed  CAS  Google Scholar 

  • Brüggemann M, Weiger C, Gimmler H (1978) Synchronized culture of the halotolerant unicellular green alga Dunaliella parva. Biochem Physiol Pflanz 172: 487–506

    Google Scholar 

  • Cavalieri AJ, Huang AHC (1977) Effects of NaCl on the in vitro activity of malate dehydrogenase in salt marsh halophytes of the U.S.A. Physiol Plant 41: 79–84

    CAS  Google Scholar 

  • Chimiklis PE, Karlander EP (1973) Light and calcium interactions in Chlorella inhibited by sodium chloride. Plant Physiol 51: 48–56

    PubMed  CAS  Google Scholar 

  • Clarkson DT (1974) Ion transport and cell structure in plants. McGraw-Hill, London

    Google Scholar 

  • Clarkson DT, Robards AW (1975) The endodermis, its structural development and physiological role. In: Torrey IG, Clarkson DT (eds) The development and function of roots, chap 19. Academic Press, London New York Collander R (1941) Selective absorption of cations by higher plants. Plant Physiol 16: 691–720

    Google Scholar 

  • Cram WJ (1976) Negative feedback regulation of transport in cells. The maintenance of turgor, volume and nutrient supply, chap II. In: Liittge U, Pitman MG (eds) Encyclopedia of plant physiology, N. S., vol 2 A. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Cram WJ (1980) A common feature of the uptake of solutes by root parenchyma cells. Aust J Plant Physiol 7: 41–9

    CAS  Google Scholar 

  • Dainty J (1976) Water relations of plant cells. In: Luttge U, Pitman MG (eds) Encyclopedia of plant physiology, N.S., vol 2 A. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Dainty J (1979) The ionic and water relations of plants which adjust to a fluctuating saline environment. In: Jefferies RL, Davy AJ (eds) Ecological processes in coastal environments. Blackwell, London

    Google Scholar 

  • Datta P (1970) Homoserine dehydrogenase of Rhodospirillum rubrum. J Biol Chem 245: 5779–87

    PubMed  CAS  Google Scholar 

  • Datta P (1971) Homoserine dehydrogenase of Rhodospirillum rubrum. Conformational changes in the presence of substrates and modifiers. Biochemistry 10: 402–8

    PubMed  CAS  Google Scholar 

  • Davis RF (1980) Salinity effects on the electronic and ionic parameters of Atriplex gmelini. In: Spanswick RM, Lucas WJ, Dainty J (eds) Plant membrane transport: current conceptual issues. Elsevier/North Holland Biomedical Press, Amsterdam New York Oxford

    Google Scholar 

  • Delane R, Greenway H, Munns R, Gibbs J (1982) Ion concentration and carbohydrate status of the elongating leaf tissue of Hordeum vulgare growing at high external NaCl. I. Relationship between solute concentration and growth. J Exp Bot 33: 557–73

    CAS  Google Scholar 

  • Demel RA, Geurts van Kessel WSM, Zwaal RFA, Roelofson B, van Deenen LLM (1975) Relation between various phospholipase actions on human red cell membranes and the interfacial phospholipid pressure in monolayers. Biochim Biophys Acta 406: 97–107

    Google Scholar 

  • Downton WJS, Törökfalvy E (1975) Effect of sodium chloride on the photosynthesis of Aeluropus litoralis, a halophytic grass. Z Pflanzenphysiol 75: 143–50

    CAS  Google Scholar 

  • Duggleby RG, Dennis DT (1973) Pyruvate kinase, a possible regulatory enzyme in higher plants. Plant Physiol 52: 312–7

    PubMed  CAS  Google Scholar 

  • Dumbroff EB, Peirson DR (1971) Probable sites for passive movement of ions across the endodermis. Can J Bot 49: 35–8

    Google Scholar 

  • Eaton FM (1942) Toxicity and accumulation of chloride and sulphate salts in plants.J Agric Res 64:357–99

    CAS  Google Scholar 

  • Flowers TJ (1972a) Salt tolerance in Suaeda maritima (L.) Dum. The effect of sodium chloride on growth, respiration, and soluble enzymes in a comparative study with Pisum sativum L. J Exp Bot 23:310–21

    CAS  Google Scholar 

  • Enhuber G, Gimmler H (1980) The glycerol permeability of the plasmalemma of the halotolerant green alga Dunaliella parva ( Volvocales ). J Phycol 16: 524–32

    CAS  Google Scholar 

  • Eppley RW (1958) Sodium exclusion and potassium retention by the red marine alga, Porphyra perforata. J Gen Physiol 41: 901–11

    PubMed  CAS  Google Scholar 

  • Flowers TJ (1972a) Salt tolerance in Suaeda maritima(L.) Dum. The effect of sodium chloride on growth, respiration, and soluble enzymes in a comparative study with Pisum sativumL. J Exp Bot 23: 310–21

    CAS  Google Scholar 

  • Flowers TJ (1972b) The effect of sodium chloride on enzyme activities from four halophyte species of Chenopodiaceae. Phytochemistry 11: 1881–6

    CAS  Google Scholar 

  • Flowers TJ (1973) Salt tolerance in Suaeda maritima(L.) Dum. A comparison of mitochondria isolated from green tissues of Suaedaand Pisum. J Exp Bot 25: 101–10

    Google Scholar 

  • Flowers TJ, Hall JL, Ward ME ( 1976 a) Salt tolerance in the halophyte Suaeda maritima. Further properties of the enzyme malate dehydrogenase. Phytochemistry 15: 1231–4

    CAS  Google Scholar 

  • Flowers TJ, Ward ME, Hall JL (1976b) Salt tolerance in the halophyte Suaeda maritima: some properties of malate dehydrogenase. Philos Trans R Soc London Ser B 273: 523–40

    CAS  Google Scholar 

  • Flowers TJ, Troke PF, Yeo AR (1977) The mechanism of salt tolerance in halophytes. Annu Rev Plant Physiol 28: 89–121

    CAS  Google Scholar 

  • Flowers TJ, Hall JL, Ward ME (1978) Salt tolerance in the halophyte Suaeda maritima(L.). Dum. Properties of malic enzyme and PEP carboxylase. Ann Bot (London) 42: 1065–74

    CAS  Google Scholar 

  • Fogg GE, Stewart WDP, Fay P, Walsby AE (1973) The blue-green algae. Academic Press, London New York

    Google Scholar 

  • Frank G, Wegmann K (1974) Physiology and biochemistry of glycerol biosynthesis in Dunaliella. Biol Zentralbl 93: 707–23

    CAS  Google Scholar 

  • Gale J, Poljakoff-Mayber A (1970) Interrelations between growth and photosynthesis of salt bush ( Atriplex halimus L.) grown in saline media. Aust J Biol Sci 23: 937–45

    CAS  Google Scholar 

  • Gale J, Naaman R, Poljakoff-Mayber A (1970) Growth of Atriplex halimusL. in sodium chloride salinated culture solutions as affected by the relative humidity of the air. Aust J Biol Sci 23: 947–52

    CAS  Google Scholar 

  • Gates CT, Haydock KP, Robins MF (1970) Response to salinity in glycine. 4. Salt concentration and the content of phosphorus, potassium, sodium and chloride in cultivars of G. wightii (G. javanica ). Aust J Exp Agric Anim Husb 10: 99–100

    CAS  Google Scholar 

  • Gauch HG, Eaton FM (1942) Effect of saline substrate on hourly levels of carbohydrates and inorganic constituents of barley plants. Plant Physiol 17: 347–65

    PubMed  CAS  Google Scholar 

  • Gimmler H, Schirling R (1978) Cation permeability of the plasmalemma of the halotoler- ant alga Dunaliella parva. II. Cation content and glycerol concentration of the cells as dependent upon extracellular NaCl concentration. Z Pflanzenphysiol 87: 435–44

    CAS  Google Scholar 

  • Gimmler H, Schirling R, Tobler U (1977) Cation permeability of the plasmalemma of the halo tolerant alga Dunaliella parva. I. Cation-induced osmotic volume changes. Z Pflanzenphysiol 83: 145–58

    CAS  Google Scholar 

  • Greenway H (1962) Plant response to saline substrates. I. Growth and ion uptake of several varieties of Hordeumduring and after sodium chloride treatment. Aust J Biol Sci 15: 16–38

    CAS  Google Scholar 

  • Greenway H (1965) Plant responses to saline substrates. IV. Chloride uptake by Hordeum vulgareas affected by inhibitors, transpiration, and nutrients in the medium. Aust J Biol Sci 18: 249–68

    CAS  Google Scholar 

  • Greenway H (1968) Growth stimulation by high chloride concentrations in halophytes. Isr J Bot 17: 169–77

    CAS  Google Scholar 

  • Greenway H (1974) Effects of slowly and rapidly permeating osmotica on permeability of excised roots of Zea mays. Aust J Plant Physiol 1: 247–57

    Google Scholar 

  • Greenway H, Munns R (1980) Mechanisms of salt tolerance in non-halophytes. Annu Rev Plant Physiol 31: 149–90

    CAS  Google Scholar 

  • Greenway H, Munns R (1982) Interactions between growth, uptake of Cl-and Na+, and water relations, of plants in saline environments. I I. Highly-vacuolated cells. Plant Cell Environ (submitted)

    Google Scholar 

  • Greenway H, Osmond CB (1972) Salt responses of enzymes from species differing in salt tolerance. Plant Physiol 49: 256–9

    PubMed  CAS  Google Scholar 

  • Greenway H, Setter TL (1977) Effects of chloride salts at high concentrations on glycolysis in vitro. J Exp Bot 28: 545–58

    CAS  Google Scholar 

  • Greenway H, Setter TL (1979a) Na+, Cl-and K+concentrations in Chlorella emersoniiexposed to 100 and 335 mM NaClNa+, Cl- and K+ concentrations in Chlorella emersoniiexposed to 100 and 335 mM NaCl. Aust J Plant Physiol 6:61–7 and corrigendum in Aust J Plant Physiol 6: 569–72

    Google Scholar 

  • Greenway H, Setter TL (1979b) Accumulation of proline and sucrose during the first hours after transfer of Chlorella emersoniito high NaCl. Aust J Plant Physiol 6:69–79 and corrigendum in Aust J Plant Physiol 6: 569–72

    Google Scholar 

  • Greenway H, Sims AP (1974) Effects of high concentrations of KC1 and NaCl on responses of malate dehydrogenase (decarboxylating) to malate and various inhibitors. Aust J Plant Physiol 1: 15–29

    CAS  Google Scholar 

  • Greenway H, Watkin E (1982) Effects of external NaCl, and of changes in turgor pressure and volume, on K+concentrations in Chlorella emersonii. Plant Cell Environ (submitted)

    Google Scholar 

  • Greenway H, Gunn A, Thomas DA (1966) Plant response to saline substrates. VIII. Regulation of ion concentrations in salt-sensitive and halophytic species. Aust J Biol Sci 19: 741–56

    CAS  Google Scholar 

  • Greenway H, Lange B, Leahy M (1972) Effect of rapidly and slowly permeating osmotica on macromolecule and sucrose synthesis. J Exp Bot 23: 459–68

    CAS  Google Scholar 

  • Greenway H, Setter T, Hackling K (1977) Some general characteristics of glycolysis in vitro and its inhibition by high concentrations of chloride salts. J Exp Bot 28: 534–44

    CAS  Google Scholar 

  • Greenway H, Munns R, Gibbs J (1982a) Effects of accumulation of 3-O-methylglucose on levels of endogenous osmotic solutes in Chlorella emersonii. Plant Cell Environ 5: 405–12

    CAS  Google Scholar 

  • Greenway H, Munns R, Wolfe J (1982b) Interactions between growth, uptake of Cl-and Na+, and water relations, of plants in saline environments. I. Slightly-vacuolated cells. Plant Cell Environ (submitted)

    Google Scholar 

  • Guillard RRL (1960) A mutant of Chlamydomonas moewusiilacking contractile vacuoles. J Protozool 7: 262–8

    Google Scholar 

  • Guillard RRL (1962) Salt and osmotic balance. In: Lewin RA (ed) Physiology and biochemistry of algae. Academic Press, London New York

    Google Scholar 

  • Guillard RRL, Myklestad S (1970) Osmotic and ionic requirements of the marine centric diatom Cyclotella nana. Helgol Wiss Meeresunters 20: 104–10

    CAS  Google Scholar 

  • Guillard RRL, Ryther JH (1962) Studies of marine planktonic diatoms. I. Cyclotella nanaHustedt, and Detonula confervacea( Cleve) Gran. Can J Microbiol 8: 229–39

    PubMed  CAS  Google Scholar 

  • Gutknecht J, Hastings DF, Bisson MA (1978) Ion transport and turgor pressure regulation in giant algal cells. In: Giebisch G, Tosteson DC, Ussing HH (eds) Membrane transport in biology, vol III. Transport across multi-membrane systems. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Handley JF, Jennings DH (1977) The effect of ions on growth and leaf succulence of Atriplex hortensisvar. cupreata. Ann Bot (London) 41: 1109–12

    CAS  Google Scholar 

  • Harvey DMR, Flowers TJ (1978) Determination of the sodium, potassium and chloride ion concentrations in the chloroplasts of the halophyte Suaeda maritimaby nonaqueous cell fractionation. Protoplasma 97: 337–49

    CAS  Google Scholar 

  • Harvey DMR, Hall JL, Flowers TJ, Kent B (1981) Quantitative ion localisation within Suaeda maritimaleaf mesophyll cells. Planta 151: 550–60

    Google Scholar 

  • Hawker JS, Walker RR (1978) Effect of sodium chloride on expansion rates and invertase activity of leaves. Aust J Plant Physiol 5: 73–80

    CAS  Google Scholar 

  • Hayward J (1974) Studies on the growth of Stichococcus bacillarisin culture. J Mar Biol Assoc UK 54: 261–8

    CAS  Google Scholar 

  • Helal HM, Mengel K (1981) Interaction between light intensity and NaCl salinity and their effects on growth, CO2assimilation, and photosynthate conversion in young broad beans. Plant Physiol 67: 999–1002

    PubMed  CAS  Google Scholar 

  • Hellebust JA (1976) Effect of salinity on photosynthesis and mannitol synthesis in the green flagellate Platymonas suecica. Can J Bot 54: 1735–41

    CAS  Google Scholar 

  • Hellebust JA (1978) Uptake of organic substrates by Cyclotella cryptica(Bacillariophyceae): Effects of ions, ionophores and metabolic and transport inhibitors. J Phycol 14: 79–83

    CAS  Google Scholar 

  • Hess B, Boiteux A, Krüger J (1969) Cooperation of glycolytic enzymes. Adv Enzyme Regul 7: 149–67

    PubMed  CAS  Google Scholar 

  • Hill AE, Hill BS (1976) Elimination processes by glands, Mineral ions. In: Lüttge U, Pitman MG (eds) Encycopedia of plant physiology N.S., vol2B. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Hoad GV, Peel AJ (1965) Studies on the movement of solutes between the sieve tubes and surrounding tissues in willow. I. Interference between solutes and rate of translocation measurements. J Exp Bot 16: 433–51

    Google Scholar 

  • Hsiao TC (1973) Plant responses to water stress. Annu Rev Plant Physiol 24: 519–70

    CAS  Google Scholar 

  • Jackson JE, Weatherley PE (1962) The effect of hydrostatic pressure gradients on the movement of sodium and calcium across the root cortex. J Exp Bot 13: 404–13

    CAS  Google Scholar 

  • Jacoby B (1965) Sodium retention in excised bean stems. Physiol Plant 18:730–9 Jefferies RL (1973) The ionic relations of seedlings of the halophyte Triglochin maritimaL. In: Anderson WP (ed) Ion transport in plants. Academic Press, London New York

    Google Scholar 

  • Jennings DH (1968) Halophytes, succulence and sodium in plants — a unified theory. New Phytol 67: 899–911

    CAS  Google Scholar 

  • Jennings DH (1976) The effects of sodium chloride on higher plants. Biol Rev 51: 453–86

    CAS  Google Scholar 

  • Jeschke WD (1977) K+-Na+selectivity in roots, localization of selective fluxes and their regulation. In: Marre E, Ciferri O (eds) Regulation of cell membrane activities in plants. Elsevier/North Holland Biomedical Press, Amsterdam New York Oxford

    Google Scholar 

  • Jeschke WD (1979) Univalent cation selectivity and compartmentation in cereals, chap 3. In: Laidman DL, Wyn Jones RG (eds) Recent advances in the biochemistry of cereals. Academic Press, London New York

    Google Scholar 

  • John CD, Limpinuntana V, Greenway H (1977) Interaction of salinity and anaerobiosis in barley and rice. J Exp Bot 28: 133–41

    CAS  Google Scholar 

  • Johnson MK, Johnson EJ, MacElroy RD, Speer HL, Bruff BS (1968) Effects of salts on the halophilic alga Dunaliella viridis. J Bacteriol 95: 1461–8

    PubMed  CAS  Google Scholar 

  • Jones TW, Galloway RA (1979) Effect of light quality and intensity on glycerol content in Dunaliella tertiolecta ( Chlorophyceae) and the relationship to cell growth/osmore- gulation. J Phycol 15: 101–6

    Google Scholar 

  • Kalir A, Poljakoff-Mayber A (1975) Malic dehydrogenase from Tamarix roots. Plant Physiol 55: 155–62

    PubMed  CAS  Google Scholar 

  • Kaplan A, Gale J (1972) Effect of sodium chloride salinity on the water balance of Atriplex halimus. Aust J Biol Sci 25: 895–903

    CAS  Google Scholar 

  • Karas I, McCully ME (1973) Further studies of the histology of lateral root development in Zea mays. Protoplasma 77: 243–69

    Google Scholar 

  • Kauss H (1967) Isofloridosid und Osmoregulation bei Ochromonas malhamensis. Z Pflanzenphysiol 56: 453–65

    CAS  Google Scholar 

  • Kauss H (1973) Turnover of galactosylglycerol and osmotic balance in Ochromonas. Plant Physiol 52: 613–5

    PubMed  CAS  Google Scholar 

  • Kauss H (1974) Osmoregulation in Ochromonas. In: Zimmermann U, Dainty J (eds) Membrane transport in plants. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Kauss H (1978) Osmotic regulation in algae. Prog Phytochem 5: 1–27

    CAS  Google Scholar 

  • Kauss H (1979) Biochemie der osmotischen Regulation bei Poterioochromonas malhamensis. Ber Dtsch Bot Ges 92: 11–22

    CAS  Google Scholar 

  • Kauss H, Quader H (1976) In vitro activation of a galactosyl transferase involved in the osmotic regulation of Ochromonas. Plant Physiol 58: 295–8

    PubMed  CAS  Google Scholar 

  • Kauss H, Lüttge U, Krichbaum RM (1975) Changes in potassium and isofloridoside content during osmoregulation in Ochromonas malhamensis. Z Pflanzenphysiol 76: 109–13

    CAS  Google Scholar 

  • Kauss H, Thomson KS, Tetour M, Jeblick W (1978) Proteolytic activation of a galactosyl transferase involved in osmotic regulation. Plant Physiol 61: 35–7

    PubMed  CAS  Google Scholar 

  • Kauss H, Thomson KS, Thomson M, Jeblick W (1979) Osmotic regulation. Physiological significance of proteolytic and nonproteolytic activation of isofloridoside-phosphate synthase. Plant Physiol 63: 455–9

    PubMed  CAS  Google Scholar 

  • Kessler E (1974) Physiological and biochemical contributions to the taxonomy of the genus Chlorella. IX. Salt tolerance as a taxonomic character. Arch Microbiol 100: 51–6

    PubMed  CAS  Google Scholar 

  • Kirst GO (1975a) Effect of different concentrations of NaCl and other osmotic substances on C02 fixation of the unicellular alga Platymonas subcordiformis. Oecologia 20: 237–54

    Google Scholar 

  • Kirst GO (1975b) Correlation between content of mannitol and osmotic stress in the brackish-water alga Platymonas subcordiformisHazen. Z Pflanzenphysiol 76: 316–25

    CAS  Google Scholar 

  • Kirst GO (1977a) The cell volume of the unicellular alga Platymonas subcordiformisHazen: Effect of the salinity of the culture media and of osmotic stresses. Z Pflanzenphysiol 81: 386–94

    Google Scholar 

  • Kirst GO (1977b) Coordination of the ionic relations and mannitol concentrations in the euryhaline unicellular alga Platymonas subcordiformis(Hazen) after osmotic shocks. Planta 135: 69–75

    CAS  Google Scholar 

  • Kirst GO (1977c) Ion composition of unicellular marine and freshwater algae, with special reference to Platymonas subcordiformis, cultivated in media with different osmotic strengths. Oecologia 28: 177–89

    Google Scholar 

  • Kramer D, Läuchli A, Yeo AR, Gullasch J (1977) Transfer cells in roots of Phaseolus coccineus. Ultrastructure and possible function in exclusion of sodium from the shoot. Ann Bot (London) 41: 1031–40

    CAS  Google Scholar 

  • Kramer D, Anderson WP, Preston J (1978) Transfer cells in the root epidermis of Atriplex hastataL. as a response to salinity: A comparative cytological and x-ray microprobe investigation. Aust J Plant Physiol 5: 739–47

    CAS  Google Scholar 

  • Kylin A, Gee R (1970) Adenosine triphosphate activities in leaves of the mangrove Avicennia nitidaJacq. Influence of sodium to potassium ratios and salt concentrations. Plant Physiol 45: 169–72

    PubMed  CAS  Google Scholar 

  • Lahaye PA, Epstein E (1971) Calcium and salt toleration by bean plants. Physiol Plant 25: 213–8

    CAS  Google Scholar 

  • Lambers H (1979) Efficiency of root respiration in relation to growth rate, morphology and soil composition. Physiol Plant 46: 194–202

    Google Scholar 

  • Lambers H, Steingröver E (1978) Growth respiration of a flood tolerant and a flood intolerant Seneciospecies: Correlation between calculated and experimental values. Physiol Plant 43: 219–24

    Google Scholar 

  • Latorella AH, Vadas RL (1973) Salinity adaptation by Dunaliella tertiolecta. I. Increases in carbonic anhydrase activity and evidence for a light-dependent Na+/H+ exchange. J Phycol 9: 273–7

    CAS  Google Scholar 

  • Läuchli A (1976) Genotypic variation in transport. In: Lüttge U, Pitman MG (eds) Encyclopedia of plant physiology, N.S., vol2B. Springer, Berlin Heidelberg New York, pp 372–93

    Google Scholar 

  • Läuchli A, Wieneke J (1979) Studies on growth and distribution of Na+, K+and Cl-in soybean varieties differing in salt tolerance. Z Pflanzenernaehr Bodenkd 42: 3–13

    Google Scholar 

  • Lazaroff N, Pitman MG (1966) Calcium and magnesium uptake by barley seedlings. Aust J Biol Sci 19: 991–1005

    CAS  Google Scholar 

  • Lessani H, Marschner H (1978) Relation between salt tolerance and long-distance transport of sodium and chloride in various crop species. Aust J Plant Physiol 5: 27–37

    CAS  Google Scholar 

  • Levring T, Hoppe HA, Schmid OJ (1969) Marine algae: A survey of research and utilization. Botanica marine handbooks, vol I. Cram de Gruyter & Co, Hamburg

    Google Scholar 

  • Liu MS, Hellebust JA (1976a) Effects of salinity changes on growth and metabolism of the marine centric diatom Cyclotella cryptica. Can J Bot 54: 930–7

    CAS  Google Scholar 

  • Longstreth DJ, Nobel PS (1979) Salinity effects on leaf anatomy — consequences for photosynthesis. Plant Physiol 63: 700–3

    PubMed  CAS  Google Scholar 

  • Longstreth DJ, Strain BR (1977) Effects of salinity and llumination on photosynthesis and water balance of Spartina alternifloraLoisel. Oecologia 31: 191–9

    Google Scholar 

  • Lorenzen H, Hesse M (1974) Synchronous cultures. In: Stewart WDP (eds) Algal physiology and biochemistry. Botanical monographs, vol 10. Blackwell Scientific Publications, London

    Google Scholar 

  • L’Roy A, Hendrix DL (1980) Effect of salinity on cell membrane potential in the marine halophyte Salicornia bigelovii Torr. Plant Physiol 65: 544–9

    PubMed  Google Scholar 

  • Lubin M, Ennis HL (1964) On the role of intracellular potassium in protein synthesis. Biochim Biophys Acta 80: 614–31

    PubMed  CAS  Google Scholar 

  • Ludlow MM (1976) Ecophysiology of C4grasses. In: Lange OL, Kappen L, Schulze ED (eds) Water and plant life. Ecological studies analysis and synthesis. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Maier M, Kappen L (1979) Cellular compartimentalization of salt ions and protective agents with respect to freezing tolerance of leaves. Investigations with the halophyte Halimione portulacoides( L.) Allen. Oecologia 38: 303–16

    Google Scholar 

  • Marschner H, Mix G (1973) Einfluß von Natriumchlorid und Mycostatin auf den Mineralstoffgehalt im Blattgewebe und die Feinstruktur der Chloroplasten. Z Pflanzenernaehr Bodenkd 136: 203–19

    Google Scholar 

  • Marschner H, Kylin A, Kuiper PJC (1981) Differences in salt tolerance of three sugar beet genotypes. Physiol Plant 51: 234–8

    CAS  Google Scholar 

  • McLachlan J (1964) Some considerations of the growth of marine algae in artificial media. Can J Microbiol 10: 769–82

    PubMed  CAS  Google Scholar 

  • Miflin BJ (1969) The inhibitory effects of various amino acids on the growth of barley seedlings. J Exp Bot 20: 810–9

    CAS  Google Scholar 

  • Miller DM, Jones JH, Yopp JH, Tindall DR, Schmid WE (1976) Ion metabolism in a halophilic blue-green alga, Aphanothece halophytica. Arch Microbiol 111: 145–9

    PubMed  CAS  Google Scholar 

  • Mozafar A, Goodin JR, Oertli JJ (1970a) Na and K interactions in increasing the salt tolerance of Atriplex halimusL. I. Yield characteristics and osmotic potential. Agron J 62: 478–81

    CAS  Google Scholar 

  • Mozafar A, Goodin JR, Oertli JJ (1970b) Sodium and potassium interactions in increasing salt tolerance of Atriplex halimusL. II. Na+ and K+ uptake characteristics. Agron J 62: 481–4

    CAS  Google Scholar 

  • Munns R, Greenway H, Prior L (1982a) Effects of accumulation of 3-O-methylglucose on growth and osmotic regulation in Chlorella emersonii. Plant Cell Environ 5: 413–16

    CAS  Google Scholar 

  • Munns R, Greenway H, Delane R, Gibbs J ( 1982 b) Ion concentration and carbohydrate status of the elongating leaf tissue of Hordeum vulgare growing at high external NaCl. II. Cause of the growth reduction. J Exp Bot 33: 574–83

    CAS  Google Scholar 

  • Munns R, Green way H, Setter TL, Kuo J (1982 c) Turgor pressure, volumetric elastic modulus, osmotic volume and ultrastructure of Chlorella emersonii grown at high and low external NaCl. J Exp Bot (in press)

    Google Scholar 

  • Muto S, Uritani I (1972) Glucose 6-phosphate dehydrogenase from sweet potato: Effect of various ions and their ionic strength on enzyme activity. Plant Cell Physiol 13: 111–8

    CAS  Google Scholar 

  • Neales TF, Sharkey PJ (1981) Effect of salinity on growth and on mineral and organic constituents of the halophyte Disphyma australe(Soland.) J.M. Black. Aust J Plant Physiol 8: 165–79

    CAS  Google Scholar 

  • Nobel PS (1974) Introduction to biophysical plant physiology. WH Freeman & Co, San Francisco, p 488

    Google Scholar 

  • Nobel PS (1975) “Chloroplasts” In: Baker DA, Hall JL (eds) Ion transport in plant cells and tissues, chap 4. North Holland Publishing Company, Amsterdam Oxford

    Google Scholar 

  • Oertli JJ (1966) Effect of external salt concentrations on water relations in plants: II. Effect of the osmotic differential between external medium and xylem on water relations in the plant. Soil Sci 102: 258–63

    CAS  Google Scholar 

  • Oertli JJ (1968) Extracellular salt accumulation; a possible mechanism of salt injury in plants. Agrochimica 12: 461–9

    Google Scholar 

  • Oertli JJ (1975) Effects of external solute supply on cell elongation in barley coleoptiles. Z Pflanzenphysiol 74: 440–50

    Google Scholar 

  • O’Leary JW (1969) The effect of salinity on permeability of roots to water. Isr J Bot 18: 1–9

    Google Scholar 

  • O’Leary JW (1974) Salinity induced changes in hydraulic conductivity of roots. In: Kolek J (ed) Proc Symp Tatranska Lomnica, Czechoslovakia, 1971. Publ House Slovak Acad Sci Bratislava, Veda, pp 309–14

    Google Scholar 

  • Osmond CB (1966) Divalent cation absorption and interaction in Atriplex. Aust J Biol Sci 19: 37–48

    CAS  Google Scholar 

  • Osmond CB (1976) Ion absorption and carbon metabolism in cells of higher plants. In: Liittge U and Pitman MG (eds) Encyclopedia of plant physiology, N.S., vol 2A. Springer, Berlin Heidelberg New York, pp 347–72

    Google Scholar 

  • Osmond CB, Greenway H (1972) Salt responses of carboxylation enzymes from species differing in salt tolerance. Plant Physiol 49: 260–3

    PubMed  CAS  Google Scholar 

  • Osmond CB, Lüttge U, West KR, Pallaghy CK, Shacher-Hill B (1969) Ion absorption in Atriplexleaf tissue. II Secretion of ions to epidermal bladders. Aust J Biol Sci 22: 797–814

    CAS  Google Scholar 

  • Osmond CB, Björkman O, Anderson DJ (1980) Absorption of ions and nutrients. In: Physiological processes in plant ecology. Towards a synthesis with Atriplex. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Passera C, Albuzio A (1978) Effect of salinity on photosynthesis and photorespiration of two wheat species (Triticum durum cv. PEPE 2122 and Triticum aestivumcv. Marzotto ). Can J Bot 56: 121–6

    CAS  Google Scholar 

  • Paul JS (1979) Osmoregulation in the marine diatom Cylindrotheca fusiformis. J Phycol 15: 280–4

    CAS  Google Scholar 

  • Perry MW, Greenway H (1973) Permeation of uncharged organic molecules and water through tomato roots. Ann Bot 37: 225–32

    CAS  Google Scholar 

  • Pitman MG, Cram WJ (1977) Regulation of ion content in whole plants. In: Jennings DH (ed) Soc Exp Biol Symp No 31. Cambridge Univ Press, Cambridge Pollak G, Waisel Y (1970) Salt secretion in Aeluropus litoralis (Willd.) Pari. Ann Bot (London) 34: 879–88

    Google Scholar 

  • Provasoli L, McLaughlin JJA, Droop MR (1957) The development of artificial media for marine algae. Arch Mikrobiol 25: 392–428

    PubMed  CAS  Google Scholar 

  • Rains DW, Epstein E (1967) Preferential absorption of potassium by leaf tissue of the mangrove, Avicennia marina: an aspect of halophytic competence in coping with salt. Aust J Biol Sci 20: 847–57

    CAS  Google Scholar 

  • Raven JA (1976) Transport in algal cells. In: Liittge U, Pitman MG (eds) Encyclopedia of plant physiology, N.S. vol 2 A. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Ricardo CCP, Sovia D (1974) Development of tuberous roots and sugar accumulation as related to invertase activity and mineral nutrition. Planta 118: 43–55

    CAS  Google Scholar 

  • Robards AW, Jackson SM, Clarkson DT, Sanderson J (1973) The structure of barley roots in relation to the transport of ions into the stele. Protoplasma 77: 291–311

    Google Scholar 

  • Rojas E, Tobias JM (1965) Membrane model: Association of inorganic cations with phospholipid monolayers. Biochim Biophys Acta 94: 394–404

    PubMed  CAS  Google Scholar 

  • Rozema J (1975) An ecophysiological investigation into the salt tolerance of Glaux maritima. Acta Bot Neerl 24: 407–16

    CAS  Google Scholar 

  • Rozema J (1978) On the ecology of some halophytes from a beach plain in the Netherlands. Academisch proefschrift. Vrye Univ Amsterdam Rozema J, Rozema-Dijst E, Freijsen AHJ, Huber JJL (1978) Population differentiation within Festuca rubraL. with regard to soil salinity and soil water. Oecologia (Berlin) 34: 329–41

    Google Scholar 

  • Russell R, Barber DA (1960) The relationship between salt uptake and the absorption of water by intact plants. Annu Rev Plant Physiol 11:127–40 Saddler HDW (1970) The ionic relations of Acetabularia mediterranea. J Exp Bot 21: 345–59

    CAS  Google Scholar 

  • Scarpa A, Gier de J (1971) Cation permeability of liposomes as a function of the chemical composition of the lipid bilayers. Biochim Biophys Acta 241: 789–97

    PubMed  CAS  Google Scholar 

  • Schobert B (1977a) The influence of water stress on the metabolism of diatoms. II. Proline accumulation under different conditions of stress and light. Z Pflanzenphysiol 85: 451–61

    CAS  Google Scholar 

  • Schobert B (1977b) The influence of water stress on the metabolism of diatoms. III. The effect of different nitrogen sources on proline accumulation. Z Pflanzenphysiol 85: 463–70

    CAS  Google Scholar 

  • Schobert B, Untner E, Kauss H (1972) Isofloridoside and osmoregulation in Ochromonas malhamensis. Z Pflanzenphysiol 67: 385–98

    CAS  Google Scholar 

  • Scholander PF, Hammel HT, Hemmingsen E, Garey W (1962) Salt balance in mangroves. Plant Physiol 37: 722–9

    PubMed  CAS  Google Scholar 

  • Scholander PF, Bradstreet ED, Hammel HT, Hemmingsen EA (1966) Sap concentrations in halophytes and some other plants. Plant Physiol 41: 529–32

    PubMed  CAS  Google Scholar 

  • Setter TL (1979) Response of Chlorellato high NaCl and neutral osmotica. M Sc thesis, Univ West Aust

    Google Scholar 

  • Setter TL, Greenway H (1979) Growth and osmoregulation of Chlorella emersonii in NaCl and neutral osmotica. Aust J Plant Physiol 6:47–60 and corrigendum in Aust J Plant Physiol 6: 569–72

    Google Scholar 

  • Setter TL, Greenway H, Kuo J (1982) Inhibition of cell division by high external NaCl concentrations in synchronised cultures of Chlorella emersonii. Aust J Plant Physiol 9: 179–96

    CAS  Google Scholar 

  • Shalhevet J, Mass EV, Hoffman JT, Ogata G (1976) Salinity and the hydraulic conductance of roots. Physiol Plant 38: 224–32

    CAS  Google Scholar 

  • Shepherd UH, Bowling DJF (1979) Sodium fluxes in roots of Eleocharis uniglumis, a brackish water species. Plant Cell Environ 2: 123–30

    Google Scholar 

  • Shieh YJ, Barber J (1971) Intracellular sodium and potassium concentrations and net cation movements in Chlorella pyrenoidosa. Biochim Biophys Acta 233: 594–603

    PubMed  CAS  Google Scholar 

  • Stelzer R, Läuchli A (1977a) Salt and flooding tolerance of Puccinellia peisonis. I. The effect of NaCl- and KCl-salinity on growth at varied oxygen supply to the root. Z Pflanzenphysiol 83: 35–42

    CAS  Google Scholar 

  • Stelzer R, Läuchli A (1977b) Salt and flooding tolerance of Puccinellia peisonis. II. Structural differentiation of the root in relation to function. Z Pflanzenphysiol 84: 95–108

    Google Scholar 

  • Stelzer R, Läuchli A (1978) Salt and flooding tolerance of Puccinellia peisonis. III. Distribution and localization of ions in the plant. Z Pflanzenphysiol 88: 437–48

    CAS  Google Scholar 

  • Steveninck van RFM, Steveninck van ME (1978) Ion localization. In: Hall JL (ed) Electron microscopy and cytochemistry of plant cells. Elsevier/North-Holland Biomedical Press, Amsterdam Oxford New York

    Google Scholar 

  • Stewart GR, Lee J A (1974) The role of proline accumulation in halophytes. Planta 120: 279–89

    CAS  Google Scholar 

  • Stewart GR, Larher F, Ahmad I, Lee JA (1979) Nitrogen metabolism and salt-tolerance in higher plant halophytes. In: Jefferies RL, Davy AJ (eds) Ecological processes in coastal environments. Blackwell, London

    Google Scholar 

  • Storey R, Wyn Jones RG (1978) Salt stress and comparative physiology in Gramineae. III. Effect of salinity upon ion relations and glycinebetaine and proline levels in Spartinax townsendii. Aust J Plant Physiol 5: 831–8

    CAS  Google Scholar 

  • Stuiver CEE, Kuiper PJC, Marschner H (1978) Lipids from bean, barley and sugar beet in relation to salt resistance. Physiol Plant 42: 124–8

    CAS  Google Scholar 

  • Tal M, Katz A (1980) Salt tolerance in the wild relatives of the cultivated tomato: the effect of proline on the growth of callus tissue of Lycopersicon esculentumand L. peruvianumunder salt and water stresses. Z Pflanzenphysiol 98: 283–8

    CAS  Google Scholar 

  • Tiku BL (1976) Effect of salinity on the photosynthesis of the halophyte Salicornia rubraand Distichlis stricta. Physiol Plant 37: 23–8

    CAS  Google Scholar 

  • Tindall DR, Yopp JH, Miller DM, Schmid WE (1978) Physico-chemical parameters governing the growth of Aphanothece halophytica( Chroococcales) in hypersaline media. Phycologia 17: 179–85

    CAS  Google Scholar 

  • Ting IP, Osmond CB (1973) Photosynthetic phosphoenolpyruvate carboxylases. Characteristics of alloenzymes from leaves of C3 and C4 plants. Plant Physiol 51: 439–47

    PubMed  CAS  Google Scholar 

  • Tognoni F, Halevy AH, Wittwer SH (1967) Growth of bean and tomato plants as affected by root-absorbed growth substances and atmospheric carbon dioxide. Planta 72: 43–52

    CAS  Google Scholar 

  • Tyerman S (1980) Turgor regulation and the development of water potential gradients in Posidonia. In: Spanswick RM, Lucas WJ, Dainty J (eds) Plant membrane transport: current conceptual issues. Elsevier/North Holland Biomedical Press, Amsterdam New York Oxford

    Google Scholar 

  • Ulrich A, Ohki K (1956) Chlorine, bromine and sodium as nutrients for sugar beet plants. Plant Physiol 31: 171–81

    PubMed  CAS  Google Scholar 

  • Walsby AE (1971) The pressure relationships of gas vacuoles. Proc R Soc London Ser B 178: 301–26

    Google Scholar 

  • Wegmann K (1979) Biochemical adaptation of Dunaliellato salinity and temperature changes. Ber Dtsch Bot Ges 92: 43–54

    CAS  Google Scholar 

  • Weihe K von (1978a) Untersuchungen zur Ökologie von Festuca rubraL. ssp. litoralis(G.F.W. Meyer) Auquier (Temperatur und Meersalzwirkung). Beitr Biol Pflanz 54: 125–43

    Google Scholar 

  • Weihe K von (1978 b) Untersuchungen zur Ökologie von Puccinellia maritima(Huds.) Parl. (Temperatur und Meersalzwirkung). Beitr Biol Pflanz 54:145–63

    Google Scholar 

  • Weimberg R (1967) Effect of sodium chloride on the activity of a soluble malate dehydrogenase from pea seeds. J Biol Chem 242: 3000–6

    PubMed  CAS  Google Scholar 

  • Weimberg R (1970) Enzyme levels in pea seedlings grown on highly salinized media. Plant Physiol 46:466–70 Weimberg R (1975) Effect of growth in highly salinized media on the enzymes of the photosynthetic apparatus in pea seedlings. Plant Physiol 56: 8–12

    Google Scholar 

  • Wethereil DF (1963) Osmotic equilibration and growth of Scenedesmus obliquusin saline media. Physiol Plant 16: 82–91

    Google Scholar 

  • Wiencke C, Läuchli A (1980) Growth cell volume and fine structure of Porphyra umbilicalisin relation to osmotic tolerance. Planta 150: 303–11

    Google Scholar 

  • Willert DJ von (1974) Effect of sodium chloride on respiration and the activity of malate dehydrogenase in some halophytes and glycophytes. Oecologia (Berlin) 14: 127–37

    Google Scholar 

  • Williams MC (1960) Effect of sodium and potassium salts on growth and oxalate content of Halogeton. Plant Physiol 35: 500–5

    PubMed  CAS  Google Scholar 

  • Wilson JR, Haydock KP, Robins MF (1970) The development in time of stress effects in two species of Glycine differing in sensitivity to salt. Aust J Biol Sci 23: 537–51

    CAS  Google Scholar 

  • Winter E (1982) Salt tolerance of Trifolium alexandrinumL. III. Effects of salt on ultra- structure of phloem and xylem transfer cells in petioles and leaves. Aust J Plant Physiol 9: 239–50

    CAS  Google Scholar 

  • Winter E, Preston J (1982) Salt tolerance of Trifolium alexandrinumL. IV. Ion measurements of X-ray microanalysis in unfixed, frozen, hydrated leaf cells at various stages of salt treatment. Aust J Plant Physiol 9: 251–59

    CAS  Google Scholar 

  • Winter K (1973)CO2fixation metabolism in the halophytic species Mesembryanthemum crystallinumgrown under different environmental conditions. Planta 114:75–85

    CAS  Google Scholar 

  • Wyn Jones RG, Storey R (1978) Salt stress and comparative physiology in the Gramineae. IV. Comparison of salt stress in Spartina x townsendii and three barley cultivars. Aust J Plant Physiol 5:839–50

    Google Scholar 

  • Winter K (1974) Evidence for the significance of crassulacean acid metabolism as an adaptive mechanism to water stress. Plant Sci Lett 3: 279–81

    CAS  Google Scholar 

  • Winter K, Lüttge U (1976) Balance between C3 and CAM pathway of photosynthesis. In: Lange OL, Kappen L, Schulze ED (eds) Water and plant life — problems and modern approaches. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Winter K, Lüttge U, Winter E, Troughton JH (1978) Seasonal shift from C3 photosynthesis to crassulacean acid metabolism in Mesembryanthemum crystallinumgrowing in its natural environment. Oecologia (Berlin) 34: 225–37

    Google Scholar 

  • Wyn Jones RG, Storey R (1978) Salt stress and comparative physiology in the Gramineae. IV. Comparison of salt stress in Spartinax townsendiiand three barley cultivars. Aust J Plant Physiol 5: 839–50

    Google Scholar 

  • Wyn Jones RG, Brady CJ, Speirs J (1979) Ionic and osmotic relations in plant cells. In: Laidman DL, Wyn Jones RG (eds) Recent advances in the biochemistry of cereals. Academic Press, London New York

    Google Scholar 

  • Yeo AR (1974) Salt tolerance in Suaeda maritima. D Ph thesis, Univ Sussex Yeo AR (1981) Salt tolerance in the halophyte Suaeda maritimaL. Dum.: Intracellular compartmentation of ions. J Exp Bot 32: 487–97

    Google Scholar 

  • Yeo AR, Flowers TJ (1980) Salt tolerance in the halophyte Suaeda maritima (L) Dum.: Evaluation of the effect of salinity upon growth. J Exp Bot 31: 1171–83

    CAS  Google Scholar 

  • Yeo AR, Läuchli A, Kramer D, Gullasch J (1977) Ion measurements by x-ray microanalysis in unfixed frozen hydrated plant cells of species differing in salt tolerance. Planta 134: 35–8

    CAS  Google Scholar 

  • Yopp JH, Tindall DR, Miller DM, Schmid WE (1978) Isolation purification and evidence for a halophilic nature of the blue-green alga Aphanothece halophyticaFremy ( Chroococcales ). Phycologia 17: 172–8

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin·Heidelberg

About this chapter

Cite this chapter

Munns, R., Greenway, H., Kirst, G.O. (1983). Halotolerant Eukaryotes. In: Lange, O.L., Nobel, P.S., Osmond, C.B., Ziegler, H. (eds) Physiological Plant Ecology III. Encyclopedia of Plant Physiology, vol 12 / C. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68153-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68153-0_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68155-4

  • Online ISBN: 978-3-642-68153-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics