Skip to main content

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

Abstract

The bacterial family of Rhizobiaceae, consisting of the two genera Rhizobium and Agrobacterium, creates a challenge to geneticists and biochemists be cause of its genetic and regulatory complexity. Both genera live as obligate aerobes saprophytically in soil and both are further characterized by their intimate association and cohabitation with plants. Rhizobia invade by a complex process of recognition and infection the roots of legumes inducing the cortex cells to remeristematisize and to build a new anatomically well-defined structure, the root nodule. The mechanism of this redifferentiation is not understood, but it seems plausible that the microsymbiont interferes directly or indirectly with the plant genome, inducing the growth and differentiation of new plant cells and regulating their structural Organization with the result of nodule formation. This process of genetic regulation of the plant genome by the bacteria continues, the new meristem being located on the tip of the growing nodule. In the inner tissue of the differentiated nodule, the domicile of the bacteria is established and now, by a process which is again not understood, the plant regulates the bacterial genome, turning off the genomic regions responsible for cell propagation and turning on the genes responsible for nitrogen fixation and for delivery of the NH +4 formed to the plant cytosol. This process is accompanied by shaping the bacterial rods into enlarged branched bacteroids and by the formation of leghemoglobin which is the genetical product of both partners, the plant producing the globin (Sidloi Lumbroso et al., 1978) and the bacteria the heme cofactor (Cutting and Schulman, 1969). The leghemoglobin, being located in the plant cytosol and outside on the membrane surrounding the bacteroids, (Desh et al., 1976) transports oxygen to the ATP generating machinery of the bacteroids necessary for the N2 reduction. As a result of the Rhizobium invasion the plant utilizes the bacteria to cover its own nitrogen supply, whereas the differentiated bacteroids finally die: the plant genetically parasitizes the bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Beringer JE (1980) The development of Rhizobium genetics. The fourth Fleming lecture. J Gen Microbiol 116: 1–7

    CAS  Google Scholar 

  • Beringer JE, Hopwood DA (1976) Chromosomal recombination and mapping in Rhizobium leguminosarum. Nature (London) 264: 291–293

    Article  CAS  Google Scholar 

  • Beringer JE, Beynon JL, Buchanan–Wollaston AV, Johnston AWB (1978a) Transfer of drug–resistance transposon Tn5 to Rhizobium. Nature (London) 276: 633–634

    Article  Google Scholar 

  • Beringer JE, Hoggan SA, Johnston AWB (1978b) Linkage mapping in Rhizobium leguminosarum by means of R plasmid–mediated recombination. J Gen Microbiol 104:201 –207

    Google Scholar 

  • Brewin NJ, Beringer JE, Buchanan–Wollaston AV, Johnston AWB, Hirsch PR (1980) Transfer of symbiotic genes with bacteriocinogenic plasmids in Rhizobium leguminosarum. J Gen Microbiol 116: 261–270

    CAS  Google Scholar 

  • Burkardt HJ, Riess G, Pühler A (1979) Relationship of group PI plasmids revealed by heteroduplex experiments: RP1, RP4, R68, and RK2 are identical. J Gen Microbiol 114: 341–348

    PubMed  CAS  Google Scholar 

  • Casadesus J, Olivares J (1979) Rough and fine linkage mapping of the Rhizobium melibti chromosome. Mol Gen Genet 174: 203–209

    Article  PubMed  CAS  Google Scholar 

  • Cutting JA, Schulman HM (1969) The site of heme synthesis in soybean root nodules. Biochem Biophys Acta 192: 486–493

    PubMed  CAS  Google Scholar 

  • Datta N, Hedges RW, Shaw EJ, Sykes RB, Richmond MH (1971) Properties of an R factor from Pseudomonas aeruginosa. J Bacteriol 108: 1244–1249

    PubMed  CAS  Google Scholar 

  • Desh P, Verma S, Bai Araga K (1976) Intraeellular site of synthesis and localization of leghemoglobin in root nodules. Proc Natl Acad Sei USA 73:3843–3847Gingeras TR, Myers PA, Olson JA, Handberg FA, Roberts RJ (1978) A new specific endonuclease present in Xanthomoms holcicola and Brevibactervum luteum. J Mol Biol 118: 113–122

    Google Scholar 

  • Haas D, Holloway BW (1976) R factor variants with enhanced sex factor activity in Pseudomonas aeruginosa. Mol Gen Genet 147: 234–251

    Google Scholar 

  • Heumann W (1979) Rhizobium lupini genetics. In: Arber W Current topics in microbiology and immunology, vol 88. Springer, Berlin Heidelberg New York, pp 1 –23

    Google Scholar 

  • Heumann W, Springer R (1977) Formation of merodiploid clones by conjugation in Rhizobium lupini Mol Gen Genet 150: 73–79

    CAS  Google Scholar 

  • Hirsch PR (1979) Plasmid determined bacteriocin production by Rhizobium leguminosarum. J Gen Microbiol 113: 219–228

    CAS  Google Scholar 

  • Jacob AE, Cresswell JM, Hedges RW, Coctzee JN, Beringer JE (1976) Properties of plasmids constructed by the in vitro insertion of DNA from Rhizobium leguminosarum or Proteus mirabilis into RP4. Mol Gen Genet 147: 315–323

    Article  PubMed  CAS  Google Scholar 

  • Jäckel B (1980) unpublished results

    Google Scholar 

  • Jensen HL (1942) Nitrogen fixation in leguminous plants. I General characteristics of root nodule bacteria isolated from species of Medicago and Trifolium in Australia. Proc Linn Soc NSW 66: 98–108

    Google Scholar 

  • Johnston AWB, Beynon JL, Buchanan–Wollaston AV, Setehell SM, Hirsch PR, Beringer JE (1978a) High frequency transfer of nodulating ability between strains and species of Rhizobium. Nature (London) 276: 635–636

    Article  Google Scholar 

  • Johnston AWB, Beynon JL, Buchanan–Wollaston AV, Setehell SM, Hirsch PR, Beringer JE (1978a) High frequency transfer of nodulating ability between strains and species of Rhizobium. Nature (London) 276: 635–636

    Google Scholar 

  • Julliot JS, Boistard P (1979) Use of RP4–prime plasmids constructed in vitro to promote a polarized transfer of the chromosome in Escherichia coli and Rhizobium meliloti. Mol Gen Genet 173: 289–298

    Article  PubMed  CAS  Google Scholar 

  • Kiss GB, Dobo K, Dusha I, Breznovits A, Orosz L, Vincze E, Kondorosi A (1980) Isolation and characterization of an R–prime plasmid from Rhizobium meliloti. J Bacteriol 141:121 —128

    Google Scholar 

  • Kondorosi A, Kiss GB, Forrai T, Vincze E, Banfalvi Z (1977) Circular linkage map of the Rhizobium meliloti chromosome. Nature (London) 268: 525–527

    Article  Google Scholar 

  • Meade HM, Signer ER (1977) Genetic mapping of Rhizobium meliloti. Proc Natl Acad Sei USA 74: 2076–2078

    Article  CAS  Google Scholar 

  • Meade HM, Signer ER (1977) Genetic mapping of Rhizobium meliloti. Proc Natl Acad Sei USA 74: 2076–2078

    Google Scholar 

  • Nuti MP, Ledeboer AM, Lepidi AA, Schilperoort RA (1977) Large plasmids in different Rhizobium species. J Gen Microbiol 100: 241–248

    CAS  Google Scholar 

  • Nuti MP, Lepidi AA, Prakash RK, Schilperoort RA, Cannon F (1979) Evidence for nitrogen fixation (nif) genes on indigenousRhizobium plasmids. Nature (London) 282: 533–535

    Article  CAS  Google Scholar 

  • Prakash RK, Hooykaas PJJ, Ledeboer AM, Kijne J, Schilperoort RA (1978) Detection, isolation and characterization of large plasmids in Rhizobium. In: Orne–Johnston WH, Newton WE (eds) Proc Illrd Int Symp Nitrogen Fixation. University Park Press, Madison

    Google Scholar 

  • Riess G, Holloway BW, Pühler A (1980) R.68.45, a plasmid with chromosome mobilizing ability (Cma) carries a tandem duplication of 2120 bp. Genet Res (in press)

    Google Scholar 

  • Rösch A (1979) unpublished results

    Google Scholar 

  • Schüperoort RA, Hooykaas PJJ, Klapwijk PM, Koekman BP, Nuti MP, Ooms G, Prakash RK (1979) Characters of large plasmids in Rhizobiaceae involved in the interaction with plant cells. In: Timmis KN, Pühler A (eds) Plasmids of medical, environmental and eommercial importance. Elsevier/North Holland Biomedical Press, Amsterdam New York, p 339

    Google Scholar 

  • Sidloi–Lumbroso R, Kleiman L, Sehulman HM (1978) Biochemical evidence that leghemoglobin genes are present in the soybean but not in the Rhizobium genome. Nature (London) 273: 558–560

    Article  Google Scholar 

  • Springer A, Heumann W (1978) Genetical analysis of merodiploidy in Rhizobium lupini. Mol Gen Genet 165:57–63Temp6 J, Guyon P, Tepfer D, Petit A (1979) The role of opines in the ecology of the Ti–plasmids of Agrobacterium. In: Timmis KN, Pühler A (eds) Plasmids of medical, environmental and commercial importance. Elsevier/North Holland Biomedieal Press, Amsterdam New York, p 353

    Google Scholar 

  • Van Vliet F, Silva B, van Montagu M, Schell J (1978) Transfer of RP4::Mu plasmids to Agrobacterium tumefaciens. Plasmid 1: 446–455

    Article  PubMed  Google Scholar 

  • Zaenen J, van Larebeke N, Teuchy H, van Montagu M, Schell J (1974) Supercoiled circular DNA in crown gall inducing Agrobacterium strains. J Mol Biol 86: 109–127

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Heumann, W. (1981). Rhizobium Genetics. In: Bothe, H., Trebst, A. (eds) Biology of Inorganic Nitrogen and Sulfur. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-67919-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-67919-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-67921-6

  • Online ISBN: 978-3-642-67919-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics