Skip to main content

Ecological Significance of Resistance to Low Temperature

  • Chapter
Physiological Plant Ecology I

Part of the book series: Encyclopedia of Plant Physiology ((920,volume 12 / A))

Abstract

Low temperatures reduce the biosynthetic activity of plants; they evoke disturbance in vital functions and productivity and they may inflict permanent injuries that finally bring about death. The survival capacity of a plant species or variety in a particular environment is determined by the specific limits to which its metabolic processes continue to function under low temperature stress and by its cold resistance, both of which are characteristics of its ecophysiological constitution (Larcher 1968).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alden J, Hermann RK (1971) Aspects of the cold-hardiness mechanism in plants. Bot Rev 37: 37–142

    CAS  Google Scholar 

  • Altman PL, Dittmer DS (1973) Biology data book, Vol. II, 2nd edn. Fed Am Soc Exp Biol, Bethesda

    Google Scholar 

  • Andrews CJ, Pomeroy MK (1977) Changes in survival of winter cereals due to ice cover and other simulated winter conditions. Can J Plant Sci 57: 1141–1149

    Google Scholar 

  • Antropova TA (1974) Sezonnye izmeneniya kholodo- i teploustoichivosti kletok dvukh vidov mkhov. (The seasonal changes of cold and heat resistance of cells in two moss species). Bot Zh 59: 117–122

    Google Scholar 

  • Bamberg S, Schwarz W, Tranquillini W (1967) Influence of day length on the photosynthetic capacity of stone pine (Pinus cembra L.). Ecology 48: 264–269

    Google Scholar 

  • Barta AL, Hodges HF (1970) Characterization of photosynthesis in cold hardening winter wheat. Crop Sci 10: 535–538

    Google Scholar 

  • Bauer H, Huter M, Larcher W (1969) Der Einfluß und die Nachwirkung von Hitze — und Kältestreß auf den CO2-Gaswechsel von Tanne und Ahorn. Ber Dtsch Bot Ges 82: 65–70

    CAS  Google Scholar 

  • Bauer H, Harasser J, Bendetta G, Larcher W (1971) Jahresgang der Temperaturresistenz junger Holzpflanzen im Zusammenhang mit ihrer jahreszeitlichen Entwicklung. Ber Dtsch Bot Ges 84: 561–570

    Google Scholar 

  • Bauer H, Larcher W, Walker RB (1975) Influence of temperature stress on CO2-gas exchange. In: Cooper JP (ed) Photosynthesis and productivity in different environments. Cambridge Univ Press, Cambridge, pp 557–586

    Google Scholar 

  • Biebl R (1939) Über die Temperaturresistenz von Meeresalgen verschiedener Klimazonen und verschieden tiefer Standorte. Jahrb wiss Bot 88: 389–420

    Google Scholar 

  • Biebl R (1958) Temperatur- und osmotische Resistenz von Meeresalgen der bretonischen Küste. Protoplasma 50: 218–242

    Google Scholar 

  • Biebl R (1962a) Protoplasmatische Ökologie der Pflanzen. Wasser und Temperatur. Proto- plasmatologia XII/1. Springer, Wien

    Google Scholar 

  • Biebl R (1962 b) Temperaturresistenz tropischer Meeresalgen. (Verglichen mit jener der Algen in temperierten Meeresgebieten). Bot Marina 4:241–254

    Google Scholar 

  • Biebl R (1964) Temperaturresistenz tropischer Pflanzen auf Puerto Rico. Protoplasma 59: 133–156

    Google Scholar 

  • Biebl R (1967 a) Temperaturresistenz einiger Grünalgen warmer Bäche auf Island. Botaniste 50:33–42

    Google Scholar 

  • Biebl R (1967 b) Temperaturresistenz tropischer Urwaldmoose. Flora 157:25–30

    Google Scholar 

  • Biebl R (1968) Uber Wärmehaushalt und Temperaturresistenz arktischer Pflanzen in Westgrönland. Flora Abt B 157: 327–354

    Google Scholar 

  • Biebl R (1969) Untersuchungen zur Temperaturresistenz arktischer Süßwasseralgen im Raum von Barrow, Alaska. Mikroskopie 25: 3–6

    PubMed  CAS  Google Scholar 

  • Biebl R (1970) Vergleichende Untersuchungen zur Temperaturresistenz von Meeresalgen entlang der pazifischen Küste Nordamerikas. Protoplasma 69: 61–63

    Google Scholar 

  • Biebl R (1972) Studien zur Temperaturresistenz der Gezeitenalge Ulva pertusa Kjellmann. Bot Marina 15: 139–143

    Google Scholar 

  • Borisov AA (1965) Climates of the USSR ( Engl, transl.) Oliver & Boyd, Edinburgh

    Google Scholar 

  • Boutton TW, Harrison AT, Smith BN (1980) Distribution of biomass of species differing in photosynthetic pathway along an altitudinal transect in southeastern Wyoming grassland. Oecologia 45: 287–298

    Google Scholar 

  • Bradbury IK, Malcolm DC (1978) Dry matter accumulation by Picea sitchensis seedlings during winter. Can J For Res 8: 207–213

    Google Scholar 

  • Brisse H, Grandjouan G (1974) Classification climatique des plantes. Oecol Plant 9: 51–80

    Google Scholar 

  • Brock TD (1978) Thermophilic microorganisms and life at high temperatures. Springer, New York, Heidelberg, Berlin

    Google Scholar 

  • Brooking IR (1976) Male sterility in Sorghum bicolor (L.) Moench induced by low night temperature. I. Timing of the stage of sensitivity. Aust J Plant Physiol 3: 589–596

    CAS  Google Scholar 

  • Burke MJ, Stushnoff C (1979) Frost hardiness: A discussion of possible molecular causes of injury with particular reference to deep supercooling of water. In: Mussel H, Staples R (eds) Stress physiology in crop plants. Wiley and Sons, New York, pp 197–225

    Google Scholar 

  • Burke MJ, Gusta LV, Quamme HA, Weiser CJ, Li PH (1976) Freezing and injury in plants. Ann Rev Plant Physiol 27: 507–528

    Google Scholar 

  • Cary JW (1975) Factors affecting cold injury of sugarbeet seedlings. Agron J 67: 258–262

    CAS  Google Scholar 

  • Chandler WH (1954) Cold resistance in horticultural plants: a review. Proc Am Soc Hortic Sci 64: 552–572

    Google Scholar 

  • Christiansen MN (1963) Influence of chilling upon seedling development of cotton. Plant Physiol 38: 520–522

    PubMed  CAS  Google Scholar 

  • Christiansen MN (1979) Physiological bases for resistance to chilling. Hort Sci 14: 583–586

    Google Scholar 

  • Christophersen J (1973) Basic aspects of temperature action on microorganisms. In: Precht H, Christophersen J, Hensel H, Larcher W (eds) Temperature and life. Springer, Berlin, Heidelberg, New York, pp 3–59

    Google Scholar 

  • Clausen E (1964) The tolerance of hepatics to desiccation and temperature. Bryologist 67: 411–417

    Google Scholar 

  • Crookston RK, O’Toole J, Lee R, Ozbun JL, Wallace DH (1974) Photosynthetic depression in beans after exposure to cold for one night. Crop Sci 14: 457–464

    CAS  Google Scholar 

  • Davies MD, Dickinson DB (1971) Effects of freeze-drying on permeability and respiration of germinating lily pollen. Plant Physiol 24: 5–9

    CAS  Google Scholar 

  • De Candolle A (1855) Géographie botanique. Masson, Paris

    Google Scholar 

  • Dereuddre J (1978) Effets de divers types de refroidissements sur la teneur en eau et sur la résistance au gel des bourgeons de rameaux d’Épicea en vie ralentie. Physiol Veg 16: 469–489

    Google Scholar 

  • Dietrichson J (1969) The geographic variation of springfrost resistance and growth cessation in Norway spruce (Picea abies (L.) Karst.). Norske Skofors. Vollebekk 94–106

    Google Scholar 

  • Dircksen A (1964) Vergleichende Untersuchungen zur Frost-, Hitze- und Austrocknungsresistenz einheimischer Laub- und Lebermoose unter besonderer Berücksichtigung jahreszeitlicher Veränderungen. Dissertation Göttingen

    Google Scholar 

  • Drew AP, Bazzaz FA (1979) Response of stomatal resistance and photosynthesis to night temperature in Populus deltoides. Oecologia 41: 89–98

    Google Scholar 

  • Dunn EL (1975) Environmental stresses and inherent limitations affecting CO2 exchange in evergreen sclerophylls in mediterranean climates. In: Gates DM, Schmerl RB (eds) Perspectives of biophysical ecology. Ecological studies Vol. 12. Springer, Berlin, Heidelberg, New York, pp 159–181

    Google Scholar 

  • Duthie HC (1964) The survival of desmids in ice. Brit Phyc Bull 2: 376–377

    Google Scholar 

  • Eckardt FE, Heim G, Methy M, Sauvezon R (1975) Interception de l’énergie rayonnante, échanges gazeux et croissance dans une fôret méditerranéenne à feuillage persistant (Quercetum ilicis). Photosynthetica 9: 145–156

    Google Scholar 

  • Edlich F (1936) Einwirkung von Temperatur und Wasser auf aerophile Algen. Arch Mikrobiol 7: 62–109

    Google Scholar 

  • Eguchi T, Sakai A, Usui G, Uehara T (1966) Studies of selection of frosthardy CryptomeriaI. Silvae Genetica 15: 61–100

    Google Scholar 

  • Ehleringer JR (1978) Implications of quantum yield differences on the distributions of C3 and C4 grasses. Oecologia 31: 255–267

    Google Scholar 

  • Eldrige KG (1968) Physiological studies of altitudinal variation in Eucalyptus regnans. Ecol Soc Aust Proc 3: 70–76

    Google Scholar 

  • Emberger L (1932) Sur une formule climatique et ses applications en botanique. La Météorologie 92: 1–10

    Google Scholar 

  • Ernst W (1971) Zur Ökologie der Miombo-Wälder. Flora 160: 317–331

    Google Scholar 

  • Firbas F (1949) Spät-und nacheiszeitliche Waldgeschichte Mitteleuropas nördlich der Alpen. Bd. 1: Allgemeine Waldgeschichte. Fischer, Jena

    Google Scholar 

  • Fowler DB, Dvorak J, Gusta LV (1977) Comparative cold hardiness of several Triticum species and Secale cereale L. Crop Sci 17: 941–943

    Google Scholar 

  • France RC, Cline ML, Reid CPP (1979) Recovery of ectomycorrhizal fungi after exposure to subfreezing temperatures. Can J Bot 57: 1845–1848

    Google Scholar 

  • Fuller MP, Eagles CF (1978) A seedling test for cold hardiness in Lolium perenne L. J Agric Sci Camb 91: 217–222

    Google Scholar 

  • George MF, Burke MJ, Pellett HM, Johnson AG (1974) Low temperature exotherms and woody plant distribution. Hort Sci 9: 519–522

    Google Scholar 

  • Göppert HR (1978) as referred by Kol E (1968) Kryobiologie. I. Kryovegetation. Schweizer- bart, Stuttgart

    Google Scholar 

  • Goryshina TK (1972) Recherches écophysiologiques sur les plantes éphéméroides printaniéres dans les chênaies de la zone forêt-steppe de la russie centrale, Oecol Plant 7: 241–258

    Google Scholar 

  • Gusta LV, Fowler DB (1979) Cold resistance and injury in winter cereals. In: Mussell H, Staples R (eds) Stress physiology in crop plants. Wiley and Sons, New York, pp 159–178

    Google Scholar 

  • Häckel H (1978) Modellrechnungen über die Temperaturen von Pflanzen in winterlichen Strahlungsnächten. Agric Meteorol 19: 497–504

    Google Scholar 

  • Hagem O (1962) Additional observations on the dry matter increase of coniferous seedlings in winter. Investigations in an oceanic climate. Medd Vestl Forstl Forsoeksstn 37: 249–347

    Google Scholar 

  • Havis JR (1976) Root hardiness of woody ornamentals. Hort Sci 11: 385–386

    Google Scholar 

  • Heber U, Santarius KA (1973) Cell death by cold and heat, and resistance to extreme temperatures. Mechanisms of hardening and dehardening. In: Precht H, Christophersen J, Hensel H, Larcher W (eds) Temperature and life. Springer, Berlin, Heidelberg, New York, pp 232–263

    Google Scholar 

  • Hoffmann G (1959) Die mittleren jährlichen und absoluten Extremtemperaturen der Erde. III. Tabellen. Met Abh 8, Heft 4, Reimer, Berlin

    Google Scholar 

  • Hoffmann G (1960) Die mittleren jährlichen und absoluten Extremtemperaturen der Erde. II. Ergebnisse. Met Abh 8, Heft 3. Reimer, Berlin

    Google Scholar 

  • Hoffmann G (1963) Die höchsten und tiefsten Temperaturen auf der Erde. Umschau 63:16–18

    Google Scholar 

  • Holm-Hansen O (1963) Viability of blue-green and green algae after freezing. Physiol Plant 16: 530–540

    Google Scholar 

  • Hudson MA, Brustkern P (1965) Resistance of young and mature leaves of Mnium undulatum ( L.) to frost. Planta 66: 135–155

    Google Scholar 

  • Hwang S (1968) Investigation of ultra-low temperature for fungal cultures. I. An evaluation of liquid-nitrogen storage for preservation of selected fungal cultures. Mycologia 60: 613–621

    Google Scholar 

  • Irmscher E (1912) Über die Resistenz der Laubmoose gegen Austrocknung und Kälte. Jahrb wiss Bot 50: 387–449

    Google Scholar 

  • Ivory DA, Whiteman PC (1978) Effects of environmental and plant factors on foliar freezing resistance in tropical grasses. II. Comparison of frost resistance between cultivars of Cenchrus ciliaris, Chloris gayana and Setaria anceps. Aust J Agric Res 29: 261–266

    Google Scholar 

  • Kacperska-Palacz A (1978) Mechanism of cold acclimation in herbaceous plants. In: Li PH, Sakai A (eds) Plant cold hardiness and freezing stress. Academic Press, New York, pp 139–152

    Google Scholar 

  • Kainmüller C (1975) Temperaturresistenz von Hochgebirgspflanzen. Anz math.-naturw Klasse Österr Akad Wiss: 67–75

    Google Scholar 

  • Kaku S, Iwaya M (1978) Low temperature exotherms in xylems of evergreen and deciduous broadleaved trees in Japan with references to freezing resistance and distribution range. In: Li PH, Sakai A (eds) Plant cold hardiness and freezing stress. Academic Press, New York, pp 227–239

    Google Scholar 

  • Kallio P, Kärenlampi L (1975) Photosynthesis in mosses and lichens. In: Cooper JP (ed) Photosynthesis and productivity in different environments. Cambridge Univ Press, Cambridge, pp 393–423

    Google Scholar 

  • Kappen L (1964) Untersuchungen über den Jahreslauf der Frost-, Hitze- und Austrocknungsresistenz von Sporophyten einheimischer Polypodiaceen. Flora 155: 124–166

    Google Scholar 

  • Kappen L (1965) Untersuchungen über die Widerstandsfähigkeit der Gametophyten einheimischer Polypodiaceen gegenüber Frost, Hitze und Trockenheit. Flora 156: 101–116

    Google Scholar 

  • Kappen L (1966) Der Einfluß des Wassergehaltes auf die Widerstandsfähigkeit von Pflanzen gegenüber hohen und tiefen Temperaturen, untersucht an Blättern einiger Farne und Ramonda myconi. Flora 156: 427–445

    Google Scholar 

  • Kappen L (1969) Frostresistenz einheimischer Halophyten in Beziehung zu ihrem Salz-, Zucker- und Wassergehalt im Sommer und Winter. Flora B 158: 232–260

    Google Scholar 

  • Kappen L, Lange OL (1970 a) Kälteresistenz von Flechten aus verschiedenen Klimagebieten. Dtsch Bot Ges Neue Folge 4: 61–65

    Google Scholar 

  • Kappen L, Lange OL (1970b) The cold resistance of phycobionts from macrolichens of various habitats. Lichenologist 4: 289–293

    Google Scholar 

  • Kappen L, Lange OL (1972) Die Kälteresistenz einiger Makrolichenen. Flora 161: 1–29

    Google Scholar 

  • Kärcher H (1931) Über Kälteresistenz einiger Pilze und Algen. Planta 14: 515–516

    Google Scholar 

  • Kaufmann MR (1977) Soil temperature and drying cycle effects on water relations of Pinus radiata. Can J Bot 55: 2413–2418

    Google Scholar 

  • Keller Th (1978) Frostschäden als Folge einer latenten Immissionsschädigung. Staub Reinhalt Luft 1978: 24–26

    Google Scholar 

  • Kemmer E, Thiele I (1955) Frostresistenzprüfungen an keimenden Kernobstsamen. Züchter 25: 57–60

    Google Scholar 

  • Kislyuk IM, Vas’kovsky MD (1972) Vliyanie okhlazhdeniya list’ev ogurtsa na fotosintez i fotokhimicheskie reaktsii. ( Effect of cooling of cucumber leaves on photosynthesis and photochemical reactions ). Fiziol Rast 19: 813–818

    CAS  Google Scholar 

  • Klosson RJ, Krause GH (1981) Freezing injury in cold-acclimated and unhardened spinach leaves. Planta 151: 339–346

    CAS  Google Scholar 

  • Koh S, Kumura A (1973) Studies on matter production in wheat plant. I. Diurnal changes in carbon dioxide exchange of wheat plant under field conditions. Proc Crop Sci Soc Jpn 42: 227–235

    CAS  Google Scholar 

  • Koh S, Kumura A, Murata Y (1978) Studies on matter production in wheat plant. V. The mechanism involved in an after-effect of low night temperature. Jpn J Crop Sci 47: 75–81

    Google Scholar 

  • Kotilainen MJ (1950) Über die Frostschäden an wilden Pflanzen. Proc Finnish Acad Sci Letters 1948, Helsinki

    Google Scholar 

  • Kozlowski TT, Keller Th (1966) Food relations of woody plants. Bot Rev 32: 293–382

    CAS  Google Scholar 

  • Kramer PJ, Kozlowski TT (1979) Physiology of woody plants. Academic Press, New York

    Google Scholar 

  • Kramer JP, Wetmore TH (1943) Effects of defoliation on cold resistance and diameter growth of broad leaved evergreens. Am J Bot 30: 428–431

    Google Scholar 

  • Krasavtsev OA (1960) Zakalivanie drevesnykh rastenii k morozu. Trudy Konf. Fiziol ustoi-chivost rastenii. Nauka, Moskva, pp 229–234

    Google Scholar 

  • Kusumoto T (1959) Physiological and ecological studies on the plant production in plant communities. 7. On the resistance of evergreen broad-leaved trees to cold temperature. Bull Educat Res Inst, Univ Kagoshima 11: 48–55

    Google Scholar 

  • Lakhanov AP, Balachkova NE (1978) Ustoivost zernobobovykh kultur k nizkim polozhitel- nym temperaturam v protsesse ontogeneza rastenii. ( Resistance of legumes to low positive temperatures in the process of plant ontogenesis ). Fiziol Rast 25: 592–597

    Google Scholar 

  • Lange OL (1965) Der CO2-Gaswechsel von Flechten bei tiefen Temperaturen. Planta 64: 1–19

    CAS  Google Scholar 

  • Langlet O (1937) Studier över tallens fysiologiska variabilitet och dess samband med klimatet. Medd Statens Skogsförs Anst 29: 421–470

    Google Scholar 

  • Larcher W (1954) Die Kälteresistenz mediterraner Immergrüner und ihre Beeinflußbarkeit. Planta 44: 607–638

    Google Scholar 

  • Larcher W (1961a) Jahresgang des Assimilations- und Respirationsvermögens von Olea europaea L. ssp. sativa Hoff, et Link., Quercus ilex L. and Quercus pubescens Willd. aus dem nördlichen Gardaseegebiet. Planta 56: 575–606

    CAS  Google Scholar 

  • Larcher W (1961 b) Zur Assimilationsökologie der immergrünen Olea europaea und Quercus ilex und der sommergrünen Quercus pubescens im nördlichen Gardaseegebiet. Planta 56:607–617

    CAS  Google Scholar 

  • Larcher W (1963) Winterfrostschäden in den Parks und Gärten von Arco und Riva am Gardasee. Veroeff Museum Ferdinandeum Innsbruck 43: 153–199

    Google Scholar 

  • Larcher W (1968) Die Temperaturresistenz als Konstitutionsmerkmal der Pflanzen. Dtsch Akad Landwirtschaftswiss, Tagungsbericht 100: 7–21

    Google Scholar 

  • Larcher W (1969 a) The effect of environmental and physiological variables on the carbon dioxide gas exchange of trees. Photosynthetica 3:167–198

    CAS  Google Scholar 

  • Larcher W (1969 b) Zunahme des Frostabhärtungs Vermögens von Quer eus ilex im Laufe der Individualentwicklung. Planta 88:130–135

    Google Scholar 

  • Larcher W (1970) Kälteresistenz und Überwinterungsvermögen mediterraner Holzpflanzen. Oecol Plant 5: 267–286

    Google Scholar 

  • Larcher W (1971) Die Kälteresistenz von Obstbäumen und Ziergehölzen subtropischer Herkunft. Oecol Plant 6: 1–14 (1971)

    Google Scholar 

  • Larcher W (1973) Gradual progress of damage due to temperature stress. Temperature resistance and survival. In: Precht H, Christophersen J, Hensel H, Larcher W (eds) Temperature and life. Springer, Berlin, Heidelberg, New York, pp 194–213

    Google Scholar 

  • Larcher W (1975) Pflanzenökologische Beobachtungen in der Pâramostufe der venezolanischen Anden. Anz Oesterr Akad Wiss Math-naturw Kl, 194–213

    Google Scholar 

  • Larcher W (1977) Ergebnisse des IBP-Projekts Zwergstrauchheide Patscherkofel. Sitz Ber Oesterr Akad Wiss, Math-naturw Kl, Abt I, 186: 301–371

    Google Scholar 

  • Larcher W (1980 a) Untersuchungen zur Frostresistenz von Palmen. Anz Oesterr Akad Wiss Math-naturw Kl, Jg 1980, 3: 1–12

    Google Scholar 

  • Larcher W ( 1980 b) Klimastreß im Gebirge - Adaptationstraining und Selektionsfilter für Pflanzen. Rheinisch-Westfal Akad Wiss Vorträge, N 291:49–88. Westdeutscher Verlag, Opladen

    Google Scholar 

  • Larcher W (1981a) Effects of low temperature stress and frost injury on plant productivity. In: Johnson CD (ed) Physiological processes limiting plant productivity. Butterworths, London, pp 253–269

    Google Scholar 

  • Larcher W (1981b) Resistenzphysiologische Grundlagen der evolutiven Kälteakklimatisation von Sproßpflanzen. Plant Syst Evol 137: 145–180

    Google Scholar 

  • Larcher W (1981c) Low temperature effects on Mediterranean sclerophylls: An unconventional viewpoint: In: Margaris NS, Mooney HA (eds) Components of productivity of Mediterranean regions, Basic and applied aspects. Junk, The Hague, in press

    Google Scholar 

  • Larcher W, Bodner M (1980) Dosisletalität-Nomogramm zur Charakteristik der Erkältungsempfindlichkeit tropischer Pflanzen. Angew Bot 54: 273–278

    Google Scholar 

  • Larcher W, Eggarter H (1960) Anwendung des Triphenyltetrazoliumchlorids zur Beurteilung von Frostschäden in verschiedenen Achsengeweben bei Pirus-Arten, und Jahresgang der Resistenz: Protoplasma 51: 595–619

    Google Scholar 

  • Larcher W, Mair B (1969) Die Temperaturresistenz als ökophysiologisches Konstitutionsmerkmal: 1. Quereus ilex und andere Eichenarten des Mittelmeergebietes. Oecol Plant 4: 347–376

    Google Scholar 

  • Larcher W, Wagner J (1976) Temperaturgrenzen der CO2-Aufnahme und Temperaturresistenz der Blätter von Gebirgspflanzen im vegetationsaktiven Zustand. Oecol Plant 11: 361–374

    Google Scholar 

  • Larcher W, Winter A (1982) Frost susceptibility of palms: Experimental data and their interpretation. Principes 26, in press

    Google Scholar 

  • Lasley SE, Garber MP, Hodges CF (1979) Aftereffects of light and chilling temperatures on photosynthesis in excised cucumber cotyledons. J Am Soc Hortic Sci 104: 477–480

    Google Scholar 

  • Lavagne A, Muotte P (1971) Premières observations chorologiques et phénologiques sur les ripisilves â Nerium oleander ( Neriaies) en Provence. Ann Univ Provence MarScille 15: 135–155

    Google Scholar 

  • Law CN, Jenkins GA (1970) A genetic study of cold resistance in wheat. Gen Res Cambridge 15: 197–308

    Google Scholar 

  • Layton C, Parsons RF (1972) Frost resistance of seedlings of two ages of some southern Australian woody species. Bull Torrey Bot Club 99: 118–122

    Google Scholar 

  • Levitt J (1956) The hardiness of plants. Academic Press, New York

    Google Scholar 

  • Levitt J (1958) Frost, drought, and heat resistance. Protoplasmatologia VIII/6. Springer, Wien

    Google Scholar 

  • Levitt J (1969) Growth and survival of plant at extremes of temperature — A unifiedconcept. In: Dormancy and survival 23rd. Symp Soc Exp Biol, pp 395–448

    Google Scholar 

  • Levitt J (1980) Responses of plants to environmental stresses. Vol 1, Chilling, freezing, and high temperature stresses. 2nd edn, Academic Press, New York

    Google Scholar 

  • Li PH, Palta JP (1978) Frost hardening and freezing stress in tuber-bearing Solanum species. In: Li PH, Sakai A (eds) Plant cold hardiness and freezing stresses. Academic Press, New York, pp 49–71

    Google Scholar 

  • Li PH, Sakai A (eds) (1978) Plant cold hardiness and freezing stress. Mechanisms and implications. Academic Press, New York

    Google Scholar 

  • Lin SS, Peterson ML (1975) Low temperature-induced floret sterility in rice. Crop Sci 15: 657–660

    Google Scholar 

  • Lindegren RM (1933) Decay of wood and growth of some Hymenomycetes as affected by temperature. Phytopathology 23: 72–81

    Google Scholar 

  • Lipman CB (1936) The tolerance of liquid air temperatures by dry moss protonema. Bull Torrey Bot Club 63: 515–518

    Google Scholar 

  • Lona F (1963) Caratteristiche termoperiodiche e di resistenza al freddo di alcune piante dei deserti circummediterranei. Giron Bot Ital 70: 565–574

    Google Scholar 

  • Lozina-Lozinskii LK (1974) Studies in cryobiology. Wiley and Sons, New York

    Google Scholar 

  • Ludlow MM, Wilson GL (1971) Photosynthesis of tropical pasture plants. I. Illuminance, carbon dioxide concentration, leaf temperature, and leaf-air vapour pressure difference. Aust J Biol Sci 24: 449–470

    Google Scholar 

  • Lundquist V, Pellett H (1976) Preliminary survey of cold hardiness levels of several bulbous ornamental plant species. Hort Sci 11: 161–162

    Google Scholar 

  • Lutz JM, Hardenburg RE (1968) The commercial storage of fruits, vegetables, and florist and nursery stocks. Agric. Handbook No. 66, Washington, US Gov. Printing Office

    Google Scholar 

  • Lydolph PE (1977) Climates of the Soviet Union. In: Landsberg HE (ed) World survey of climatology. Elsevier, Amsterdam, Vol. 7

    Google Scholar 

  • Lyons JM (1973) Chilling injury in plants. Ann Rev Plant Physiol 24: 445–466

    CAS  Google Scholar 

  • Lyons JM, Breidenbach RW (1979) Strategies for altering chilling sensitivity as a limiting factor in crop production. In: Mussel H, Staples RG (eds) Stress physiology in crop plants. Wiley and Sons, New York, pp 179–196

    Google Scholar 

  • Lyons JM, Graham D, Raison JK (eds) (1979) Low temperature stress in crop plants. The role of the membrane. Academic Press, New York

    Google Scholar 

  • Maier M, Kappen L (1979) Cellular compartmentalization of salt ions and protective agents with respect to freezing tolerance of leaves. Oecologia 38: 303–316

    Google Scholar 

  • Mair B (1968) Frosthärtegradienten entlang der Knospenfolge auf Eschentrieben. Planta 82: 164–169

    Google Scholar 

  • Marini RP, Boyce BR (1977) Susceptibility of crown tissues of “Catskill” strawberry plants to low-temperature injury. J Am Soc Hortic Sci 102: 515–516

    Google Scholar 

  • Mazur P (1966) Physical and chemical basis of injury in single-celled microorganisms subjected to freezing and thawing. In: Meryman HT (ed) Cryobiology. Academic Press, London, pp 214–315

    Google Scholar 

  • Mazur P (1969) Freezing injury in plants. Ann Rev Plant Physiol 20: 419–448

    Google Scholar 

  • McConnell DB, Sheehan TJ (1978) Anatomical aspects of chilling injury to leaves of Phalaenopsis Bl. Hort Sci 13: 705–706

    Google Scholar 

  • McMillan C (1975) Adaptive differentiation to chilling in mangrove populations. In: Walsh GE, Snedaker SC, Teas HJ (eds) Proc Int Symp Biol Managemt Mangroves, Univ Florida Press, Gainesville, pp 62–68

    Google Scholar 

  • McMillan C (1979) Differentiation in response to chilling temperatures among populations of three marine spermatophytes, Thalassia testudinum, Syringodium filiforme and Halodules wrightii. Am J Bot 66: 810–819

    Google Scholar 

  • McWilliams EL, Smith CW (1978) Chilling injury in Scindapsus pictus, Aphelandra squarrosa and Maranta leuconeura. Hort Sci 13: 179–180

    Google Scholar 

  • Migita S (1966) Freeze-preservation of Porphyr a thalli in viable state — II. Effect of cooling velocity and water content of thalli on the frost-resistance. Bull Fac Fisheries, Nagasaki Univ 21: 131–138

    Google Scholar 

  • Miller JD (1976) Cold tolerance in sugar cane relatives. Sugar y Azucar, March 1976

    Google Scholar 

  • Mittelstädt H (1965) Beiträge zur Züchtungsforschung beim Apfel. VIII. Untersuchungen zur Frostresistenz an Sorten, Unterlagen und Zuchtmaterial. Züchter 35: 311–327

    Google Scholar 

  • Molisch H (1897) Untersuchungen über das Erfrieren der Pflanzen. Fischer, Jena

    Google Scholar 

  • Moser M (1958) Der Einfluß tiefer Temperaturen auf das Wachstum und die Lebenstätigkeit höherer Pilze mit spezieller Berücksichtigung von Mykorrhizapilzen. Sydowia 12: 386–399

    Google Scholar 

  • Murawski H (1961) Beiträge zur Züchtungsforschung beim Apfel. VI. Untersuchungen über die Vererbung der Frostresistenz an Sämlingen der Sorten Glogierowka und Jonas Hannes. Züchter 31: 52–57

    Google Scholar 

  • Nath J, Anderson JO (1975) Effect of freezing and freeze-drying on the viability and storage of Lilium longiflorum L and Zea mays L. pollen. Cryobiology 12: 81–88

    PubMed  CAS  Google Scholar 

  • Negisi K (1966) Photosynthesis, respiration and growth in 1-year-old seedlings of Pinus densiflora, Cryptomeria japonica and Chamaecyparis obtusa. Bull Tokyo Univ Forests 62: 1–115

    Google Scholar 

  • Neilson RE, Ludlow MM, Jarvis PG (1972) Photosynthesis in sitka spruce Picea sitchensis (Bong.) Carr. II. Response to temperature. J Appl Ecol 9: 721–745

    Google Scholar 

  • Nissila PC, Fuchigami LH (1978) The relationship between vegetative maturity and the first stage of cold acclimation. J Am Soc Hortic Sci 103: 710–711

    Google Scholar 

  • Noack K (1912) Beiträge zur Biologie der thermophilen Organismen. Jahrb Wiss Bot 51: 593–648

    Google Scholar 

  • Nobel PS (1980) Influences of minimum stem temperatures on ranges of cacti in southwestern United States and Central Chile. Oecologia 47: 10–15

    Google Scholar 

  • Noshiro M, Sakai A (1979) Freezing resistance of herbaceous plants. Low Temp Sci Ser B 37: 11–18

    Google Scholar 

  • Oellet CE, Sherk LC (1968) Zones de rusticité pour les plantes au Canada. Ministère de l’Agric Canada

    Google Scholar 

  • Olien CR (1964) Freezings processes in the crown of “Hudson” barley, Hordeum vulgare (L. emend. Lam.) Hudson. Crop Sci 4: 91–95

    Google Scholar 

  • Olien CR (1967) Freezing stresses and survival. Ann Rev Plant Physiol 18: 387–408

    Google Scholar 

  • Öquist G, Brunes L, Hällgren J-E, Gezelius K, Hallén M, Malmberg G (1980) Effects of artificial frost hardening and winter stress on net photosynthesis, photosynthetic electron transport and RuBP carboxylase activity in seedlings of Pinus silvestris. Physiol Plant 48: 526–531

    Google Scholar 

  • Orvig S (1970) Climates of the polar regions. In: Landsberg HE (ed) World survey of climatology. Elsevier, Amsterdam, Vol 14

    Google Scholar 

  • Palta JP, Li PH (1979) Frost hardiness in relation to leaf anatomy and natural distribution of several Solanum species. Crop Sci 19: 665–671

    Google Scholar 

  • Parker J (1960) Survival of woody plants at extremely low temperatures. Nature 187: 1133

    Google Scholar 

  • Parker J (1961) Seasonal trends in carbon dioxide absorption, cold resistance, and transpiration of some evergreeens. Ecology 42: 372–380

    Google Scholar 

  • Parker J (1962) Seasonal changes in cold resistance and free sugars of some hardwood tree barks. For Sci 8: 255–262

    CAS  Google Scholar 

  • Parker J (1963) Cold resistance in woody plants. Bot Rev 29: 123–201

    CAS  Google Scholar 

  • Patterson BD, Murata T, Graham D (1976) Electrolyte leakage induced by chilling in Passiflora species tolerant to different climates. Aust J Plant Physiol 3: 435–442

    Google Scholar 

  • Patterson BD, Pauli R, Smillie RM (1978) Chilling resistance in Lycopersicon hirsutum Humb, & Bonpl., a wild tomato with a wide altitudinal distribution. Aust J Plant Physiol 5: 609–617

    Google Scholar 

  • Peoples TR, Koch DW (1978) Physiological response of three alfalfa cultivars to one chilling night. Crop Sci 18: 255–258

    CAS  Google Scholar 

  • Pharis RP, Hellmers H, Schuurmans E (1970) Effects of subfreezing temperatures on photosynthesis of evergreen conifers under controlled environment conditions. Photosynthetica 4: 273–279

    Google Scholar 

  • Pigott CD, Huntley JP (1980) Factors controlling the distribution of Tilia cordata at the northern limits of its geographical range. III. Nature and causes of seed sterility. New Phytol, in press

    Google Scholar 

  • Pisek A (1958) Versuche zur Frostresistenzprüfung von Rinde, Winterknospen und Blüte einiger Arten von Obsthölzern. Gartenbauwissenschaft 23: 54–74

    Google Scholar 

  • Pisek A (1960) Immergrüne Pflanzen. In: Ruhland W (ed) Handbuch der Pflanzenphysiologie. Springer, Berlin, Heidelberg, New York, Vol. V, Part II, pp 415–459

    Google Scholar 

  • Pisek A (1973) Photosynthesis. In Precht H, Christophersen J, Hensel H, Larcher W (eds) Temperature and life. Springer, Berlin, Heidelberg, New York, pp 102–127

    Google Scholar 

  • Pisek A, Kemnitzer R (1968) Der Einfluß von Frost auf die Photosynthese der Weißtanne (Abies alba Mill.). Flora B 157: 314–326

    Google Scholar 

  • Pisek A, Schießl R (1947) Die Temperaturbeeinflußbarkeit der Frosthärte von Nadelhölzern und Zwergsträuchern an der alpinen Waldgrenze. Ber Naturwiss- med Ver Innsbruck 47: 33–52

    Google Scholar 

  • Pisek A, Winkler E (1958) Assimilationsvermögen und Respiration der Fichte (Picea excelsa Link.) in verschiedener Höhenlage und der Zirbe (Pinus cembra L.) an der alpinen Waldgrenze. Planta 51:518–543

    CAS  Google Scholar 

  • Pisek A, Larcher W, Unterholzner R (1967) Kardinale Temperaturbereiche der Photosynthese und Grenztemperaturen des Lebens der Blätter verschiedener Spermatophyten I. Temperaturminimum der Nettoassimilation, Gefrier- und Frostschadensbereiche der Blätter. Flora B 157: 239–264

    Google Scholar 

  • Pollard DFW, Wareing PF (1968) Rates of dry matter production in forest tree seedlings. Ann Bot 32: 573–591

    Google Scholar 

  • Pollock BM, Toole VK (1966) Imbibition period as the critical temperature sensitive stage in germination of lima bean seeds. Plant Physiol 41: 221–229

    PubMed  CAS  Google Scholar 

  • Quamme HA (1976) Relationship of the low temperature exotherm to apple and pear production in North America. Can J Plant Sci 56: 493–500

    Google Scholar 

  • Quamme HA (1978) Mechanism of supercooling in overwintering peach flower buds. J Am Soc Hortic Sci 103: 57–61

    Google Scholar 

  • Rajashekar C, Burke MJ (1978) The occurrence of deep undercooling in the genera Pyrus, Prunus, and Rosa: A preliminary report. In: Li PH, Sakai A (eds) Plant cold hardiness and freezing stress. Academic Press, New York, pp 213–225

    Google Scholar 

  • Rakitina ZG (1970) Vliyanie aeratsii na morozostojkost kornevykh sistem drevesnykh rasteniy. (Effect of aeration of the root frost-resistance in woody plants). Fiziol Rast 17:808– 818

    Google Scholar 

  • Rakitina ZG (1977) Vliyanie pritertoj ledyanoi korki na rasteniya ozimoi pshenitsy v zavisti- mosti ot usloviy ikh zatopleniya do zamorazhivaniya. (Effect of adjacent ice crust on winter wheat depending on conditions of its inundation prior to freezing). Fiziol Rast 24: 403–411

    Google Scholar 

  • Raunkiaer C (1910) Statistik der Lebensformen als Grundlage für die biologische Pflanzengeographie. Beih Bot Cbl 27/11:171–206 d

    Google Scholar 

  • Reader RJ (1979) Flower cold hardiness: a potential determinant of the flowering sequence exhibited by bog ericads. Can J Bot 57: 997–999

    Google Scholar 

  • Regehr DL, Bazzaz FA (1976) Low temperature photosynthesis in successional winter annuals. Ecology 57: 1297–1303

    CAS  Google Scholar 

  • Riedmüller-Schölm HE (1974) The temperature resistance of Alaskan plants from the continental boreal zone. Flora 163: 230–250

    Google Scholar 

  • Rowley JA, Taylor AO (1972) Plants under climatic stress. IV. Effects of CO2 and O2 on photosynthesis under high-light, low-temperature stress. New Phytol 71: 477–481

    Google Scholar 

  • Rowley JA, Tunnicliffe CG, Taylor AO (1975) Freezing sensitivity of leaf tissue of C4 grasses. Aust J Plant Physiol 2: 447–451

    Google Scholar 

  • Sakai A (1960) Survival of the twig of woody plants at -196 °C. Nature 185: 393–394

    Google Scholar 

  • Sakai A (1965) Survival of plant tissue at super low temperatures. III. Relation between effective prefreezing temperatures and the degree of frost hardiness. Plant Physiol 40: 882–887

    PubMed  CAS  Google Scholar 

  • Sakai A (1971) Freezing resistance of relicts from the arcto-tertiary flora. New Phytol 70: 1199–1205

    Google Scholar 

  • Sakai A (1972) Freezing resistance of evergreen and broad-leaf trees indigenous to Japan. J Jap For Soc 54: 333–339

    Google Scholar 

  • Sakai A (1978 a) Low temperature exotherm of winter buds of hardy conifers. Plant Cell Physiol 19:1439–1446

    Google Scholar 

  • Sakai A (1978 b) Frost hardiness of flowering and ornamental trees. J Jap Soc Hortic Sci 47:248–260

    Google Scholar 

  • Sakai A (1978 c) Freezing tolerance of evergreen and deciduous broadleaved trees in Japan with reference to tree regions. Low Temp Sci Ser B 36:1–19

    Google Scholar 

  • Sakai A (1978 d) ccc. Low Temp Sci Ser B 36:21–29

    Google Scholar 

  • Sakai A (1979 a) Deep supercooling of winter flower buds of Cornus florida L. Hortic Sci 14:69–70

    Google Scholar 

  • Sakai A (1979 b) Freezing avoidance mechanism of primordial shoots of conifer buds. Plant Cell Physiol 20:1381–1390

    Google Scholar 

  • Sakai A, Hakoda N (1979) Cold hardiness of the genus Camellia. Am Soc Hortic Sci 104: 53–57

    Google Scholar 

  • Sakai A, Miwa S (1979) Frost hardiness of Ericoideae. Am Soc Hortic Sci 104: 26–28

    Google Scholar 

  • Sakai A, Okada S (1971) Freezing resistance of conifers. Silvae Genetica 20: 53–100

    Google Scholar 

  • Sakai A, Otsuka K (1970) Freezing resistance of alpine plants. Ecology 51: 665–671

    Google Scholar 

  • Sakai A, Wardle P (1978) Freezing resistance of New Zealand trees and shrubs. N Z J Ecol 1: 51–61

    Google Scholar 

  • Sakai A, Weiser CJ (1973) Freezing resistance of trees in North America with reference to tree regions. Ecology 54: 118–126

    Google Scholar 

  • Scheumann W (1968) Die Dynamik der Frostresistenz und ihre Bestimmung an Gehölzen im Massentest. Dtsch Akad Landwirt Wiss Berlin, Tagungsbericht 100: 45–54

    Google Scholar 

  • Scheumann W, Hoffmann K (1967) Die serienmäßige Prüfung der Frostresistenz einjähriger Fichtensämlinge. Arch Forstwesen 16: 701–705

    Google Scholar 

  • Schnetter ML (1965) Frostresistenzuntersuchungen an Bellis perennis, Plantago media und Helleborus niger im Jahresablauf. Biol Cbl 84: 469–487

    Google Scholar 

  • Schölm HE (1968) Untersuchungen zur Hitze- und Frostresistenz einheimischer Süßwasseralgen. Protoplasma 65: 97–118

    Google Scholar 

  • Scorza R, Wiltbank WJ (1976) Measurement of avocado cold hardiness. Hort Sci 11:267– 268

    Google Scholar 

  • Seeley EJ, Kammereck R (1977) Carbon fluxes in apple trees: Use of a closed system to study the effect of a mild cold stress on “Golden Delicious”. J Am Soc Hortic Sci 102: 282–286

    CAS  Google Scholar 

  • Scible D (1939) Ein Beitrag zur Frage der Kälteschäden an Pflanzen bei Temperaturen über dem Gefrierpunkt. Beitr Biol Pflanz 26: 289–330

    Google Scholar 

  • Senser M, Beck E (1977) On the mechanisms of frost injury and frost hardening of spruce chloroplasts. Planta 137: 195–201

    CAS  Google Scholar 

  • Simura T (1957) Breeding of polyploid varieties of the tea plant with special reference to their cold resistance. Cytologia, Proc Int Genetics Symp 1956, pp 321–324

    Google Scholar 

  • Skinner HT (1962) The geographic charting of plant climatic adaptability. 15th Int Cgr Hort, Nizza 1958, Proc 3: 485–491

    Google Scholar 

  • Smillie RM (1979) The useful chloroplast: A new approach for investigating chilling stress in plants. In: Lyons JM, Graham D, Raison JK (eds) Low temperature stress in crop plants. The role of the membrane. Academic Press, New York, pp 187–202

    Google Scholar 

  • Smith D (1964) More about cold tolerance. Effects of a hard freezing upon cultivated palms during December 1962. Principes 8: 26–39

    Google Scholar 

  • Smithberg MH, Weiser CJ (1968) Patterns of variation among climatic races of red-osier dogwood. Ecology 49: 495–505

    Google Scholar 

  • Soderholm PK, Gaskins MH (1961) Evaluation of cold resistance in the genus Coffea. Coffee 3: 40–45

    Google Scholar 

  • Soeder C, Stengel E (1974) Physico-chemical factors affecting metabolism and growth rate. In: Stewart WDP (ed) Algal physiology and biochemistry. Biol Monogr, Blackwell, Oxford Vol 10, pp 714–740

    Google Scholar 

  • Sosinska A, Maleszewski S, Kacperska-Palacz A (1977) Carbon photosynthetic metabolism in leaves of cold-treated rape plants. Z Pflanzenphysiol 83: 285–291

    CAS  Google Scholar 

  • Spranger E (1941) Das Erfrieren der Pflanzen über O °C mit besonderer Berücksichtigung der Warmhauspflanzen. Gartenbauwissenschaft 16: 90–128

    Google Scholar 

  • Stanwood PC, Bass LN (1978) Ultracold preservation of seed germ plasm. In: Li PH, Sakai A (eds) Plant cold hardiness and freezing stress. Academic Press, New York, pp 361–371

    Google Scholar 

  • Steponkus P (1978) Cold hardiness and freezing injury of agronomic crops. Advances in Agronomy 30:51–98. Academic Press, New York

    Google Scholar 

  • Stergios BG, Howell GS (1977) Effects of defoliation, trellis height, and cropping stress on the cold hardiness of Concord grapevines. Am J Enology and Viticulture 28: 34–42

    Google Scholar 

  • Sucoff E, Hong SG, Wood A (1976) NaCl and twig dieback along highways and cold hardiness of highway versus garden twigs. Can J Bot 54: 2268–2274

    CAS  Google Scholar 

  • Taylor AO, Rowley JA (1971) Plants under climatic stress. I. Low temperature, high light effects on photosynthesis. Plant Physiol 47: 713–718

    PubMed  CAS  Google Scholar 

  • Teeri JA, Stowe LG (1976) Climatic patterns and the distribution of C4 grasses in North America. Oecologia 23: 1–12

    Google Scholar 

  • Teeri JA, Patterson DT, Alberte RS, Castleberry RM (1977) Changes in the photosynthetic apparatus of maize in response to simulated natural temperature fluctuations. Plant Physiol 60: 370–373

    PubMed  CAS  Google Scholar 

  • Terumoto I (1964) Frost resistance in some marine algae from the winter intertidal zone. Low Temp Sci B 22: 19–28

    Google Scholar 

  • Thomas SM, Long SP (1978) C4 photosynthesis in Spartina townsendii at low and high temperatures. Planta 142: 171–174

    CAS  Google Scholar 

  • Till O (1956) Über die Frosthärte von Pflanzen sommergrüner Laubwälder. Flora 143:499– 542

    Google Scholar 

  • Timmis R (1977) Critical frost temperature for Douglas-fir cone buds. Can J For Res 7: 19–22

    Google Scholar 

  • Toriyama K (1976) Rice breeding for tolerance to climatic injury in Japan. In: Takahashi K, Yoshino MM (eds) Climatic change and food production. Univ Tokyo Press, pp 237–243

    Google Scholar 

  • Tranquillini W (1957) Standortsklima, Wasserbilanz und CO2-Gaswechsel junger Zirben (Pinus cembra L.) an der alpinen Waldgrenze. Planta 49: 612–661

    Google Scholar 

  • Tranquillini W (1959) Die Stoffproduktion der Zirbe (Pinus cembra L.) an der Waldgrenze während eines Jahres. II. Zuwachs und CO2-Bilanz. Planta 54: 130–151

    CAS  Google Scholar 

  • Tschäpe M (1970) Untersuchungen über den Einfluß der Temperatur während der Dunkelperiode auf den Photosynthese-Gaswechsel in der nachfolgenden Lichtperiode. Flora 159: 429–434

    Google Scholar 

  • Tuhkanen S (1980) Climatic parameters and indices in plant geography. Acta Phytogeogr Suecica 67: 5–110

    Google Scholar 

  • Tumanov II (1962) Frost resistance of fruit trees. 16th Intern Hort Congr Bruxelles 1962, pp 737–743

    Google Scholar 

  • Tumanov II (1979) Fiziologiya zakalivaniya i morozostoikosti rastenii. Izdat Nauka, Moskva

    Google Scholar 

  • Tumanov II, Kuzina GV, Karnikova LD (1972) Vliyanie prodolzhitelnosti vegetatisii u drevesnykh rastenii na nakopleniye zapasnykh uglevodov i kharakter fotoperiodicheskoi reaktsii. ( Effect of the duration of vegetation in trees on the accumulation of reserve carbohydrates and the character of photoperiodic reaction ). Fiziol Rast 19: 1122–1131

    CAS  Google Scholar 

  • Tyler B, Borrill M, Chorlton K (1978) Studies in Festuca. X. Observations on germination and seedling cold tolerance in diploid Festuca pratensis and tetraploid F. pratensis var apennina in relation to their altitudinal distribution. J Appl Ecol 15: 219–226

    Google Scholar 

  • Tyurina MM (1957) Issledovanie morozostoikosti rastenii v usloviyakh vysokogorii Pamira. Akad Nauk Tadzhik SSR Stalinabad

    Google Scholar 

  • Tyurina MM, Gogoleva GA, Jegurasdova AS, Bulatova TG (1978) Interaction between development of frost resistance and dormancy in plants. Acta Hort 81: 51–60

    Google Scholar 

  • Ullrich H (1943) Biologische Kältewirkungen und plasmatische Frostresistenz. Protoplasma 38: 165–183

    Google Scholar 

  • Ulmer W (1937) Über den Jahresgang der Frosthärte einiger immergrüner Arten der alpinen Stufe, sowie der Zirbe und der Fichte. Jahrb Wiss Bot 84: 553–592

    Google Scholar 

  • Ungerson J, Scherdin G (1968) Jahresgang von Photosynthese und Atmung unter natürlichen Bedingungen bei Pinus silvestris L. an ihrer Nordgrenze in der Subarktis. Flora 157: 391–434

    Google Scholar 

  • Van Hasselt PhR (1972) Photo-oxidation of leaf pigments in Cucumis leaf discs during chilling. Acta Bot Neerl 21: 539–548

    Google Scholar 

  • Van Hasselt PhR, Van Berlo HAC (1980) Photooxidative damage to the photosynthetic apparatus during chilling. Physiol Plant 50: 52–56

    Google Scholar 

  • Vieweg GH, Ziegler H (1969) Zur Physiologie von Myrothamnus flabellifolia. Ber Dtsch Bot Ges 82: 29–36

    Google Scholar 

  • Weiser CJ (1970) Cold resistance and injury in woody plants. Science 169: 1269–1278

    PubMed  CAS  Google Scholar 

  • Wilner J (1965) The influence of maternal parent on frost-hardiness of apple progenies. Can J Plant Sci 45: 67–71

    Google Scholar 

  • Wilson JM (1978) Leaf respiration and ATP levels at chilling temperatures. New Phytol 80: 325–334

    CAS  Google Scholar 

  • Wilson JM, Crawford RMM (1974) The acclimatization of plants to chilling temperatures in relation to the fatty-acid composition of leaf polar lipids. New Phytol 73: 805–820

    CAS  Google Scholar 

  • Yelenosky G (1975) Cold hardening in Citrus stems. Plant Physiol 56: 540–543

    PubMed  CAS  Google Scholar 

  • Yelenosky G (1977) The potential of Citrus to survive freezes. Proc Int Soc Citriculture 1: 199–203

    Google Scholar 

  • Zelawski W, Kucharska J (1967) Winter depression of photosynthetic activity in seedlings of Scots pine (Pinus silvestris L.) Photosynthetica 1: 207–213

    Google Scholar 

  • Zeller O (1951) Über Assimilation und Atmung der Pflanzen im Winter bei tiefen Temperaturen. Planta 39: 500–526

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Larcher, W., Bauer, H. (1981). Ecological Significance of Resistance to Low Temperature. In: Lange, O.L., Nobel, P.S., Osmond, C.B., Ziegler, H. (eds) Physiological Plant Ecology I. Encyclopedia of Plant Physiology, vol 12 / A. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68090-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68090-8_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68092-2

  • Online ISBN: 978-3-642-68090-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics