Skip to main content

Molecular Mechanisms for Dephasing: Toward a Unified Treatment of Gases, Solids and Liquids

  • Conference paper
Advances in Laser Chemistry

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 3))

Abstract

In this paper we are concerned with the role of dephasing (optical T1 and T2) in various molecular relaxation processes. Specifically, we are asking the following questions: (1) What is the relationship between the lineshape function and the dephasing time? (2) What are the different processes that contribute to the overall dephasing rate ? (3) Are the approximations made in describing dephasing in solids and liquids reasonable ? (4) Can we use a unified theoretical approach to describe dephasing in gases, solids, and liquids ?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. K. E. Jones and A. H. Zewail, in Advances in Laser Chemistry A. H. Zewail, Ed., Springer Series in Chemical Physics, Springer, Berlin, Heidelberg, New York (1978);

    Google Scholar 

  2. A. H. Zewail, K. E. Jones and T. E. Orlowski, Spec. Lett. 10, 115 (1977);

    Article  ADS  Google Scholar 

  3. T. E. Orlowski, K. E. Jones and A. H. Zewail, Chem. Phys. Lett. 50, 45 (1977).

    Article  ADS  Google Scholar 

  4. See, e.g., R. Gordon, Adv. Mag. Res. 3, 1 (1968).

    Google Scholar 

  5. W. A. Steele, in Transport Phenomena in Fluids, H. J. M. Hanley, Ed., Marcel Dekker, New York (1969) pg. 209.

    Google Scholar 

  6. For a review see: V. S. Letokhov, V. P. Chebotayev, Nonlinear Laser Spectroscopy, Springer Series in Optical Sciences, Vol. 4 (Springer, Berlin, Heidelberg, New York 1977).

    Google Scholar 

  7. A. H. Zewail, D. E. Godar, K. E. Jones, T. E. Orlowski, R. R. Shah and A. Nichols, in Advances in Laser Spectroscopy I, A. H. Zewail, Ed., SPIE Publishing Company, Vol. 113 (1977), pg. 42.

    Google Scholar 

  8. D. J. Diestler, Chem. Phys. Lett. 39, 39 (1976).

    Article  ADS  Google Scholar 

  9. W. R. L. Clements and B. P. Stoicheff, App. Phys. Lett. 12, 246 (1968)

    Article  ADS  Google Scholar 

  10. M. Scotto, J. Chem. Phys. 49, 5362 (1968).

    Article  ADS  Google Scholar 

  11. M. Kakimoto and T. Fujiyama, Bull. Chem. Soc. Japan 47, 1883 (1974).

    Article  Google Scholar 

  12. E. Knapp and D. J. Diestler, unpublished results.

    Google Scholar 

  13. H. J. Jodl, J. Wahl and E. Lüscher, Phys. Lett. 38A, 230 (1972).

    ADS  Google Scholar 

  14. A. H. Zewail and T. E. Orlowski, Chem. Phys. Lett. 45, 399 (1977); reference 5; T. E. OrlowsM, K. E. Jones and A. H. Zewail, to be published. (This article contains all the details of the work done on pentacene in our laboratory.)

    Article  ADS  Google Scholar 

  15. J. Morsink, T. Aartsma and D. A. Wiersma, Chem. Phys. Lett 49, 34 (1977).

    Article  ADS  Google Scholar 

  16. R. M. Hochstrasser and P. N. Prasad, J. Chem. Phys. 56, 2814 (1972).

    Article  ADS  Google Scholar 

  17. A. H. Zewail, T. E. Orlowski, K. E. Jones and D. E. Godar, Chem. Phys. Lett. 48, 256 (1977)

    Article  ADS  Google Scholar 

  18. T. E. Orlowski, K. E. Jones and A. H. Zewail, Chem. Phys. Lett. 50, 45 (1977)

    Article  ADS  Google Scholar 

  19. A H. Zewail, T. E. Orlowski, R. R. Shah and K. E. Jones, Chem. Phys. Lett. 49, 520 (1977).

    Article  ADS  Google Scholar 

  20. K. E. Jones, A. Nichols and A. H. Zewail, J. Chem. Phys. (in press).

    Google Scholar 

  21. R. G. Brewer and A. Genaek, Phys. Rev. Lett. 37, 959 (1976).

    Google Scholar 

  22. D. Oxtoby, in Advances in Chemical Physics, I. Prigogine and S. A. Rice, Eds. (to be published).

    Google Scholar 

  23. J. E. Lennard-Jones and A. F. Devonshire, Proc. Roy. Soc. A163, 53 (1937)

    ADS  Google Scholar 

  24. J. E. Lennard-Jones and A. F. Devonshire, Proc. Roy. Soc. A165, 1 (1938).

    ADS  Google Scholar 

  25. To be consistent with the literature on liquids we shall use τ (instead of T2) which is simply T2/2. Note that when T1 -1 is zero, then T2 =T2 ′

    Google Scholar 

  26. A. Laubereau, Chem. Phys. Lett. 27, 600 (1974).

    Article  ADS  Google Scholar 

  27. S. F. Fischer and A. Laubereau, Chem. Phys. Lett. 35, 6 (1975).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jones, K.E., Zewail, A.H., Diestler, D.J. (1978). Molecular Mechanisms for Dephasing: Toward a Unified Treatment of Gases, Solids and Liquids. In: Zewail, A.H. (eds) Advances in Laser Chemistry. Springer Series in Chemical Physics, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-67054-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-67054-1_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-67056-5

  • Online ISBN: 978-3-642-67054-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics