Skip to main content

The Topography of Vision in Mammals of Contrasting Life Style: Comparative Optics and Retinal Organisation

  • Chapter
The Visual System in Vertebrates

Part of the book series: Handbook of Sensory Physiology ((1536,volume 7 / 5))

Abstract

The eye to this day gives me a cold shudder

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abercrombie, M.: Estimation of nuclear population from microtome sections. Anat. Rec. 94, 239–247 (1946).

    Google Scholar 

  • Adams, A. D., Forrester, J. M.: The projection of the rat’s visual field on the cerebral cortex. Quart. J. exp. Physiol. 53, 327–336 (1968).

    Google Scholar 

  • Ajo, A.: On the refractive index of the retina. Acta. physiol. scand. 13, 130–149 (1949).

    Google Scholar 

  • Andrews, D. P.: Perception of contour orientation in the central fovea. Part II. Spatial integration. Vision Res. 7, 999–1013 (1967).

    Google Scholar 

  • Andrews, D. P., Butcher, A. K., Buckley, B. R.: Acuities for spatial arrangement in line figures: Human and ideal observers compared. Vision Res. 13, 599–620 (1973).

    Google Scholar 

  • Andrews, D. P., Hammond, P.: Mesopic increment threshold spectral sensitivity of single optic tract fibres in the cat: Cone rod interaction. J. Physiol. (Lond.) 209, 65–81 (1970a).

    Google Scholar 

  • Andrews, D. P., Hammond, P.: Suprathreshold spectral properties of single optic tract fibres in cat under mesopic adaptation: cone: Rod interaction. J. Physiol. (Lond.) 209, 83–103 (1970 b).

    Google Scholar 

  • Appelle, S.: Perception and discrimination as a function of stimulus orientation; the “oblique effect” in man and animals. Psychol. Bull. 87, 266–278 (1972).

    Google Scholar 

  • Apter, J.T.: Eye movements following strychninization of the superior colliculus of cats. J. Neurophysiol. 9, 73–86 (1946).

    Google Scholar 

  • Arey, L. B., Gore, M.: The numerical relationship between the ganglion cells of the retina and the fibres in the optic nerve of the dog. J. comp. Neurol. 77, 609–617 (1942).

    Google Scholar 

  • Armaly, M. F.: Studies on intraocular effects of the orbital parasympathetic pathway. Arch. Ophthal. (Chicago) 61, 14–29 (1959).

    Google Scholar 

  • Attneave, F.: Informational aspects of visual perception. Psychol. Rev. 61, 183–193 (1954).

    Google Scholar 

  • Aubert, H.: Die Bewegungsempfindung. Arch. ges. Physiol. 39, 347–370 (1886).

    Google Scholar 

  • Aubert, H.: Die Bewegungsempfindung. Arch. ges. Physiol. 40, 459–480 (1887).

    Google Scholar 

  • Aubert, H., Forster, R.: Beitrage zur Kenotniss des indirecten Sehens. (1) Untersuchungen fiber den Raumsinn der Retina. Arch. Ophthal. 3, 1–37 (1857).

    Google Scholar 

  • Bachl, A., Lukosz, W.: Experiments on super-resolution imaging of a reduced object field. J. opt. Soc. Amer. 57, 163–169 (1967).

    Google Scholar 

  • Baird, J. C.: Psychophysical Analysis of Visual Space. London: Pergamon Press 1970.

    Google Scholar 

  • Baldwin, W. R.: Some relationships between ocular, anthropometric and refractive variables in myopia. Doctoral Thesis, Indiana University 1964.

    Google Scholar 

  • Barany, E. H.: A theory of visual acuity and an analysis of the variability of visual acuity. Acta ophthal. (Kbh.) 24, 63–92 (1946).

    Google Scholar 

  • Barlow, H. B.: Possible principles underlying the transformation of sensory messages. In: Sensory Communication, Rosenblith, W. A. (ed.). New York: M.I.T. & Wiley 1961.

    Google Scholar 

  • Barlow, H. B.: Three points about lateral inhibition. In: Sensory Communication, Rosenblith, W. A. (ed.). New York: M.I.T. & Wiley 1961.

    Google Scholar 

  • Barlow, H. B.: The physical limits of visual discrimination. In: Photophysiology. vol. Ii, Giese, A. C. (ed.). New York: Academic Press 1964.

    Google Scholar 

  • Barlow, H. B.: Visual resolution and the diffraction limit. Science 149, 553–555 (1965).

    Google Scholar 

  • Barlow, H. B., Blakemore, C. B., Pettigrew, J. D.: The neural mechanisms of binocular depth discrimination. J. Physiol. (Lond.) 193, 327–342 (1967).

    Google Scholar 

  • Barlow, H. B., Fitzhugh, R., Kuffler, S. W.: Change of organization in the receptive fields of the cat’s retina during dark adaptation. J. Physiol. (Lond.) 137, 338-354 (1957 a).

    Google Scholar 

  • Barlow, H. B., Fitzhugh, R., Kuffler, S. W.: Dark-adaptation, absolute threshold and Purkinje shift in single units of the cat’s retina. J. Physiol. (Lond.) 137, 327-337 (1957 b).

    Google Scholar 

  • Barlow, H. B., Hill, R. M., Levick, W. R.: Retinal ganglion cells responding selectively to direction and speed of image motion in the rabbit. J. Physiol. (Lond.) 173, 377-407 (1964).

    Google Scholar 

  • Barlow, H. B., Levick, W. R.: The mechanism of directionally selective units in the rabbit’s retina. J. Physiol. (Lond.)178, 477-504 (1965).

    Google Scholar 

  • Barlow, H. B., Pettigrew, J. D.: Lack of specificity of neurones in the visual cortex of young kittens. J. Physiol. (Lond.) 218,98P-100P (1971).

    Google Scholar 

  • Barnett, S. A.: A Study in Behaviour. London: Methuen 1963.

    Google Scholar 

  • Baron,J., Verrier, M. L.: Refraction et cerveau des poissons a fovea. Contribution a 1'etude des correlations organiques. Bull. Biol. Fr. Belg. 85, 105-111 (1951).

    Google Scholar 

  • Barrett,J. W.: Do animals accommodate? Ophthal. Rev. 7, 255-270 (1898).

    Google Scholar 

  • Bartels, M.: Vergleichendes uber Augenbewegungen. In: Handbuch der normalen and pathologischen Physiologie. Berlin: Springer 12, 1920, pp. 1113-1165.

    Google Scholar 

  • Baylor, D. A., Fettiplace, R.: Light path and photon capture in turtle photoreceptors. J. Physiol. (Lond.) 248,433—464 (1975).

    Google Scholar 

  • Baylor, E. R., Shaw, E..: Refractive error and vision in fishes. Science, 136, 157-158 (1962). Beer, T.: Die Accommodation des Fischauges. Pflugers Arch. ges. Physiol. 58, 523-650 (1894). Bellairs, A.: The Life of Reptiles. London: Weidenfeld & Nicolson 1969.

    Google Scholar 

  • Bellhorn, R. W., Aguirre, G. D., Bellhorn, M. B.: Feline central retinal degeneration. Invest. Ophthal. 13,608—616 (1974).

    Google Scholar 

  • Bellhorn, R. W., Fischer, C. A.: Feline central retinal degeneration. J. anat. vet. med. Ass. 157, 842-849 (1970).

    Google Scholar 

  • Bennett, A. G., Francis, J. L.: Visual optics and the optical space sense. In: The Eye. Davson, H. (ed.). 2nd ed. London: Academic Press 1962.

    Google Scholar 

  • Berkley, M. A., Kitterle, F., Watkins, D. W.: Grating visibility as a function of orientation and retinal eccentricity. Vision Res. 15, 239-244 (1975).

    Google Scholar 

  • Berkley, M. A., Watkins, D. W.: Grating resolution and refraction in the cat estimated from evoked cerebral potentials. Vision Res. 13, 403-415 (1973).

    Google Scholar 

  • Berlin, R.: Ober die Schatzung der Entfernung bei Thieren. Z. vergl. Augenheilk. 7, 1-97 (1893). Berry, R. N.: Quantitative relations among vernier, real depth and stereoscopic depth acuities. J. exp. Psychol. 38,708 (1948).

    Google Scholar 

  • Bhatia, B.: Minimum separabile as a function of speed of moving object. Vision Res. 15, 23-33 (1975). Bickerdyke,J.: The Book of the All-Round Angler. London: Upcott Gill 1889.

    Google Scholar 

  • Binggeli, R. L., Paule, W. J.: The pigeon retina: Quantitative aspects of the optic nerve and ganglion cell layer. J. comp. Neurol. 137, 1-18 (1969).

    Google Scholar 

  • Bishop, A.: Use of the hand in lower primates. In: Evolutionary and Genetic Biology of Primates. Buettner-Janusch, J. (ed.). New York: Academic Press 1964.

    Google Scholar 

  • Bishop, P.O.: Neurophysiology of binocular single vision and stereopsis. In: Handbook of Sensory Physiology, vii/3 A, Jung, R. (ed.). Berlin: Springer-Verlag 1973, pp. 255-305.

    Google Scholar 

  • Bishop, P. O., Kozak, W., Vakkur, G. J.: Some quantitative aspects of the cat’s eye: Axis and plane of reference, visual field coordinates and optics. J. Physiol. (Lond.)163, 466-502 (1962).

    Google Scholar 

  • Bishop, G. H., Clare, M. H.: Organisation and distribution of fibers in the optic tract of the cat. J. comp. Neurol. 103,269-304 (1955).

    Google Scholar 

  • Bisti, S., Maffei, L.: Behavioural contrast sensitivity of the cat in various visual meridians. J. Physiol. (Lond.) 241, 201-210 (1974).

    Google Scholar 

  • Blake, R., Cool, S. J., Crawford, M. L. J.: Visual resolution in the cat. Vision Res. 14, 1211-1217 (1974). Blakemore, C.: The representation of three-dimensional visual space in the cat’s striate cortex. J. Physiol. (Lond.) 209,155-179 (1970).

    Google Scholar 

  • Blakemore, C., Fiorentini, A., Maffei, L.: A second neural mechanism of binocular depth discrimination. J. Physiol. (Lond.) 226, 725-739 (1972).

    Google Scholar 

  • Blakemore, C., Van Sluyters, R. C.: Innate and environmental factors in the development of the kitten’s visual cortex. J. Physiol. (Lond.) 248, 663-716 (1975).

    Google Scholar 

  • Block, M. T.: A note on the refraction and image formation of the rat’s eye. Vision Res. 9, 705-711 (1969).

    Google Scholar 

  • Bloom, M., Berkley, M. A.: Behavioural determination of the cat’s near point of accommodation. ARVO Proc., Sarasota, 1976.

    Google Scholar 

  • Bonds, A. B.: Optical quality of the living cat eye. J. Physiol. (Lond.) 243, 777-795 (1974).

    Google Scholar 

  • Bonds, A. B., Enroth-Cugell, C., Pinto, L. H.: Image quality of the cat eye measured during retinal ganglion cell experiments. J. Physiol. (Lund.) 220, 383—401 (1972).

    Google Scholar 

  • Bough, E. W.: Stereoscopic vision in the macaque monkey: A behavioural demonstration. Nature (Lond.) 225,42-44 (1970).

    Google Scholar 

  • Bourdon, B.: La Perception Visuelle de 1'Espace. Paris, 1902.

    Google Scholar 

  • Boycott, B. B., Dowling, J. E.: Organisation of the primate retina: Light microscopy. Phil. Trans. B. 255,109-184 (1969).

    Google Scholar 

  • Boycott, B. B., Kolb. H.: The connections between bipolar cells and photoreceptors in the retina of the domestic cat. J. comp. Neurol. 148,91-114 (1973).

    Google Scholar 

  • Boycott, B. B., Wassle, H.: The morphological types of ganglion cells of the domestic cat’s retina. J. Physiol. (Lond.) 240, 397-419 (1974).

    Google Scholar 

  • Boynton, R. M.: The visual system: environmental information. In: Handbook of Perception: Seeing. Vol. 1. Carterette, E. C. and Friedman, M. P. (eds.). Berlin: Springer 1975, pp. 285-306. Bracewell,R.: The Fourier Transform and its Applications. New York: McGraw Hill (1965).

    Google Scholar 

  • Brandle, K., Stirling, R. V.: Development of the ipsilateral visual projection in axolotls treated with thyroxine. J. Physiol. (Lond.) 250, 30-31 P (1975).

    Google Scholar 

  • Brecher, G. A.: Optisch ausgeloste Augen-and Korperreflexe am Kaninchen. Z. vergl. Physiol. 23 374-390 (1936).

    Google Scholar 

  • Brett, J. R.: The sense organs: The eye. In: The Physiology of Fishes. Brown, M. E. (ed.). New York Academic Press 1957.

    Google Scholar 

  • Brewster, D.: On the structure of the crystalline lens in fishes and quadrupeds as ascertained by its action on polarised light. Phil. Trans. 311-317 (1816).

    Google Scholar 

  • Brewster, Sir David: A Treatise on Optics. London: Longman, Brown, Green & Longman, 1830. Brewster, Sir David: Memoirs of the Life, Writings and Discoveries of Sir Isaac Newton. Edinburgh Edmonston & Douglas 1860.

    Google Scholar 

  • Brillouin, L.: Science and Information Theory. London: Academic Press, 1962.

    Google Scholar 

  • Brindley, G. S.: The deformation phosphene and the funnelling of light into rods and cones. J. Physiol. (Lond.)188,24-25P (1966).

    Google Scholar 

  • Brindley,G. S.: Physiology of the Retina and Visual Pathway. London: Edward Arnold 1970.

    Google Scholar 

  • Brindley, G. S., Hamasaki, D. I.: Histological evidence against the view that the cat’s optic nerve contains centrifugal fibres. J. Physiol. (Lond.) 184, 444-449 (1966).

    Google Scholar 

  • Brindley, G. S., Lewin, W. S.: The sensations produced by electrical stimulation of the visual cortex. J. Physiol. (Lond.)196, 479-493 (1968).

    Google Scholar 

  • Brooke, R. N. L., Downer, J. de C., Powell, T. P. S.: Centrifugal fibres to the retina in the monkey and cat. Nature (Lond.) 207,1365-1367 (1965).

    Google Scholar 

  • Brown, K. T.: A linear area centralis extending across the turtle retina and stabilized to the horizon by nonvisual cues. Vision Res. 9, 1053-1062 (1969).

    Google Scholar 

  • Brown, J. E., Rojas, J. A.: Rat retinal ganglion cells; receptive field organisation and maintained activity. J. Neurophysiol. 28,1073-1090 (1965).

    Google Scholar 

  • Browne, T.: The Works of Sir Thomas Browne. Edinburgh; Grant 1912.

    Google Scholar 

  • Briickner, R.: Beitrage zur Biologie des Auges. 1. Mitteilung: Ober die Netzhaut von Feliden and Caniden. Biol. Zbl. 80, 37-66 (1961 a).

    Google Scholar 

  • Briickner, R.: Beitrage zur Biologie des Auges. 2. Mitteilung: Ober die Netzhaut von Huftieren. Biol. Zbl. 80,129-136 (1961 b).

    Google Scholar 

  • Bruesch, S. R., Arey, L. B.: The number of myelinated and unmyelinated fibres in the optic nerve of vertebrates. J. comp. Neurol. 77, 631-665 (1942).

    Google Scholar 

  • Buffon, Count of.: Buffon’s Natural History. Vol. 6. London: Symonds 1812.

    Google Scholar 

  • Buchdahl, H. A.: An Introduction to Hamiltonian Optics. New York: Cambridge University Press 1970.

    Google Scholar 

  • Buissert, P., Imbert, M.: Visual cortical cells: their developmental properties in normal and dark reared kittens. J. Physiol. (Lond.) 255, 511-525 (1976).

    Google Scholar 

  • Bunt, A. H., Hendrickson, A. E., Lund, J. S., Lund, R. D., Fuchs, A. F.: Monkey retinal ganglion cells Morphometric analysis and tracing of axonal projections, with a consideration of the peroxidase technique. J. comp. Neurol. 164, 265-286 (1975).

    Google Scholar 

  • Bunt, A. H., Lund, R. D., Lund, J. S.: Retrograde axonal transport of horseradish peroxidase by ganglion cells of the albino rat retina. Brain Res. 73, 215-228 (1974).

    Google Scholar 

  • Burton, G. J.: Evidence for nonlinear response processes in the human visual system from measurements on the thresholds of spatial beat frequencies. Vision Res. 13, 1211-1225 (1973).

    Google Scholar 

  • Burt, E. T., Catton, W. T.: A diffraction theory of insect vision. I. An experimental study of visual acuity in certain insects. Proc. roy. Soc. B 157, 53–67 (1962).

    Google Scholar 

  • Butcher, E.O.: The structure of the retina of Fundulus heteroclitus and the regions of the retina associated with the different chromatophoric responses. J. exp. Zool. 79, 275–293 (1938).

    Google Scholar 

  • Byram, G. M.: The physical and photochemical basis of visual resolving power. Pt. II Visual acuity and the photochemistry of the retina. J. opt. Soc. Amer. 34, 718–738 (1944).

    Google Scholar 

  • Cajal, Ramon y.S.: La Retine des Vertebres. Cellule 9, 119 (1892).

    Google Scholar 

  • Cajal, Ramon y.S.: Histologie du Systeme Nerveaux. Madrid: Conseijo Superior de Investigaciones Cientificas 1955.

    Google Scholar 

  • Campbell, F. W.: Twilight myopia. J. opt. Soc. Amer. 43, 925–926 (1953).

    Google Scholar 

  • Campbell, F. W.: The transmission of spatial information through the visual system. In: The Neurosciences, Third Study Program. Cambridge, Mass.: M.I.T. Press 1974.

    Google Scholar 

  • Campbell, F. W., Cooper, G. F., Robson, J. G., Sachs, M. B.: The spatial selectivity of visual cells of the cat and the squirrel monkey. J. Physiol. (Lond.) 204, 120P–121P (1969).

    Google Scholar 

  • Campbell, F. W., Green, D. G.: Optical and retinal factors affecting visual resolution. J. Physiol. (Lond.) 181, 576–593 (1965).

    Google Scholar 

  • Campbell, F. W., Gregory, A. H.: Effect of size of pupil on visual acuity. Nature (Lond.) 187, 1121–1123 (1960).

    Google Scholar 

  • Campbell, F. W., Gubisch, R. W.: Optical quality of the human eye. J. Physiol. (Lond.) 186, 558–578 (1966).

    Google Scholar 

  • Campbell, F. W., Kulikowski, J. J., Levinson, J.: The effect of orientation on the visual resolution of gratings. J. Physiol. (Lond.) 187, 427–436 (1966).

    Google Scholar 

  • Campbell, F. W., Maffei, L.: Electrophysiological evidence for the existence of orientation and size detectors in the human visual system. J. Physiol. (Lond.) 207, 635–652 (1970).

    Google Scholar 

  • Campbell, F. W., Maffei, L., Piccolino, M.: The contrast sensitivity of the cat. J. Physiol. (Lond.) 229, 719–731 (1973).

    Google Scholar 

  • Campbell, F. W., Primrose, J. A. E.: The state of accommodation of the human eye in darkness. Trans. ophthal. Soc. U.K. 73, 353–361 (1953).

    Google Scholar 

  • Campbell, F. W., Robson, J. G.: High speed infra-red optometer. J. opt. Soc. Amer. 49, 268–272 (1959).

    Google Scholar 

  • Campbell, F. W., Robson, J. G.: Application of Fourier analysis to the visibility of gratings. J. Physiol. (Lond.) 197, 551–566 (1968).

    Google Scholar 

  • Canella, F.: Quelques recherches sur la vision monoculaire. C.R. Soc. Biol. (Paris) 122, 1221–1224 (1936a).

    Google Scholar 

  • Canella, F.: Les problemes du chiasma et de la vision binoculaire. Quelques recherches sur la vision monoculaire. J. Psychol. norm. path. 33, 696–711 (1936 b).

    Google Scholar 

  • Cartmill, M.: Arboreal adaptations and the origin of the order Primates. In: The Functional and Evolutionary Biology of Primates. Tuttle, R. (ed.). Chicago: Aldine/Alherton 1972.

    Google Scholar 

  • Cartmill, M.: Rethinking primate origins. Science, 184, 436–443 (1974).

    Google Scholar 

  • Catford, G. V., Oliver, A.: Development of visual acuity. Arch. Dis. Childh. 48, 47–50 (1973).

    Google Scholar 

  • Cauchy, A. D.: Memoire sur diverses formules d'analyse. C.R. Acad. Sci. (Paris) Paris 12, 283–298 (1841).

    Google Scholar 

  • Charman, W.N., Tucker, J.: The optical system of the goldfish eye. Vision Res. 13, 1–8 (1973).

    Google Scholar 

  • Chievitz, J. H.: Untersuchungen uber die Area centralis retinae. Arch. Anat. Physiol. Lpz. Anat. Abteil. Supp1., 139–396 (1889).

    Google Scholar 

  • Chievitz, J. H.: Ober das Vorkommen der area centralis retinae in den vier hoheren Wirbelthierklassen. Arch. J. Anat. Physiol. Suppl. 15, 311–334 (1891).

    Google Scholar 

  • Chin, N. B., Ishikawa, S., Lappin, H., Davidowitz, J., Breinin, G. M.: Accommodation in monkeys induced by midbrain stimulation. Invest. Ophthal. 7, 386–396 (1968).

    Google Scholar 

  • Chirlian, P.M.: The effective bandwidth of a system. Quart. J. Applied Math. 25, 311–312 (1967).

    Google Scholar 

  • Chow, K. L., Spear, P. D.: Morphological and functional effects of visual deprivation on the rabbit visual system. Exp. Neurol. 42, 429–447 (1974).

    Google Scholar 

  • Citron, M. C., Pinto, L. H.: Retinal image: Larger and more illuminous for a nocturnal than for a diurnal lizard. Vision Res. 13, 873–876 (1973).

    Google Scholar 

  • Clarke, P.G.H.: The organization of visual processing in pigeon cerebellum. J. Physiol. (Lond.) 243, 267–285 (1974).

    Google Scholar 

  • Clarke, P. G. H., Whitteridge, D.: The cortical visual areas of the sheep. J. Physiol. (Lond.) 256, 497–508 (1976).

    Google Scholar 

  • Clarke, P. G. H., Donaldson, I. M. L., Whitteridge, D.: Binocular visual mechanisms in cortical areas I and II of the sheep. J. Physiol. (Lond.) 256, 509-526 (1976).

    Google Scholar 

  • Cleland, B. G., Dubin, W. M., Levick, W. R.: Sustained and transient neurones in the cat’s retina and lateral geniculate nucleus. J. Physiol. (Lond.) 217, 475-496 (1971).

    Google Scholar 

  • Cleland, B. G., Levick, W. R.: Brisk and sluggish concentrically organised cells in the cat’s retina. J. Physiol. (Lond.) 240,421—456 (1974a).

    Google Scholar 

  • Cleland, B. G., Levick, W. R.: Properties of rarely encountered types of ganglion cells in the cat’s retina and an overall classification. J. Physiol. (Lond.) 240, 457-492 (1974 b).

    Google Scholar 

  • Cleland, B. G., Levick, W. R., Wassle, H.: Physiological identification of a morphological class of cat retinal ganglion cells. J. Physiol. (Lond.) 248,151-171 (1975).

    Google Scholar 

  • Cleland, B. G., Morstyn, R., Wagner, H. G., Levick, W. R.: Long-latency retinal input to lateral geniculate neurones of the cat. Brain Res. 91, 306-310 (1975).

    Google Scholar 

  • Cohn,T. E.: Quantum fluctuation limit in foveal vision. Vision Res. 16, 573-579 (1976). Colbert, E. H.: Evolution of the Vertebrates. New York: Wiley 1967.

    Google Scholar 

  • Coleman, E.: The Echidna under domestication. Vict. Nat. 51, 12-21(1934). Coleman, E.: The Echidna under domestication. Vict. Nat. 52, 151-154 (1935). Collet,T.: Stereopsis in toads. Nature (Lond.) 267, 349-351(1977).

    Google Scholar 

  • Collewijn, H.: The optokinetic system of the rabbit. Docum. ophthal. (Den Haag) 30, 205-226 (1971). Collewijn, H.: Eye and head movements in freely moving rabbits. J. Physiol. (Lond.) 266, 471-498 (1977).

    Google Scholar 

  • Collewijn, H., Zuidam, I.: Eye and head movements in the freely moving rabbit. Brain Res. 127, 360361(1977).

    Google Scholar 

  • Collins, E. T.: The Bowman Lecture: Changes in the visual organs correlated with the adoption of arboreal life and with the assumption of the erect posture. Trans. ophthal. Soc. U.K. 41, 10-90 (1921).

    Google Scholar 

  • Cone, R. A.: Quantitative relations of the rat electroretinogram. J. gen. Physiol. 46, 1267-1286 (1963). Cott, H. B.: Adaptive coloration in Animals. London: Methuen 1966.

    Google Scholar 

  • Cowan, W. M., Powell, J. P. S.: Centrifugal fibres in the avian visual system. Proc. roy. Soc. B 158, 232252(1963).

    Google Scholar 

  • Cowey, A., Rolls, E. T.: Human cortical magnification factor and its relation to visual acuity. Exp. Brain Res. 21, 447—454 (1974).

    Google Scholar 

  • Cragg, B. G.: Centrifugal fibres to the retina and olfactory bulb, and composition of the supraoptic commissures in the rabbit. Exp. Neurol. 5,406—427 (1962).

    Google Scholar 

  • Currie,J., Cowan, W. M.: Evidence for the late development of the uncrossed retino-thalamic projections in the frog Rana pipiens. Brain Res. 71, 133-139 (1974).

    Google Scholar 

  • Daniel, P. M., Whitteridge, D.: The representation of the visual field on the cerebral cortex in monkeys. J. Physiol. (Lond.) 159, 203-221(1961).

    Google Scholar 

  • Darwin, C. R.: In: The Autobiography of Charles Darwin and Selected Letters. Darwin, F. (ed.). London: Murray 1860.

    Google Scholar 

  • Daw, N. W., Pearlman, A. L.: Cat colour vision: One cone process or several? J. Physiol. (Lond.) 201, 745-764 (1969).

    Google Scholar 

  • De Graauw, J. G., Van Hof, M. W.: The relation between behaviour and eye refraction in the rabbit. Brain Res. 127, 360 (1977).

    Google Scholar 

  • De Groot, S. G., Gebhard,J. W.: Pupil size as determined by adapting luminances. J. opt. Soc. Amer. 42,492—495(1952).

    Google Scholar 

  • De Monasterio, F. M., Gouras, P.: Functional properties of ganglion cells of the rhesus monkey retina. J. Physiol. (Lond.) 251, 167-195 (1975).

    Google Scholar 

  • De Oliveria, L. F., Ripps, H.: The “area centralis” of the owl monkey (Aotes trivirgatus). Vision Res. 8, 223-228 (1968).

    Google Scholar 

  • Detwiler, S. R.: Vertebrate Photoreceptors. New York: Macmillan 1943.

    Google Scholar 

  • De Valois, R. L., Morgan, H., Snodderly, D. M.: Psychophysical studies of monkey vision. III. Spatial luminance contrast sensitivity tests of macaque and human observers. Vision Res. 14, 75-81 (1974).

    Google Scholar 

  • Ditchburn,R. W.: Eye movements in relation to retinal action. Optica Acta. 1, 171-176 (1955). Ditchburn, R. W.: Eye Movements and Visual Perception. Clarendon Press: Oxford 1973.

    Google Scholar 

  • Ditchburn, R. W.: Light. 3rd ed. Academic Press: London 1976.

    Google Scholar 

  • Dobree, J. H., Weale, R. A.: (In: Weale, R. A.: Problems of Peripheral Vision, 1956) Brit J. Ophthal. 40, 392—414 (1954).

    Google Scholar 

  • Doesschate,J.ten.: Visual acuity and distribution of percipient elements on retina. Ophthalmologica (Basel)112, 1-18 (1946).

    Google Scholar 

  • Donner, K. O., Reuter, T.: The dark adaptation of single units in the frog’s retina and its relation to the regeneration of rhodopsin. Vision Res. 5, 615—632 (1965).

    Google Scholar 

  • Donovan,A.: The nerve fibre composition of the cat optic nerve. J. Anat. 101, 1-11(1967).

    Google Scholar 

  • Dor,H.: Beitrage zur Elektrotherapie der Augenkrankheiten. Arch. Ophthal. 19, 316-321 (1873). Dowling, J. E.: Structure and function in the all-cone retina of the ground squirrel. In: The Physiological Basis for Form recognition. 17-23, N.I.H. sponsored at Brown University, Providence R.I. 1964.

    Google Scholar 

  • Dowling,J. E., Boycott, B. B.: Organization of the primate retina: Electron microscopy. Proc. roy. Soc. B 166, 80-111(1966).

    Google Scholar 

  • Drasdo,N.: The neural representation of visual space. Nature (Lond.) 266, 554-556 (1977).

    Google Scholar 

  • Drasdo, N., Fowler, C. W.: Nonlinear projection of the retinal image in a wide angle schematic eye. Brit. J. Ophthal. 58,709-714 (1974).

    Google Scholar 

  • Dreher, B., Zernicki, B.: Visual fixation reflex: behavioural properties and neural mechanism. Acta biol. exp. 29,359-383 (1969).

    Google Scholar 

  • Dubar,J., Thieulin, G.: L'etat de refraction des yeux des Mammiferes domestiques. Rev. gen. Med. vet. 36,361-565 (1927).

    Google Scholar 

  • Dubin, M. W.: Anatomy of the vertebrate retina. In: The Eye: Comparative physiology. Davson. H. and Graham, L. T. (eds.). Vol. 6. London: Academic Press 1974, pp. 227-256.

    Google Scholar 

  • Duijm, M.: On the position of a ribbon-like central area in the eyes of some birds. Arch. neerl. Zool. 13, Suppl., 128-145 (1959).

    Google Scholar 

  • Duke-Elder, W. S.: Text-book of Ophthalmology, Vol. 1. London: Henry Kimpton 1932.

    Google Scholar 

  • Duke-Elder, W. S.: System of Ophthalmology. Vol. 1. In: The Eye in Evolution. London: Henry Kimpton 1958.

    Google Scholar 

  • Duke-Elder, W. S.: System of Ophthalmology. Vol. 5. In: Ophthalmic Optics and Refraction. London Henry Kimpton 1970.

    Google Scholar 

  • Du Pont, J., De Groot, P. J.: A schematic dioptric apparatus for the frog’s eye. Vision Res. 16, 803-810 (1976).

    Google Scholar 

  • Eayrs,J. T.:Relationship between the ganglion cell layer of the retina and the optic nerve in the rat. Brit. J. Ophthal. 36,453 (1952).

    Google Scholar 

  • Edey, M.: The Cats of Africa. New York: Time-Life 1968.

    Google Scholar 

  • Eisenberg, J. F., Leyhausen, P.: The phylogenesis of predatory behaviour in mammals. Z. Tierpsychol. 30, 59-93 (1972).

    Google Scholar 

  • Elliot Smith, G.: Presidential address to the Anthropological Section. In: Report of the British Association, Dundee, 575-598 (1912).

    Google Scholar 

  • Elliot Smith, G.: Evolution of Man. London: Humphrey Milford 1924. Elliot Smith, G.: The new vision. Nature (Lond.) 121, 680-681(1928). Elliot Smith, G.: New light on vision. Nature (Lond.) 125, 820-824 (1930). Elul, R., Marchiafava, P. L.: Accommodation of the eye as related to behaviour in the cat. Arch. ital. Biol. 102,616-644 (1964).

    Google Scholar 

  • Engstr6m, K.: Cone types and cone arrangements in teleost retinae. Acta. zool. (Stockh.) 44, 179-243 (1963).

    Google Scholar 

  • Enoch,J. M.: Waveguide modes in retinal receptors. Science. 133,1353-1354 (1961).

    Google Scholar 

  • Enoch, J. M.: Marked accommodation, retinal stretch, monocular space perception and retinal receptor orientation. Amer. J. Optom. Physiol. Opt. 52, 376-392 (1975).

    Google Scholar 

  • Enoch,J. M.: Retinal receptor orientation and the role of fiber optics in vision. Amer. J. Optom. 49, 455-471(1972).

    Google Scholar 

  • Enoch, J. M., Hope. G. M.: An analysis of retinal receptor orientation. III. Results of initial psycho-physical tests. Invest. Ophthal. 11, 765-782 (1972).

    Google Scholar 

  • Enroth-Cugell, C., Pinto, L. H.: Properties of the surround response mechanism of cat retinal ganglion cells and centre-surround interaction. J. Physiol. (Lond.) 220, 403-439 (1972).

    Google Scholar 

  • Enroth-Cugell, C., Robson,J. G.: The contrast sensitivity of retinal ganglion cells of the cat. J. Physiol. (Lond.) 187, 517-552 (1966).

    Google Scholar 

  • Enroth-Cugell, C., Robson,J. G.: Direct measurement of image quality in the cat eye. J. Physiol. (Lond.) 239, 31 P-33 P (1974).

    Google Scholar 

  • Errington, P. L.: Of Predation and Life. Iowa State Univ. Press. Ohio 1967. Ewer, R. F.: The Carnivores. London: Wiedenfeld & Nicolson 1973.

    Google Scholar 

  • Ferree, C. E., Rand, G.: Report of a Joint Discussion on Vision by the Physical and Optical Societies. Cambridge, Mass.: University Press 1932, p. 244.

    Google Scholar 

  • Fick, A.E.: Ober Stabchensehscharfeand Zapfenscharfe. Arch. Ophthal. 45, 336–356 (1898).

    Google Scholar 

  • Fiennes, R., Fiennes, A.: The Natural History of the Dog. London: Weidenfeld & Nicholson 1968.

    Google Scholar 

  • Fincham, E.F.: The mechanism of accommodation. Brit. J. Ophthal. 2 Monograph Suppl. 8 (1937).

    Google Scholar 

  • Fischer, B.: The overlap of receptive field centres and representation of the visual field in the cat’s optic tract. Vision Res. 13, 2113–2120 (1973).

    Google Scholar 

  • Fisher, B., May, H.O.: Invariances in the cat retina: Principles in the relations between sensitivity size and position of receptive fields of ganglion cells. Exp. Brain. Res. 11, 448–464 (1970).

    Google Scholar 

  • Fischer, F.: Ober Fixierung der Linsenform mittels der Gefriermethode. Arch. Augenheilk. 56, 342 (1907).

    Google Scholar 

  • Fisher, R. F.: The elastic constants of the human lens capsule. J. Physiol. (Lond.) 201, 1–19 (1969 a).

    Google Scholar 

  • Fisher, R. F.: The significance of the shape of the lens and capsular energy changes in accommodation. J. Physiol. (Lond.) 201, 21–47 (1969 b).

    Google Scholar 

  • Fisher, R. F.: The elastic constants of the human lens. J. Physiol. (Lond.) 212, 147–180 (1971).

    Google Scholar 

  • Fisher, R. F.: Presbyopia and the changes with ageing in the human crystalline lens. J. Physiol. (Lond.) 228, 765–779 (1973).

    Google Scholar 

  • Fite, K. V.: Single unit analysis of binocular neurons in the frog optic tectum. Exp. Neurol. 24, 475–486 (1969).

    Google Scholar 

  • Fite, K. V., Rosenfield-Wessels, S.: A comparative study of deep avian foveas. Brain Behav. Evol. 12, 97–115 (1975).

    Google Scholar 

  • Flamant, F.: Etude de la repartition de lumi&e dans 1'image retinienne d'une fente. Rev. Opt. 34, 433–459 (1955).

    Google Scholar 

  • Fleisch, A.: Tonische Labyrinth reflex e auf die Augenstellung. 194, 554–573 (1922).

    Google Scholar 

  • Fletcher, A., Murphy, T., Young, A.: Solutions of two optical problems. Proc. roy. Soc. A 223, 216–225 (1954).

    Google Scholar 

  • Flom, M. C.: The empirical longitudinal horopter in anomalous correspondence. Ph.D. Thesis, Univ. of California, Berkeley 1957.

    Google Scholar 

  • Forrester, J. M.: Rolling movements of the sheep’s eye. J. Physiol. (Lond.) 244, 72P (1975).

    Google Scholar 

  • Forrester, J. M., Peters, A.: Nerve fibres in optic nerve of rat. Nature (Lond.) 214, 245–247 (1967).

    Google Scholar 

  • Fox, M. W.: Ontogeny of prey-killing behaviour in canidae. Behaviour 35, 259–272 (1969).

    Google Scholar 

  • Fox, R., Blake, R. R.: Stereoscopic vision in the cat. Nature (Lond.) 255, 55–56 (1971).

    Google Scholar 

  • Fox, R., Lehmkuhle, S., Westendorf, D. H.: Falcon visual acuity. Science 192, 263–265 (1976).

    Google Scholar 

  • Franz, V.: Die Akkommodation des Selachierauges and seine Abblendungsapparate, nebst Befunden and der Retina. Zool. Jb. Abt. allg. Zool. Physiol. Tiere 49, 323–462 (1931).

    Google Scholar 

  • Franz, V.: Vergleichende Anatomie des Wirbeltierauges. In: Handbuch der vergleichenden Anatomie der Wirbeltiere. Bolk, Goppert, Kallius, and Lubosch (eds.). 2, Berlin: Urban & Schwarzenberg 1934, pp. 989–1292.

    Google Scholar 

  • Frazetta, T. H.: Studies on the morphology and function of the skull in the Boidae Serpentes. II. Morphology and function of the jaw apparatus in Python sebae and Python Molurus. J. Morph. 118, 217–296 (1966).

    Google Scholar 

  • Freeman, R., Thibos, L.: Electrophysiological evidence that abnormal early visual experience can modify the human brain. Science, N.Y. 180, 876–878 (1973).

    Google Scholar 

  • French, A. S., Snyder, A. W., Stavenga, D. G.: Image degradation by a non-uniform retinal mosaic. Biol. Cybern. in press (1977).

    Google Scholar 

  • Freytag, G.: Die Brechungsindices der Linse and der flussigen Augenmedien bei der Katze and beim Kaninchen. Arch. vergl. Ophthal. 1, 61–72 (1910).

    Google Scholar 

  • Frieden, B. R.: Optical transfer of the three-dimensional object. J. opt. Soc. Amer.. 57, 56–66 (1967).

    Google Scholar 

  • Frisen, L., Frisen, M.: A simple relationship between the probability distribution of visual acuity and the density of retinal output channels. Acta Ophthalmol. 54, 437–443 (1976).

    Google Scholar 

  • Frisen, L., Glansholm, A.: Optical and neural resolution in peripheral vision. Invest. Ophthal. 14, 528–536 (1975).

    Google Scholar 

  • Frith, H. J.: Wildlife Conservation. Sydney: Angus & Robertson 1973.

    Google Scholar 

  • Fry, G. A.: Factors contributing to the discrepancy between subjective and stereoscopic determina-tions of the refraction of the eye. The O-Eye-O, 33, 16–25 (1967).

    Google Scholar 

  • Fry, G. A.: The optical performance of the human eye. Prog. in Optics 8, 23–131 (1970).

    Google Scholar 

  • Fuchs, A. F.: Saccadic and smooth pursuit eye movements in the monkey. J. Physiol. (Lond.) 191, 609–631 (1967).

    Google Scholar 

  • Fukuda, Y.: A three group classification of rat retinal ganglion cells; histological and physiological studies. Brain Res. 19, 327–344 (1977).

    Google Scholar 

  • Fukuda,Y., Stone,J.: The retinal distribution and central projection of Y, X and W cells of the cut’s retina. J. Neurophysiol. 37, 749-772 (1974).

    Google Scholar 

  • Gabor,D.: Progress in Optics, vol. I. Wolf, E. (ed.) Amsterdam: North-Holland (1961).

    Google Scholar 

  • Gallego,A.: Horizontal and amacrine cells in the mammal’s retina. Vision Res. Suppl. 3, 33-50 (1971). Gaupp, E.: Lehre von den Eingeweiden, dem Integument and den Sinnesorganen. Ecker’s u. Wiederheim’s Anatomie des Frosches. Braunschweig 3 (1904).

    Google Scholar 

  • Gauss,J. K. F.: Dioptrische Untersuchungen. Gottingen, 1841.

    Google Scholar 

  • Gaze, R. M.: The Formation of Nerve Connections. London: Medical Books Ltd. 1970.

    Google Scholar 

  • Gaze, R. M., Jacobson, M.: The projection of the binocular visual field on the optic tecta of the frog. Quart. J. exp. Physiol. 47,273-280 (1962).

    Google Scholar 

  • Gaze, R. M., Jacobson, M.: The path from the retina to the ipsilateral optic tectum of the frog. J. Physiol. (Lond.) 165, 73-74 (1963).

    Google Scholar 

  • Gaze, M., Keating, M. J.: Further studies on the restoration of the contralateral retina tectal projection following regeneration of the optic nerve in the frog. Brain Res. 21, 207-216 (1970).

    Google Scholar 

  • Gaze, R. M., Keating, M. J., Szekely, G., Beazley, L.: Binocular interaction in the formation of specific intertectal neuronal connections. Proc. roy. Soc. B.175, 107-147 (1970).

    Google Scholar 

  • Geiger, G., Poggio, T.: The Miiller-Lyer-Figure and the fly. Science 190,479—480 (1975).

    Google Scholar 

  • Georgeson, M. A., Sullivan, G. D.: Contrast constancy: Deblurring in human vision by spatial fre-quency channels. J. Physiol. (Lond.) 252, 627-656 (1975).

    Google Scholar 

  • Gibson, J. J.: The Perception of the Visual World. Boston: Houghton-Mifflin 1950.

    Google Scholar 

  • Gibson, J. J.: The Senses Considered as Perceptual Systems. Boston: Houghton-Mifflin 1966.

    Google Scholar 

  • Gilbert, D. S., Fender, D. H.: Contrast thresholds measured with stabilised and non-stabilised sine wave gratings. Optica acta 16,191-204 (1969).

    Google Scholar 

  • Glickstein, M., Millodot, M.: Retinoscopy and eye size. Science, 168, 605-606 (1970).

    Google Scholar 

  • Goodge, W. R.: Adaptations for amphibious vision in the dipper (Cinclus mexicanus). J. Morph. 107, 79-91(1960).

    Google Scholar 

  • Gordon, D. A.: Static and dynamic fields in human space perception. J. opt. Soc. Amer. 55, 1296-1303 (1965).

    Google Scholar 

  • Gouras, P.: The effects of light adaptation on rod and cone receptive field organization of monkey ganglion cells. J. Physiol. (Lond.) 192, 747-760 (1967).

    Google Scholar 

  • Gouras, P.: The function of the midget cell system in primate color vision. Vision Res. Suppl. 3, 397410(1971).

    Google Scholar 

  • Gouras, P., Link, K.: Rod and cone interaction in dark-adapted monkey ganglion cells. J. Physiol. (Lond.)184, 499-510 (1966).

    Google Scholar 

  • Graham, M. V., Gray, O. P.: Refraction of premature babies eyes. Brit. med. J. 1, 1452-1454 (1963). Green, D. G.: Regional variations in the visual acuity for interference fringes on the retina. J. Physiol. (Lond.) 207, 351-356 (1970).

    Google Scholar 

  • Gregory, R. L.: Distortion of visual space as inappropriate constancy scaling. Nature (Lond.) 199, 678—680 (1963).

    Google Scholar 

  • Gregory, R. L., Harris, J. P.: Illusion destruction by appropriate scaling. Perception 4, 203-220 (1975). Grossman, K., Meyerhausen, M.: Beitrag zur Lehre vom Gesichtsfeld bei Saugethieren. Arch. Ophthal. 23,217 (1877).

    Google Scholar 

  • Gullstrand, A.: Die optische Abbildung in heterogenen Medien and die Dioptrik der Kristallinse des Menschen. K. sv. vet. Handl. 43,1-58 (1908).

    Google Scholar 

  • Gullstrand, A.: Appendix in Helmholtz' Physiologische Optik, 3rd ed. 1909 (Rep. Dover, New York 1962 of trans. by J.P.C. Soothall for Am. Opt. Soc.) 1924.

    Google Scholar 

  • Hage, S. G. el, Berny, F.: Contribution of the crystalline lens to the spherical aberration of the eye. J. opt. Soc. Amer. 63, 205-211(1973).

    Google Scholar 

  • Haines,R. W.: Arboreal or terrestrial ancestry of placental animals. Quart. Rev. Biol. 33, 1-23 (1958). Hall, W. C., Kaas, J. H., Killackey, H., Diamond, I. T.: Cortical visual areas in the grey squirrel (Sciurus carolinesis): A correlation between cortical evoked potential maps and architectonic subdivisions. J. Neurophysiol. 34,437—451 (1971).

    Google Scholar 

  • Haller,A.: Elementa Physiologae Corporis Humani. Lausannae: Fransisci Grasset & Sociorum 1769. Hamdi, F. A., Whitteridge, D.: The representation of the retina on the optic tectum of the pigeon. Quart. J. exp. Physiol. 39,111-119 (1954).

    Google Scholar 

  • Harkness, L.: Chameleons use accommodation cues to judge distance. Nature (Lond.) 267, 346-349 (1977).

    Google Scholar 

  • Harris, C. J.: Otters. London: World Naturalist Series, Weidenfeld Nicholson 1968.

    Google Scholar 

  • Harris, W.: Binocular and stereoscopic vision in man and other vertebrates with its relation to the decussation of the optic nerves, the ocular movements, and the pupil light reflex. Brain 27, 107147(1904).

    Google Scholar 

  • Hartridge, H.: The limit to peripheral vision. J. Physiol. (Lond.) 53, xvii-xviii (1919).

    Google Scholar 

  • Hartridge, H.: The special senses. In: Principles of Human Physiology. Evans, C. L. (ed.). London Churchill 1952, pp. 377—455.

    Google Scholar 

  • Hartridge, H., Yamada, K.: Accommodation and other optical properties of the eye of the cat. Brit. J. Ophthal. 6,481-492 (1922).

    Google Scholar 

  • Hay, G. A., Chesters, M. S.: Signal-transfer functions in threshold and suprathreshold vision. J. opt. Soc. Amer. 62,990-998 (1972).

    Google Scholar 

  • Hecht, S., Mintz, E. V.: The visibility of single lines at various illuminations and the retinal basis of visual resolution. J. gen. Physiol. 22, 593-612 (1939).

    Google Scholar 

  • Hecht, S., Shlaer, S., Pirenne, M. H.: Energy quanta and vision. J. gen. Physiol. 25, 819-840 (1942). Helmholtz, H. von: Uber die Accommodation des Auges. Arch. Ophthal. 1(1855).

    Google Scholar 

  • Helmholtz, H. von: Handbuch der Physiologischen Optik (1856-1866), Gullstrand, A., Kries, J., Nagel, W. (eds.). 3rd ed. 1909. Rep. New York: Dover 1962, of trans. by J.P.C. Southall for Amer. opt. Soc., 1924.

    Google Scholar 

  • Hendrickson, A. C., Wilson, M. E., Toyne, M. J.: The distribution of optic nerve fibres in Macaca mulatta. Brain Res. 23,425—427 (1970).

    Google Scholar 

  • Hennessy, R. T., Iida, T., Shiina, K., Leibowitz, H. W.: The effect of pupil size on accommodation. Vision Res. 16, 587-589 (1976).

    Google Scholar 

  • Henning, G. B., Hertz, B. G., Broadbent, D. E.: Some experiments bearing on the hypothesis that the visual system analyses spatial patterns in independent bands of spatial frequency. Vision Res. 15, 887-897 (1975).

    Google Scholar 

  • Hensen, V., Volcker, C.: Experimental Untersuchungen Uber dem Mechanismus Akkommodation. Kiel 1868.

    Google Scholar 

  • Heric, T. M., Kruger, L.: Organization of the visual projection upon the optic tectum of a reptile (Alligator mississippiensis). J. comp. Neurol. 124, 101-111 (1965).

    Google Scholar 

  • Hering, E.: Der Raumsinn and die Bewegungen der Augen. In: Handbuch der Physiologie, 3. Her-mann, L. (ed.) Leipzig: Vogel 1879, pp. 343-601.

    Google Scholar 

  • Hermann, G.: Beitrage zur Physiologie des Rattenauges. Z. Tierpsychol. 15, 462-518 (1958).

    Google Scholar 

  • Hess, C.: Gesichtsinn.: Handbuch der vergleichenden Physiologie. Winterstein, H. (ed.). Jena: Fischer 1913.

    Google Scholar 

  • Hess, C., Heine, L.: Arbeiten aus dem Gebiete der Accommodationslehre. Arch. Ophthal. 46, 243-276 (1898).

    Google Scholar 

  • Higgins, G. E., Stultz, K.: Variation of visual acuity with various test objects orientations and viewing conditions. J. opt. Soc. Amer. 40,135-137(1950).

    Google Scholar 

  • Hill, R. M., Ikeda, H.: “Refracting” a single retinal ganglion cell. Arch. Ophthal. 85, 592-596 (1971). Hill, W. C. 0.: Evolutionary biology of the primates. London: Academic Press 1972.

    Google Scholar 

  • Hirschberg,J.: Zur Dioptrik and Ophthalmoskopie der Fisch-and Amphibienaugen. Arch. Anat. Physiol. Lpz. 6,493-526 (1882).

    Google Scholar 

  • Hisdal,E.: Detectable information in a photon beam. J. opt. Soc. Amer. 57, 35-43 (1967).

    Google Scholar 

  • Horridge, G. A. (ed.): The Compound Eye and Vision in Insects. Oxford: Clarendon Press 1975. Howells, W. W.: Mankind so far. New York: Doubleday 1947.

    Google Scholar 

  • Hubel, D. H., Wiesel, T. N.: Receptive fields of single neurones in the cat’s striate cortex. J. Physiol. (Lond.) 148, 574-591 (1959).

    Google Scholar 

  • Hubel, D. H., Wiesel, T. N.: Receptive fields of cells in striate cortex of very young, visually inexperienced kittens. J. Neurophysiol. 26, 994-1002 (1963).

    Google Scholar 

  • Hubel, D. H., Wiesel, T. N.: The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J. Physiol. (Lond.) 206,419—436 (1970).

    Google Scholar 

  • Hubel,D. H., Wiesel,T. N.: Cells sensitive to binocular depth in area 18 of the Macaque monkey cortex. Nature (Loud.) 225,41-42 (1970).

    Google Scholar 

  • Hughes, A.: Topographical relationships between the anatomy and physiology of the rabbit visual system. Docum. ophthal. (Den Haag) 30, 33-159 (1971).

    Google Scholar 

  • Hughes, A.: A schematic eye for the rabbit. Vision Res. 12, 123-138 (1972). Hughes,A.: Vergence in the cat. Vision Res. 11,1961-1994 (1972).

    Google Scholar 

  • Hughes, A.: Observing accommodation in the cat. Vision Res. 13,481-482 (1973).

    Google Scholar 

  • Hughes, A.: A comparison of retinal ganglion cell topography in the plains and tree kangaroo. J. Physiol. (Lond.) 244, 61-63 P (1975 a).

    Google Scholar 

  • Hughes, A.: A quantitative analysis of cat retinal ganglion cell topography. J. comp. Neurol. 163, 107–128 (1975 b).

    Google Scholar 

  • Hughes, A.: A supplement to the cat schematic eye. Vision Res. 16, 149–154 (1976 a).

    Google Scholar 

  • Hughes, A.: The refractive state of the rat eye. Vision Res. 17, 927–939 (1977 b).

    Google Scholar 

  • Hughes, A.: A schematic eye for the rat. Vision Res. in press (1977).

    Google Scholar 

  • Hughes, A.: Directional units in rat optic nerve. Brain Res. submitted (1977d).

    Google Scholar 

  • Hughes, A.: The pigmented rat optic nerve: fibre count and diameter spectrum. J. comp. Neurol. 176, 263–268 (1977).

    Google Scholar 

  • Hughes, A.: A comparison of the retinal ganglion cell diameter spectrum in different regions of the cat retina. J. comp. Neurol., submitted (1977).

    Google Scholar 

  • Hughes, A., Vaney, D. I.: Optometric refraction of the rabbit at various eccentricities. Vision Res. submitted (1977).

    Google Scholar 

  • Hughes, A., Wassle, H.: The cat optic nerve: Fibre total count and diameter spectrum. J. comp. Neurol. 169, 171–184 (1976).

    Google Scholar 

  • Hughes,A., Wassle, H.: Optical image quality of the rat. (Appendix to Hughes, 1977c) in press, (1977b).

    Google Scholar 

  • Hughes, A., Whitteridge, D.: The receptive fields and topographical organization of goat retinal gan-glion cells. Vision Res. 13, 1101–1114 (1973).

    Google Scholar 

  • Ikeda, H., Wright, M. J.: Differential effects of refractive errors and receptive field organization of central and peripheral ganglion cells. Vision Res. 12, 1465–1476 (1972).

    Google Scholar 

  • Ikeda, H., Wright, M.: Optical quality of the cat’s eye and human eye. J. Physiol. (Lond.) 232, 34–35 P (1973).

    Google Scholar 

  • Ingle, D. (ed.): The Central Nervous System and Fish Behavior. Chicago: University of Chicago Press 1968.

    Google Scholar 

  • Ingle, D.: Visuomotor functions of the frog optic tectum. Brain Behav. Evol. 3, 57–71 (1970).

    Google Scholar 

  • Ingle, D.: Prey-catching behaviour of anurans toward moving and stationary objects. Vision Res. Suppl. 3, 447–456 (1971).

    Google Scholar 

  • Ingle, D.: Depth vision in monocular frogs. Psychon. Sci. 29, 37–38 (1972).

    Google Scholar 

  • Ingle, D.: Evolutionary perspectives on the function of the optic tectum. Brain Behav. Evol. 8, 211–237 (1973).

    Google Scholar 

  • Jacobson, M.: The representation of the retina on the optic tectum of the frog. Quart. J. exp. Physiol. 47, 170–178 (1962).

    Google Scholar 

  • Jacobson, M., Gaze, R.M.: Types of visual response from single units in the optic tectum and optic nerve of the goldfish. Quart. J. exp. Physiol. 49, 199–209 (1964).

    Google Scholar 

  • Jacobsen, S. G., Franklin, K. B. J., McDonald, W. I. M.: Visual acuity of the cat. Vision Res. 16, 1141–1143 (1976).

    Google Scholar 

  • James, G. R.: Degeneration of ganglion cells following axonal injury; an experimental study. Arch. Ophthal. 9, 338–343 (1933).

    Google Scholar 

  • Jampel, R. S., Mindel, J.: The nucleus for accommodation in the midbrain of the Macaque. Invest. Ophthal. 6, 40–50 (1967).

    Google Scholar 

  • Johansson, G.: Visual motion perception. Sci. Am. 233, 76–88 (1975).

    Google Scholar 

  • Johnson, G. L.: Contributions to the comparative anatomy of the mammalian eye, chiefly based on ophthalmoscopic examination. Phil. Trans. B194, 1–82 (1901).

    Google Scholar 

  • Jones, A. E..: The retinal structure of (Aotes trivirgatus) the owl monkey. J. comp. Neurol. 125, 19–27 (1965).

    Google Scholar 

  • Joshua, D. E., Bishop, P. O.: Binocular single vision and depth discrimination. Receptive field disparities for central and peripheral vision and binocular interaction on peripheral single units in cat striate cortex. Exp. Brain Res. 10, 389–416 (1970).

    Google Scholar 

  • Julesz, B.: Foundations of Cyclopean Perception. Chicago: University of Chicago Press 1971.

    Google Scholar 

  • Kahmann, H.: Untersuchungen fiber die Linse, die Zonula ciliaris, Refraktion and Accommodation von Saugetieren. Zool. Jb. Abt. allg. Zool. Physiol. 48, 509–588 (1930).

    Google Scholar 

  • Kahmann, H.: über das Vorkommen einer Fovea centralis im Knochenfischauge. Zool. Ariz. 106, 49–55 (1934).

    Google Scholar 

  • Kahmann, H.: über das foveale Sehen der Wirbeltiere. II. Gesichtfeld and Fovea centralis. Sitz. Ges. naturf. Freunde 8, 361–376 (1935).

    Google Scholar 

  • Kahmann, H.: über das foveale Sehen der Wirbeltiere. I. über die Fovea centralis and die Fovea lateralis bei einigen Wirbeltieren. Arch. Ophthal. 135, 265–276 (1936).

    Google Scholar 

  • Keating, M. J., Gaze, R. M.: The ipsilateral retinotectal pathway in the frog. Quart. J. exp. Physiol. 55, 284–292 (1970).

    Google Scholar 

  • Keating, M. P.: A theoretical analysis of off-axis streak retinoscopy. Amer. J. Optom. physiol. Optics. 52, 750-757 (1975).

    Google Scholar 

  • Kelly, J. P., Gilbert, C. D.: The projections of different morphological types of ganglion cells in the cat retina. J. comp. Neuro1.163, 65-80 (1975).

    Google Scholar 

  • Kepler,J.: Ad Vitellionem Paralipomena, quibus Astronomiae pars optica traditur. Francofurti, 1604. (Trans. F. Plehn; ed. M. von Rohr). Grundlagen d. geom. Optik. Ostwald’s Klassiker d. exakt Wissensch. 198. Leipzig: Akad. Verlagsgesellschaft 1922.

    Google Scholar 

  • Kepler,J.: Dioptrice. Augsburg, 1611. (Trans. F. Plehn). Ostwald’s Klassiker d. exakt. Wissensch. 144. Leipzig: Engelmann 1904.

    Google Scholar 

  • Kirschfeld, K.: The resolution of lens and compound eyes. In: Neural Processing in Visual Systems. Zettler, F., Weiler, R. (eds.). Berlin: Springer-Verlag 1976.

    Google Scholar 

  • Koenderink, J. J., Van D oorn, A. J.: Invariant properties of the motion parallax field due to the movement of rigid bodies relative to an observer. Optica Acta, 22, 773-791 (1975).

    Google Scholar 

  • Kolb, H.: Organization of the outer plexiform layer of the primate retina: Electron microscopy of Golgi-impregnated cells. Phil. Trans. B258, 261-283 (1970).

    Google Scholar 

  • Krueger, H., Moser, E. A.: Refraktion and Abbildungsgiite des Froschauges. Pflugers Arch. ges. Physiol.326, 334-340 (1971).

    Google Scholar 

  • Krueger, H., Moser, E. A.: The influence of the modulation transfer function of the dioptric apparatus on the acuity and contrast of the retinal image in Rana esculenta. Vision Res. 12, 1281-1289 (1972).

    Google Scholar 

  • Krueger, H., Moser, E. A.: On the approximation of the optical modulation transfer function (MTF) by analytical functions. Vision Res. 13,493—494 (1973).

    Google Scholar 

  • Kuffler, S. W.: Discharge patterns and functional organisation of mammalian retina. J. Neurophysiol. 16,37—68 (1953).

    Google Scholar 

  • Kulikowski,J.J.: Pattern and movement detection: A comparison between man and rabbit. (in press) 1977.

    Google Scholar 

  • Landau, D., Dawson, W. W.: The histology of retinas from the Pinnipedia. Vision Res. 10, 691-702 (1970).

    Google Scholar 

  • Lane, R. H., Allman, J. M., Kaas, J. H.: Representation of the visual field in the superior colliculus of the grey squirrel (Sciurus carolinensis) and the tree shrew (Tupaia glis). Brain Res. 26, 277-292 (1971).

    Google Scholar 

  • Lang,W., Barrett, J. W.: The refractive character of the eyes of mammalia. Arch. Augenheilk. 17, 103138(1887).

    Google Scholar 

  • Langenbeck, M.: Klinische Beitrage aus dem Gebiete der Chirurgie and Ophthalmologie. Gottingen, 1849.

    Google Scholar 

  • Lashley, K. S.: The Mechanism of Vision. V. The structure and image-forming power of the rat’s eye. J. comp. Psychol. 13, 173-200 (1932).

    Google Scholar 

  • Lashley, K. S.: The mechanism of vision. XV. Preliminary studies of the rat’s capacity for detail vision. J. gen. Psychol. 18,123-193 (1938).

    Google Scholar 

  • Laties, A. M., Enoch, J. M.: An analysis of retinal receptor orientation. I. Angular relationship of neighbouring photoreceptors. Invest. Ophthal. 10, 69-77 (1971).

    Google Scholar 

  • La Vail, J. H., La Vail, M. M.: The retrograde intraaxonal transport of horseradish peroxidase in the chick visual system. J. comp. Neurol. 157, 303-357 (1974).

    Google Scholar 

  • Lazar, G. V., Szekely, G. Y.: Distribution of optic terminals in the different optic centers of the frog. Brain Res. 16, 1-14 (1969).

    Google Scholar 

  • Leehey, S. C., Moskowitz-Cook, A., Brill, S., Held, R.: Orientational anisotropy in infant vision. Science 190, 900-901(1975).

    Google Scholar 

  • LeGrand,Y.: Recherches sur la diffusion de la lumiere dans 1'oeil humain. Rev. Opt. 16, 201-241 (1937).

    Google Scholar 

  • Le Grand, Y.: Sur 1'aberration spherique de l'oeil. C. R. Acad. Sci. (Paris) 215, 547 (1942).

    Google Scholar 

  • Le Grand, Y.: Form and Space Vision. (Trans. by Millodot & Heath), London: Indiana Univ. Press 1967.

    Google Scholar 

  • Le Gros Clarke, W. E.: Remarks on the tree shrew, Tupaia minor, with photographs. Proc. zool. Soc. Lond. 97, 254-256 (1927).

    Google Scholar 

  • Le Gros Clarke, W. E.: The Early Forerunners of man. London: Tindall & Cox 1934.

    Google Scholar 

  • Le Gros Clarke, W. E.: The Antecedents of Man. Edinburgh: Edinburgh Univ. Press 1962. Le Gros Clarke, W. E.: History of the Primates. London: British Museum 1970.

    Google Scholar 

  • Leibowitz, H., Johnson, C., Isabelle, E.: Peripheral motion detection and refractive error. Science 177, 1207-1208 (1972).

    Google Scholar 

  • Leigh Thomas, H.: An anatomical description of a male rhinoceros. Phil. Trans. 91, 145-152 (1801). Leinfelder, P. J.: Retrograde degeneration in the optic nerves and retinal ganglion cells. Trans. Amer. ophthal. Soc. 36, 307 (1938).

    Google Scholar 

  • Leuckart, R. K. G. F.: Organologie des Auges. Vergleichende Anatomie. I. Handbuch der gesamten Augenheilkunde. Graefe-Saemisch. (ed.). 2,145-301. Leipzig: Engelmann 1876.

    Google Scholar 

  • Levick, W. R.: Receptive fields and trigger features of ganglion cells in the visual streak of the rabbit’s retina. J. Physiol. (Lond.) 188,285-307 (1967).

    Google Scholar 

  • Levick, W. R., Cleland, B. G.: Selectivity of microelectrodes in recordings from cat retinal ganglion cells. J. Neurophysiol. 37,1387-1393 (1974).

    Google Scholar 

  • Leyhausen, P.: Uber die Funktion der relativen Stimmungshierarchie. Z. Tierpsychol. 22, 412-494 (1965).

    Google Scholar 

  • Lichtenstein, M.: Spatiotemporal factors in cessation of smooth apparent movement. J. opt. Soc. Amer. 53, 302-306 (1963).

    Google Scholar 

  • Lincoln, D. W., Mason, C. A.: The use of cobalt sulphide precipitation technique to delineate neuronal projections in the rat brain. J. Physiol. (Lond.) 245,40—41 P (1974).

    Google Scholar 

  • Listing, J. B.: Beitrag zur physiologischen Optik. Gottingen, 1845.

    Google Scholar 

  • Lotmar, W.: Theoretical eye model with aspherics. J. opt. Soc. Amer. 61,1522-1529 (1971). Low, F. N.: The peripheral visual acuity of 100 subjects. Amer. J. Physiol. 140, 83-88 (1943). Luck, C. P.: The comparative morphology of the eyes of certain African suiformes. Vision Res. 5, 283-297(1965).

    Google Scholar 

  • Ludlam, W. M., Twarowski, C. J.: Ocular-dioptric-component changes in the growing rabbit. J. opt. Soc. Amer. 63,95-98 (1973).

    Google Scholar 

  • Ludlam, W. M., Weinberg, S. S., Twarowski, C. J., Ludlam, D. P.: Comparison of cycloplegic and noncycloplegic ocular component measurement in children. Amer. J. Optom. 49,805-818 (1972). Ludvigh, E.: Extrafoveal acuity as measured with Snellen test letters. Amer. J. Ophthal. 24, 303-310 (1941).

    Google Scholar 

  • Luneberg, R. K.: Mathematical Analysis of Binocular Vision. Hannover: Dartmouth Eye Institute 1947.

    Google Scholar 

  • Mach, E.: Uber die Wirkung der raumlichen Vertheilung des Lichtreizes auf die Netzhaut, 1. In Sitzungberichte der mathematisch-naturwissenschaftlichen Classe der kaiserlichen Akademie der Wissenschaften. 52, 303-322 (1865).

    Google Scholar 

  • Maffei, L., Campbell, F. W.: Neurophysiological localization of the vertical and horizontal visual co-ordinates in man. Science 167,386-387 (1970).

    Google Scholar 

  • Mandelbaum,J., Sloan,L.L.: Peripheral visual acuity. Amer. J. Ophthal. 30, 581-588 (1947). Marchand, E. W.: Ray tracing in gradient index media. J. opt. Soc. Amer. 60, 1-7 (1970). Marriott, F. H. C., Morris, V. B.: The distribution of light in an image formed in the cat’s eye. Nature (Lond.) 90,176-177 (1961).

    Google Scholar 

  • Marshall, J., Mellerio, J., Palmer, D. A.: A schematic eye for the pigeon. Vision Res. 13, 2449-2453 (1973).

    Google Scholar 

  • Massof, R. W., Chang, F. W.: A revision of the rat schematic eye. Vision Res. 12, 793-796 (1972). Matthiessen, L.: Die Differentialgleichungen der Dioptrik der geschichteten Krystallinse. Pflugers Arch. ges. Physiol. 19,480-562 (1879).

    Google Scholar 

  • Matthiessen, L.: Uber-die Beziehungen welche zwischen dem Brechungsindex des Kerncentrums der Krystallinse and der Dimensionen des Auges bestehen. Pflugers Arch. ges. Physiol. 27, 510-523 (1882).

    Google Scholar 

  • Matthiessen, L.: Beitrage zur Dioptrik der Krystallinse I. Z. vergl. Augenheilk. 4, 1-39 (1886). Matthiessen, L.: Uber den physikalisch-optischen Bau des Auges der Cetaceen and der Fische. Pflugers Arch. ges. Physiol. 38, 521-528 (1886).

    Google Scholar 

  • Matthiesen, L.: Uber den physikalisch-optischen Bau des Auges der Vogel. Pflugers Arch. ges. Physiol. 38,104-112 (1886).

    Google Scholar 

  • Matthiesen, L.: Beitrage zur Dioptrik der Krystallinse, II & III. Z. vergl. Augenheilk. 5, 21-44, 97-126(1887).

    Google Scholar 

  • Matthiessen, L.: Uber den physikalisch-optischen Bau des Auges von Cervus alcesmos. Pflugers Arch. ges. Physiol. 40, 314-323 (1887).

    Google Scholar 

  • Matthiessen, L.: Uber den physikalisch-optischen Bau des Auges von Knolwal (Megaptera boops, Fabr.) and Finwal (Balaenoptera musculus Comp.), Z. vergl. Augenheilk. 7, 77-101(1893).

    Google Scholar 

  • Matthews, G. V. T.: Bird navigation. Cambridge Monographs in Expl. Biology No. 3. Cambridge Cambridge Univ. Press 1968.

    Google Scholar 

  • Maturana, H. R.: Number of fibers in the optic nerve and the number of ganglion cells in the retina of anurans. Nature (Lond.) 183,1406-1407 (1959).

    Google Scholar 

  • Maturana, H. R.: Functional organization of the pigeon retina. Proc. IUPS 22nd Int. Cong. (Leiden) 3, 170-178. Amsterdam: Excerpta Medica 1964.

    Google Scholar 

  • Maxwell, G.: Ring of Bright Water. London: Longmans, Green & Co. 1960. Maxwell, G.: The Rocks Remain. London: Longmans, Green & Co. 1963. Maxwell,J. C.: Solutions of problems. Cambridge & Dublin Mathematical Journal 8, 188 (1854). In: The Scientific Papers of J.C. Maxwell. I. Niven, W. D., London: Cambridge University Press 1890. Maxwell,J. C.: On the general laws of optical instruments. Quart. J. Pure & Appl. Mathematics VII (1858). In: The Scientific Papers of J. C. Maxwell. I. London: Cambridge University Press 1890. McColgin, F. H.: Movement thresholds in peripheral vision. J. opt. Soc. Amer. 50, 774-779 (1960). Merigan,W.H.: The contrast sensitivity of the squirrel monkey. Vision Res. 16, 375-379 (1976). Messing, R. B.: The sensitivity of albino rats to lights of different wavelengths: a behavioural assessment. Vision Res. 12, 753-761 (1972).

    Google Scholar 

  • Meyer, D. L., Meyer-Haame, S., Schaeffer, K.-P.: Electrophysiological investigation of refractive state and accommodation in the rabbit’s eye. Pflugers Arch. ges. Physiol. 332, 80-86 (1972).

    Google Scholar 

  • Meyer, D. L., Schwassmann, H. 0.: Electrophysiological method for determination of refractive state in fish eyes. Vision Res. 10, 1301-1307 (1970).

    Google Scholar 

  • Michael, C. R.: Receptive fields of single optic nerve fibres in a mammal with an all-cone retina. II. Directionally selective units. J. Neurophysiol. 31, 257-267 (1968).

    Google Scholar 

  • Miller, W. H., Snyder, A. W.: Optical function of human peripheral cones. Vision Res. 13, 2185-2194 (1973).

    Google Scholar 

  • Miller, W. H., Snyder, A. W.: Deep fovea of birds functions as telephoto lens. A.R.V.O. Symp. Rec. May, p.26 (1977).

    Google Scholar 

  • Millodot, M.: Reflection from the fundus of the eye and its relevance to retinoscopy. Fondazione Giorgio Ronchi 27, 31-50 (1972).

    Google Scholar 

  • Millodot, M., Blough, P.: The refractive state of the pigeon eye. Vision Res. 11, 1019-1022 (1971). Millodot, M., Johnson, C. A., Lamont, A., Leibowitz, H. W.: Effect of dioptrics on peripheral visual acuity. Vision Res. 15,1357-1362 (1975).

    Google Scholar 

  • Millodot, M., Lamont, A.: Refraction of the periphery of the eye. J. opt. Soc. Amer. 64, 110-111 (1971). Millodot, M., Lamont, A.: Peripheral visual acuity in the vertical plane. Vision Res. 14, 1497-1498 (1974).

    Google Scholar 

  • Missotten, L.: Estimation of the ratio of cones to neurons in the fovea of the human retina. Invest. Ophtha1.13, 1045-1049 (1974).

    Google Scholar 

  • Mitchell, D. E., Freeman, R. D., Millodot, M., Haegerstrom, G.: Meridional amblyopia: Evidence for modification of the human visual system by early visual experience. Vision Res. 13, 535-558 (1973).

    Google Scholar 

  • Mitchell, D. E., Griffin, F., Tinney, B.: A behavioural technique for the rapid assessment of visual capabilities of kittens. Perception 6, 181-193 (1977).

    Google Scholar 

  • Mitchell, P.C.: The Childhood of Animals. London 1912.

    Google Scholar 

  • Mize, R. R., Murphy, E. H.: Selective visual experience fails to modify receptive field properties of rabbit striate cortex neurons. Science 180, 320-323 (1973).

    Google Scholar 

  • Montero,V.M., Brugge,J.F., Beitel,R.E.: Relation of the visual field to the lateral geniculate body in the albino rat. J. Neurophysiol. 31, 221-236 (1968).

    Google Scholar 

  • Montero, V. M., Rojas, A., Torrealba, F.: Retinotopic organisation of striate and peristriate visual cortex in the albino rat. Brain Res. 53, 197-201 (1973).

    Google Scholar 

  • Moore, D. T.: Design of singlets with continuously varying indices of refraction. J. opt. Soc. Amer. 61, 886-894 (1971).

    Google Scholar 

  • Morgan, M. W., Mohney, J., Olmsted, J. M. D.: Astigmatic accommodation. Arch. Ophthal. 30, 247-249(1943).

    Google Scholar 

  • Moser, E. A.: Retinoskopische and Neurophysiologische Refraktion beim Frosch. Inaugural Dissertation zur Doktorwurde, Munich University 1973.

    Google Scholar 

  • Moser, E. A., Krueger, H.: Retinoscopic and neurophysiological refractometry in Rana tempororia. Pflugers Arch. ges. Physiol. 335,83 (1972).

    Google Scholar 

  • Moses, R. A.: Adler’s Physiology of the Eye: Clinical Application. Moses, R. A. (ed.). 5th ed. St. Louis C. V. Mosby 1970, pp. 350-371.

    Google Scholar 

  • Müller, H.: Zur vergleichenden Physiologie des Gesichtsinnes des Menschen and der Thiere. Leipzig: Cnobloch 1826 (cited by E. G. Boring, 1942).

    Google Scholar 

  • Müller, H.: über einige Verhaltnisse der Netzhaut bei Menschen and Thieren. Verh. phys. med. Ges. Wurzburg 3, 336 (1853).

    Google Scholar 

  • Müller, H.: Anatomisch-physiologische Untersuchungen uber die Retina des Menschen and der Wirbelthiere. Leipzig 1856.

    Google Scholar 

  • Müller, H.: über das ausgedehnte Vorkommen einer dem gelben Fleck der Retina entsprechenden Stelle bei Thieren. Wurzburg. Naturwiss. Z. 2, 139–140 (1861).

    Google Scholar 

  • Munk, O.: On the occurrence and significance of horizontal band-shaped retinal areae in teleosts. Vidensk. Meddr. dansk. naturh. Foren. 133, 85–120 (1970).

    Google Scholar 

  • Nakao, S. N., Fujimoto, S., Nagata, R., Iwata, K.: Model of refractive index distribution in the rabbit crystalline lens. J. opt. Soc. Amer. 58, 1125–1130 (1968).

    Google Scholar 

  • Nakao, S., Mine, K., Nishioka, K., Kamiya, S.: New schematic eye and its clinical applications. Ab-stracts 21st Int. Cong. of Ophthal., Mexico E 102 (1970).

    Google Scholar 

  • Nakao, S., Ono, T., Nagata, R., Iwata, K.: The distribution of refractive indices in the human crystalline lens. Jap. J. clin. Ophthal. 23, 41–44 (1969).

    Google Scholar 

  • Nakayama, K., Loomis, J.M.: Optical velocity patterns, velocity-sensitive neurons, and space perception: A hypothesis. Perception 3, 63–80 (1974).

    Google Scholar 

  • Nelson, J. I.: Motion sensitivity in peripheral retina. Perception 4, 151–152 (1974).

    Google Scholar 

  • Nicol, J.A.C.: Some aspects of photoreception and vision in fishes. Advanc. Marine Biol. 1, 171–208 (1963).

    Google Scholar 

  • Nicolas, E.: Veterinary and Comparative Ophthalmology. London: H. & W. Brown 1930.

    Google Scholar 

  • Nikara, T., Bishop, P. O., Pettigrew, J. D.: Analysis of retinal correspondence by studying receptive fields of binocular single units in cat striate cortex. Exp. Brain Res. 6, 353–372 (1968).

    Google Scholar 

  • Nordenson, J. W.: über den Brechungsindex der Netzhaut. Acta ophthal. (Kbh.) 12, 171–175 (1934).

    Google Scholar 

  • Nye, P. W.: On the functional differences between frontal and lateral visual fields of the pigeon. Vision Res. 13, 559–574 (1973).

    Google Scholar 

  • O'Day, K.: The visual cells of the Australian reptiles and mammals. Trans. ophthal. Soc. Aust. 1, 12 (1939).

    Google Scholar 

  • O'Day, K.: The fundus and fovea centralis of the albatross (Diomedea cauta cauta-Gould). Brit. J. Ophthal. 24, 201–207 (1940).

    Google Scholar 

  • O'Flaherty, J. J.: The optic nerve of the mallard duck: Fibre diameter frequency distribution and physiological properties. J. comp. Neurol. 143, 17–24 (1971).

    Google Scholar 

  • Ogawa, T., Karita, K., Tsuchiya, I.: Response characteristics of single neurons in the rabbit visual cortex. Tohoku J. exp. Med. 96, 349–364 49–364 (1968).

    Google Scholar 

  • Ogden, T. E.: The receptor mosaic of Aotes trivirgalus: distribution of rods and cones. J. comp. Neurol. 163, 193–202 (1975).

    Google Scholar 

  • Ogilvie, J., Daicar, E.: The perception of curvature. Canad. J. Psychol. 21, 521–525 (1967).

    Google Scholar 

  • Ogle, K. N.: Researches in Binocular Vision. Philadelphia: Saunders 1950.

    Google Scholar 

  • Ogle, K. W.: Visual acuity. In. The Retina. U.C.L.A. Forum in Medical Sciences No. 8 Straatsma, B. R. et al. Berkley and Los Angeles: University of California Press 1969.

    Google Scholar 

  • Ohzu, H., Enoch, J. M.: Optical modulation by the isolated human fovea. Vision Res. 12, 245–251 (1972).

    Google Scholar 

  • Ohzu, H., Enoch, J. M., O'Hair, J. C.: Optical modulation by the isolated retina and retinal receptors. Vision Res. 12, 231–244 (1972).

    Google Scholar 

  • Olmsted, J. M. D.: The role of the autonomic nervous system in accommodation for far and near vision. J. nerv. ment. Dis. 99, 794–798 (1944).

    Google Scholar 

  • Olmsted, J. M. D., Morgan, M. W.: The influence of the cervical sympathetic nerve on the lens of the eye. Amer. J. Physiol. 133, 720–723 (1941).

    Google Scholar 

  • O'Neill, W. D., Brodkey, J. S.: Linear regression of lens movement with refractive state. Arch. Ophthal. 82, 795–799 (1969).

    Google Scholar 

  • O'Neill, W. C., Brodkey, J. S.: A nonlinear analysis of the mechanics of accommodation. Vision Res. 10, 375–391 (1970).

    Google Scholar 

  • Oppel, O.: Quantitative Untersuchungen uber die Retinaganglien and Optikusfusern. In: Eye Structure, 11. Symp. Rohen, S. W. (ed.). Stuttgart: Schattauer-Verlag 1965, pp. 97–108.

    Google Scholar 

  • Oppel, O.: Untersuchung uber die Verteilung and Zahl der retinalen Ganglienzellen beim Menschen. Albrecht v. Graefes Arch. Klin. exp. Ophthalmol. 172, 1–22(1967).

    Google Scholar 

  • Osterberg, G.: Topography of the layer of rods and cones in the human retina. Acta. ophthal. (Kbh.) Suppl. 6 (1935).

    Google Scholar 

  • Oyster, C. W., Takahashi, E., Collewijn, H.: Direction selective retinal ganglion cells and control of optokinetic nystagmus in the rabbit. Vision Res. 12, 183-193 (1972).

    Google Scholar 

  • Oyster, C. W., Takahashi, E., Levick, W. R.: Information processing in the rabbit visual system. In Vision in the Rabbit. Van Hof, M. W. and Collewijn, H. (eds.). Docum. ophthal. (Den Haag) 30, 161-204 (1971).

    Google Scholar 

  • Packwood,J., Gordon, B.: Stereopsis in normal domestic cat, Siamese cat and cat raised with alternating monocular occlusion. J. Neurophysiol. 38,1485-1499 (1975).

    Google Scholar 

  • Pariente, G.: Influence of light on the activity rhythms of two Malagasy lemurs: Phaner furcifer and Lepilemur mustelinus leucopus. In: Prosimian Biology. Martin, R. D., and Doyle, G. A., and Walker, A. C. (eds.). Part. 1. London: Duckworth 1974, pp. 183-198.

    Google Scholar 

  • Parsons,J.H.: An Introduction to the Theory of Perception. London: Cambridge Univ. Press 1927. Pask, C., Snyder, A. W.: Angular sensitivity of lens photoreceptor systems. In: Photoreceptor Optics. Snyder, A. W. & Menzel, R. (ed.). Berlin: Springer-Verlag 1975.

    Google Scholar 

  • Patnaik, B.: A photographic study of accommodative mechanisms: changes in the lens nucleus during accommodation. Invest. Ophthal. 6,601-611 (1967).

    Google Scholar 

  • Pennycuick, C. J.: The physical basis of astro-navigation in birds: Theoretical considerations. J. exp. Biol. 37, 573-593 (1960).

    Google Scholar 

  • Peterson, D. R., Middleton, D.: Sampling and reconstruction of wave number limited functions in Ndimensional Euclidean spaces. Inf. Control 5, 279-323 (1962).

    Google Scholar 

  • Pettigrew, J. D., Konishi, M.: Binocular neurones sensitive to orientation and disparity in the visual wulst of the owl. Science 193, 675—678 (1976).

    Google Scholar 

  • Phillipson,B.: Distribution of protein within the normal rat lens. Invest. Ophthal. 8, 258-270 (1969). Pirenne, M. H.: The visual process. In: The Eye, Davson, H. (ed.). London: Academic Press 1962. Pirenne, M. H.: Optics, Painting and Photography. Cambridge: Cambridge Univ. Press 1970.

    Google Scholar 

  • Pisa, A.: Ober den binokularen Gesichtsraum bei Haustieren. Arch. Ophthal. 140,1-54 (1939). Pollock,R.I.: On the external characters of some species of Lutrinae. Proc. zool. Soc. Lond. 91, 535-546 (1921).

    Google Scholar 

  • Polyak, S.: The Retina. Chicago: University of Chicago Press 1941.

    Google Scholar 

  • Polyak, S.: The Vertebrate Visual System. Chicago: University of Chicago Press 1957.

    Google Scholar 

  • Pomerantzeff, O., Govignon, J., Schepens, C. L.: Wide-angle optical model of the human eye. Ann. Ophthal. 3, 815-819 (1971).

    Google Scholar 

  • Potts, A. M., Hodges, D., Shelman, C. B., Fritz, K. J., Levy, N. S., Mangall, Y.: Morphology of the primate optic nerve. I. Method and total fibre count. Invest. Ophthal.11, 980-988 (1972).

    Google Scholar 

  • Prince, J. H.: Comparative Anatomy of the Eye. Illinois: Thomas 1956.

    Google Scholar 

  • Prince,J. H., Diesem, C. D., Eglitis, I., Ruskell, G. L.: Anatomy and Histology of the Eye and Orbit in Domestic Animals. Illinois: Thomas 1960.

    Google Scholar 

  • Pritchard,R. M., Heron, W.: Small eye movements of the cat. Canad. J. Psychol. 14, 131-137 (1960). Pumphrey, R. J.: The theory of the fovea. J. exp. Biol. 25, 299-312 (1948 a).

    Google Scholar 

  • Pumphrey, R. J.: The sense organs of birds. Ibis. 90, 171-199 (1948 b).

    Google Scholar 

  • Pumphrey, R. J.: Concerning Vision. In: The Cell and the Organism. Ramsay & Wigglesworth (eds.). London: Cambridge Univ. Press 1961, pp. 193-208.

    Google Scholar 

  • Pumphrey, R. J.: Sensory organs: Vision II. Biology & Comparative Physiology of Birds. Marshall, A. J. (ed.). New York: Academic Press 1961.

    Google Scholar 

  • Quilliam,T.A.: The problems of vision in the ecology of Talpa Europea. Exp. Eye. Res. 5, 63-78 (1966).

    Google Scholar 

  • Rademaker, G. G., Ter Braak, J. W. G.: On the central mechanism of some optic reactions. Brain 71, 48-76 (1948).

    Google Scholar 

  • Ratliff, F.: Mach Bands: Quantitative Studies on Neural Networks in the Retina. London: Holden-Day 1965.

    Google Scholar 

  • Raybourn, M. S.: Spatial and temporal organization of the binocular input to frog optic tectum. Brain Behav. Evol. 11, 161-178 (1975).

    Google Scholar 

  • Rayleigh, Lord: Investigations in optics with special reference to the spectroscope. Phil. Mag., 261-274(1879).

    Google Scholar 

  • Reza, F. M.: An introduction to information theory. London: McGraw-Hill 1961.

    Google Scholar 

  • Roberts, S. R.: A system of testing vision in animals. J. Amer. vet. med. Ass. 128, 544-546 (1956).

    Google Scholar 

  • Robson,J. G.: Receptive fields. In: Handbook of Perception. Vol. 5. Carterette, E. C., and Fried-man, M. P. (eds.). New York: Academic Press 1975, pp. 81-112.

    Google Scholar 

  • Robson,J. G., Enroth-Cugell, C.: Direct measurement of image quality in the cat eye. J. Physiol. (Loud.) 239,30P (1974).

    Google Scholar 

  • Robson,J. G., Enroth-Cugell, C.: Scattered light and the retinal image in the cat eye. Proc. Aust. physiol. pharmacol. Soc., 6,202 (1975).

    Google Scholar 

  • Rochon-Duvigneaud, A.: Quelques donnees sur la fovea des oiseaux. Annls. Oculist 156 (1919). Rochon-Duvigneaud, A.: Une methode de determination du champ visuel chez le vertebres. Ann. Oculist 159,561 (1922).

    Google Scholar 

  • Rochon-Duvigneaud, A.: Les Yeux et la Vision des Vertebres. Paris: Masson 1943.

    Google Scholar 

  • Rodieck,R. W., Stone,J.: Response of cat retinal ganglion cells to moving visual patterns. J. Neuro-physiol. 28, 819-831(1965).

    Google Scholar 

  • Rohen,J. W.: Der Ziliarkbrper als funktionelles System. Morph. Jb. 92,415—440 (1952).

    Google Scholar 

  • Rohen,J. W.: Anatomie des Auges. In: Der Augenarzt, Bd. I, Velhagen, K. (ed.). Leipzig: Thieme 1958, pp. 1-123.

    Google Scholar 

  • Rohen,J. W.: Das Auge and seine Hilfsorgane, V. 3. In: Handbuch der Mikroskopischen Anatomie des Menschen. Mollendorff, W., Bargmann, W. (eds.). Berlin: Springer-Verlag 1964.

    Google Scholar 

  • Rohen,J. W., Castenholz, A.: fiber die Zentralisation der Retina bei Primaten. Folia primatol. 5, 92147(1967).

    Google Scholar 

  • RÖhler, R.: Untersuchungen der Cbertragungseigenschaften des Auges mit Strichgittern. Phys. Verh. Mosbach. 10, 89 (1959).

    Google Scholar 

  • RÖhler, R.: Die Abbildungseigenschaften der Augenmedien. Vision Res. 2, 391-492 (1962).

    Google Scholar 

  • RÖhler, R., Hilz, R.: Physical and physiological factors in visual modulation transfer. In: Performance of the Eye at Low Luminances. Bouman, M. A., and Vos, J. J. (eds.) Amsterdam: Excerpta Medica 1965.

    Google Scholar 

  • RÖhler, R., Miller, U., Aberl, M.: Zur Messung der M odulationslibertragungsfunktion des lebenden menschlichen Auges im reflektierten Licht. Vision Res. 9,407—428 (1969).

    Google Scholar 

  • Rolls, E. T., Cowey, A.: Topography of the retina and striate cortex and its relationships to visual acuity in rhesus monkeys and squirrel monkeys. Exp. Brain Res. 10, 298-310 (1970).

    Google Scholar 

  • Romanes, G. J.: Animal Intelligence. London: Kegan, Paul, Trench & Co. 1882.

    Google Scholar 

  • Rose, L., Yinon, U., Berkin, M.: Myopia induced in cats deprived of distance vision during development. Vision Res. 14,1029-1032 (1974).

    Google Scholar 

  • Rowe, M-. H., Stone, J.: Properties of ganglion cells in the visual streak of the cat’s retina. J. comp. Neuro1.169, 99-126 (1976).

    Google Scholar 

  • Ruppert, L.: Ein Vergleich zwischen dem Distinktionsverm6gen and der Bewegungsempfindlichkeit der Netzhautperipherie. Z. Sinnesphysiol. 42,409—423 (1908).

    Google Scholar 

  • Rushton, W. A. H.: The difference spectrum and the photosensitivity of rhodopsin in the living human eye. J. Physiol. (Lond.)134, 11-29 (1956).

    Google Scholar 

  • Rushton, W. A. H.: The retinal organisation of vision in vertebrates. In: Biological Receptor Mechanisms. Symp. Soc. exp. Biol. XVI. 1962, pp. 12-31.

    Google Scholar 

  • Rushton, W. A. H.: The density of chlorolabe in the foveal cones of the protanope. J. Physiol. (Lond.) 168,360-373 (1963).

    Google Scholar 

  • Salomon, A. D.: Visual field factors in the perception of direction. Amer. J. Psychol. 60, 68-88 (1947). Samorajski, T., Ordy, J. M., Keefe, J. R.: Structural organization of the retina in the tree shrew ( Tupaia glis). J. Cell Biol. 28,489-504 (1966).

    Google Scholar 

  • Sands, P. J.: Inhomogeneous lenses, VI Derivatives of paraxial coefficients. J. opt. Soc. Amer. 63, 1210-1216 (1973).

    Google Scholar 

  • Sanderson, K. J.: Visual field projection columns and magnification factors in the lateral geniculate nucleus of the cat. Exp. Br. Res. 13, 159-177 (1971).

    Google Scholar 

  • Scheiner, C.: Oculus Hoc Est: Fundamentum Opticum. Innsbruck: Oenoponti 1619.

    Google Scholar 

  • Schober, H. A. W., Hilz, R.: Contrast sensitivity of the human eye for square wave gratings. J. opt. Soc. Amer. 55,1086-1091 (1965).

    Google Scholar 

  • Schultze,M.: Zur Anatomie and Physiologie der Retina. Arch. mikr. Anat. 2,175-286 (1866). Schusterman, R. J.: In: Behaviour of Marine Animals: Vertebrates. Winn, H. E., and Olla, B. L. (eds.). New York: Plenum Press 1972.

    Google Scholar 

  • Schusterman, R. J., Barrett, B.: Amphibious nature of visual acuity in the Asian “clawless” otter. Nature (Loud.) 244, 518-519 (1973).

    Google Scholar 

  • Schwassmann, H. O.: Visual projection upon the optic tectum in foveate marine teleosts. Vision Res. 8, 1337-1348 (1968).

    Google Scholar 

  • Schwassmann, H. O., Kruger, L.: Organization of the visual projection upon the optic tectum of some freshwater fish. J. comp. Neurol. 124, 113-126 (1965).

    Google Scholar 

  • Seba,J.: Ophthalmological findings in newborn children, Part 1. Cs. Oftal. 30, 42-47 (1974). Seneviratne, K. N.: The representation of the subcortical centers of cat and rabbit. Edinburgh: Doctoral Thesis 1963.

    Google Scholar 

  • Senff, R.: Sehen. In: Handworterbuch der Physiologie. Wagners, R. (ed.) Bd III. 1846, p. 296.

    Google Scholar 

  • Sherman, S. M.: Visual field defects in monocularly and binocularly deprived cats. Brain Res. 49, 25-45 (1973).

    Google Scholar 

  • Shlaer,R.: An eagles eye; Quality of the retinal image. Science 176, 920-922 (1972).

    Google Scholar 

  • Shlaer, S.: The relation between visual acuity and illumination. J. gen. Physiol. 21, 165-188 (1937). Shannon, C. E., Weaver, W.: The Mathematical Theory of Communication. University of Illinois Press 1949.

    Google Scholar 

  • Sidman, R. L.: Histochemical studies on photoreceptor cells. Ann. N.Y. Acad. Sci. 74, 182-195 (1958). Simon, J. F., Denieul, P. M.: Influence of the size of test field employed in measurements of modulation transfer function of the eye. J. opt. Soc. Amer. 63, 894-896 (1973).

    Google Scholar 

  • Sivak,J. G.: Interrelation of feeding behaviour and accommodation lens movements in some species of North American freshwater fishes. J. Fish Res. Bd. Con. 30, 1141-1146 (1973).

    Google Scholar 

  • Sivak, J. G.: The refractive error of the fish eye. Vision Res. 14, 209-213 (1974).

    Google Scholar 

  • Sivak,J. G., Allen, D. B.: An evaluation of the “ramp” retina of horse eye. Vision Res. 15, 1353-1356 (1975).

    Google Scholar 

  • Sivak, J. G., Howland, H. C.: Accommodation in the northern rock bass in response to natural stimuli. Vision Res.13, 2059-2064 (1973).

    Google Scholar 

  • Skarf, B.: Development of binocular single units in the optic tectum of frogs raised with disparate stimulation to the eyes. Brain Res. 51, 352-357 (1971).

    Google Scholar 

  • Slepian,D.: On bandwidth. Proc. I.E.E.E. 64, 292-300 (1976).

    Google Scholar 

  • Slonaker,J.R.: A comparative study of the area of acute vision in vertebrates. J. Morph. 13, 445-500 (1897).

    Google Scholar 

  • Smith, P.: On accommodation in the rabbit. Ophthal. Rev. 17, 287-296 (1898).

    Google Scholar 

  • Snyder, A. W.: Acuity of compound eyes: Physical luneleeleons and design. J. comp. Physiol. 116, 161-182 (1977).

    Google Scholar 

  • Snyder, A. W., Miller, W. H.: Bird resolving power; telephoto lens system of the avian eye. Nature (Lond.) in press (1977 a).

    Google Scholar 

  • Snyder, A. W., Miller, W. H.: Photoreceptor diameter and spacing for highest resolving power. J. opt. Soc. Amer. 67, 696-698 (1977 b).

    Google Scholar 

  • Snyder, A. W., Menzel, R. (eds.): Photoreceptor Optics. Berlin; Springer-Verlag 1975.

    Google Scholar 

  • Snyder, A. W., Stavenga, D. G., Laughlin, S. B.: Spatial information capacity of compound eyes. J. comp. Physiol. 116,183-207 (1977).

    Google Scholar 

  • Snyder, A. W., Laughlin, S. B., Stavenga, D. G.: Information capacity of eyes. (Vision Res., in press) 1977.

    Google Scholar 

  • Sokol,S.: Cortical and retinal spectral sensitivity of the hooded rat. Vision Res. 10, 253-262 (1970). Sorsby, A., Benjamin, B., Davey, J. B., Sheridan, M., Tanner, J. M.: Emmetropia and its aberrations. MRC Report 293. London: HMSO 1957.

    Google Scholar 

  • Sorsby, A., Benjamin, B., Sheridan, M., Stowe, J., Leary, G. A.: Refraction and its components during the growth of the eye from the age of three. MRC. Spec. Rep. Series No. 301. London: HMSO. 1961.

    Google Scholar 

  • Southall,J. P. C.: The optical theory of skiascopy. J. opt. Soc. Amer. 13, 245-266 (1926). Southall,J. P. C.: Mirrors, Prisms and Lenses. New York: Dover 1964.

    Google Scholar 

  • Sparrow, C. M.: Spectroscopic resolving power. Astrophys. J. 44, 76-86 (1916).

    Google Scholar 

  • Spatz, W. B.: Die Bedeutung der Augen fur die sagittale Gestaltung des Schadels von Tarsius. Folia primatol. 9,22-40 (1968).

    Google Scholar 

  • Steinberg, R. H., Reid, M., Lacy, P. L.: The distribution of rods and cones in the retina of the cat. J. comp. Neurol. 148,229-248 (1973).

    Google Scholar 

  • Stenstrom, S.: Investigation of the variation and the correlation of the optical elements of human eyes. Amer. J. Optom. Monog. 58 (1948).

    Google Scholar 

  • Stevenson-Hamilton, J.: Animal Life in Africa. London: Alligator Books 1912.

    Google Scholar 

  • Stiles, W. S., Crawford, B. H.: The luminous efficiency of rays entering the pupil at different points. Proc. roy. Soc. Lond. B 112, 428 (1933).

    Google Scholar 

  • Stine, G. H.: Variations in refraction of visual and extravisual pupillary zones: skiascopic study. Amer. J. Ophthal. 13,101-112 (1930).

    Google Scholar 

  • Stine, G. H.: Tables for accurate retinal localization. Amer. J. Ophthal. 17, 314–324 (1934).

    Google Scholar 

  • Stone, J.: A quantitative analysis of the distribution of ganglion cells in the cat retina. J. comp. Neurol. 12, 337–352 (1965).

    Google Scholar 

  • Stone, J.: The naso-temporal division of the cat’s retina. J. comp. Neurol. 126, 585–600 (1966).

    Google Scholar 

  • Stone, J.: Sampling problems of microelectrodes assessed in the cat’s retina. J. Neurophysiol. 36, 1071–1079 (1973).

    Google Scholar 

  • Stone, J., Fabian,M.: Specialised receptive fields of the cat’s retina. Science 152, 1277–1279 (1966).

    Google Scholar 

  • Stone, J., Fukuda, Y.: Properties of cat retinal ganglion cells: A comparison of W-cells with X-and Ycells. J. Neurophysiol. 37, 722–748 (1974).

    Google Scholar 

  • Stone, J., Leicester, J., Sherman, S. M.: The naso-temporal division of the monkey’s retina. J. comp. Neurol. 150, 333–348 (1973).

    Google Scholar 

  • Stone, J., Rowe, M. H., Campion, J., Hollander, H.: Properties of ganglion cells in the visual streak of the cat’s retina. Proc. Aust. physiol. pharmacol. Soc. 6, 106–107 (1975).

    Google Scholar 

  • StrÖmberg, E.: über Refraktion and Achsenlange des menschlichen Auges. Berlin: Karger 1936.

    Google Scholar 

  • Stryker, M., Blakemore, C.: Saccadic and disjunctive eye movements in cats. Vision Res. 12, 20052013 (1972).

    Google Scholar 

  • Sunderland, H. R., O'Neill, W. D.: Functional dependence of optical parameters on circumferential forces in the cat lens. Vision Res. 16, 1151–1158 (1976).

    Google Scholar 

  • Suthers, R. A., Wallis, N. E.: Optics of the eyes of echolocating bats. Vision Res. 10, 1165–1173 (1970).

    Google Scholar 

  • Synge, J. L.: Geometrical Optics. Cambridge Tracts in Mathematics & Mathematical Physics. London: Cambridge University Press 1937.

    Google Scholar 

  • Szalay, F. S.: Where to draw the nonprimate-primate taxonomic boundary. Folia primatol. 23, 158–163(1975).

    Google Scholar 

  • Tamura, T.: A study of visual perception in fish especially on resolving power and accommodation. Bull. Jap. Soc. Sci. Fish. 22, 536–557 (1957).

    Google Scholar 

  • Tapp, E. L.: Axon numbers and distribution, myelin thickness and the reconstruction of the compound action potential in the optic nerve of the teleost, Eugerres plumieri. J. comp. Neurol. 153, 267–274 (1973).

    Google Scholar 

  • Teller, D., Morse, R., Borton, R., Regal, D.: Visual acuity for vertical and diagonal gratings in human infants. Vision Res. 14, 1433–1439 (1974).

    Google Scholar 

  • Ter Braak, J. W. G.: Untersuchungen uber optokinetischen Nystagmus. Arch. neerl. Physiol. 21, 309–376 (1936).

    Google Scholar 

  • Thieulin, G.: Recherches sur le globe oculaire et sur la vision du chien et du chat. Paris: These 1927.

    Google Scholar 

  • Thompson, Sir D'Arcy: On Growth and Form. Cambridge Univ. Press 1961.

    Google Scholar 

  • Thompson, J. M., Woolsey, C. N., Talbot, S. A.: Visual areas I and II of cerebral cortex of rabbit. J. Neurophysiol. 13, 277–287 (1950).

    Google Scholar 

  • Thorpe, W. H.: Learning and Instinct in Animals. London: Methuen 1963.

    Google Scholar 

  • Tiao, Y. C., Blakemore, C.: Regional specialisation in the golden hamster’s retina. J. comp. Neurol. 168, 439–458 (1976).

    Google Scholar 

  • Toates, F. M.: Accommodation function of the human eye. Physiol. Rev. 52, 828–863 (1972).

    Google Scholar 

  • Toraldo di Francia, G.: Resolving power and information. J. opt. Soc. Amer. 45, 497–501 (1955).

    Google Scholar 

  • Trevarthen, C. B.: Two mechanisms of vision in primates. Psychol. Forsch. 31, 299–337 (1968).

    Google Scholar 

  • Tschermak-Seysenegg, A.: Studien uber das Binocularsehen der Wirbelthiere. Pflügers Arch. ges. Physiol. 91, 1–20 (1902).

    Google Scholar 

  • Uberreiter O. Examination of the eye and eye operations in animals. Advanc. vet. Sci. 5 2-73 1959

    Google Scholar 

  • Urbantschitsch, E.: Kopfnystagmus. Mschr. Ohrenheilk. 44, 1–14 (1910).

    Google Scholar 

  • Vakkur, G. J.: Studies on optics and neurophysiology of vision. M.D. Thesis, University of Sydney 1967.

    Google Scholar 

  • Vakkur, G. J., Bishop, P.O.: The schematic eye in the cat. Vision Res. 3, 357-381(1963).

    Google Scholar 

  • Vakkur, G. J., Bishop, P. O., Kozak, W.: Visual optics in the cat, including posterior nodal distance and retinal landmarks. Vision Res. 3, 289-314 (1963).

    Google Scholar 

  • Valentin, G.: Ein Beitrag zur Kenntniss der Brechungsverhaltnisse der Thiergewebe. Pflugers Arch. ges. Physiol. 19, 78-105 (1879 a).

    Google Scholar 

  • Valentin, G.: Fortgesetzte Untersuchungen uber die Brechungsverhaltnisse der Thiergewebe. Pflugers Arch. ges. Physiol. 20, 283-314 (1879b).

    Google Scholar 

  • Van Alphen,G. W. H. M.: On emmetropia and ametropia. Ophthalmologica Suppl. (Basel) 142 (1961). Van Buren, J. M.: The Retinal Ganglion Cell Layer. Thomas: Springfield Ill. 1963.

    Google Scholar 

  • Van den Brink, G.: Measurements of the geometrical aberrations of the eye. Vision Res. 2, 233-244 (1962).

    Google Scholar 

  • Vaney, D. I.: A quantitative comparison between the ganglion cell population and the axonal outflow in the visual streak and periphery of the rabbit retina. Submitted (1977).

    Google Scholar 

  • Vaney, D. I., Hughes, A.: The rabbit optic nerve: Fibre diameter spectrum, fibre count, and comparison with a retinal ganglion cell count. J. comp. Neurol. 170,241-251 (1976).

    Google Scholar 

  • Van Hof,M. W.: Visual acuity in the rabbit. Vision Res. 7, 749-751 (1967).

    Google Scholar 

  • Van Hof, M. W., Lagers-Van Haselen, G. C.: The retinal fixation area in the rabbit. Exp. Neurol. 41, 218-221(1973).

    Google Scholar 

  • Van Nes, F. L., Bouman, M. A.: Spatial modulation transfer in the human eye. J. opt. Soc. Amer. 57, 401—406(1967).

    Google Scholar 

  • Van Sluyters, R. C., Stewart, D. L.: Binocular neurons of the rabbit’s visual cortex: receptive field characteristics. Exp. Brain Res. 19, 196-204 (1974 b).

    Google Scholar 

  • Van Sluyters, R. C., Stewart, D. L.: Binocular neurons of the rabbit’s visual cortex: effects of monocular sensory deprivation. Exp. Brain Res. 19, 196-204 (1974b).

    Google Scholar 

  • Vejbaesya, C.: Studies on the connections of the visual system. Doctoral thesis, Edinburgh 1968. Vilter, V.: Recherches biometriques sur 1'organisation synaptique de la retine humaine. C.R. Soc. Biol. (Paris) 143, 830-832 (1949).

    Google Scholar 

  • Vilter, V.: Asymmetrie cyto-architectonique de la fovea retinienne de 1'homme. C.R. Soc. Biol. 148, 220-223 (1954 a).

    Google Scholar 

  • Vilter,V.: Histologie et activite electrique de la retine d'un mammifere strictement diurne, le Spermophile (Citellus citellus). C.R. Soc. Biol. (Paris)148, 1768-1771 (1954b).

    Google Scholar 

  • Vincent, S. B.: The Mammalian Eye. J. Anim. Behav. 2, 249-255 (1912). Vogt,A.: Die Kurzsichtigkeit. Zurich 1936.

    Google Scholar 

  • Walk, R. D.: The study of visual depth and distance perception in animals. Advanc. Study Behav. 1, 99-154 (1965).

    Google Scholar 

  • Walk, R. D., Gibson, E. J.: A comparative and analytical study of visual depth perception. Psychol. Monogr. 75,1—44 (1961).

    Google Scholar 

  • Walls, G. L.: The visual cells of the white rat. J. comp. Psychol. 18, 363-366 (1934). Walls, G. L.: Significance of foveal depression. Arch. Ophthal. 18, 912-919 (1937). Walls, G. L.: The vertebrate eye and its adaptive radiation. New York: Hafner 1942. Ward, B., Davis, J. K.: The modulation transfer function as a performance specification for ophthalmic lens and protective devices. Amer. J. Optom. 49,234-259 (1972).

    Google Scholar 

  • Wassle,H.: Optical qualitiy of the cat eye. Vision Res. 11, 995-1006 (1971).

    Google Scholar 

  • Wassle, H., Creutzfeldt, O. D.: Spatial resolution in the visual system: a theoretical and experimental study on single units in the cat’s lateral geniculate nucleus. J. Neurophysiol. 36, 13-27 (1973). Wassle, H., Levick, W. R., Cleland, B. G.: The distribution of the alpha type of ganglion cells in the cat retina. J. comp. Neurol. 159419-438 (1975).

    Google Scholar 

  • Weale, R. A.: The spectral reflectivity of the cat’s tapetum measured in situ. J. Physiol. (Lond.) 119, 30-42 (1953).

    Google Scholar 

  • Weale, R. A.: Problems of peripheral vision. Brit. J. Ophthal. 40, 392-415 (1956). Weale, R. A.: Presbyopia. Brit. J. Ophthal. 46, 660-668 (1962).

    Google Scholar 

  • Weale,R.A.: Why does the human retina possess a fovea? Nature (Lond.) 212, 255-256 (1966). Weale, R. A.: Polarised light and the human fundus oculi. J. Physiol. (Lond.) 186, 175-186 (1966). Weale, R. A.: Ocular optics and evolution. J. opt. Soc. Amer. 66,1053-1054 (1976).

    Google Scholar 

  • Webb, S. V., Kaas, J. H.: The size and distribution of ganglion cells in the retina of the owl monkey Aotus Trivirgatus. Vision res. 16, 1247-1254 (1976).

    Google Scholar 

  • Wertheim,M.: fiber die indirekte Sehscharfe. Z. Psychol. Physiol. Sinnesorg. 7, 172-189 (1894). West, R. W., Dowling, J. E.: Anatomical evidence for cone and rod-like receptors in the grey squirrel, ground squirrel, and prairie dog retinas. J. comp. Neurol. 159,439—460 (1975).

    Google Scholar 

  • Westheimer,G.: Modulation thresholds for sinusoidal light distributions on the retina. J. Physiol. (Lond.)152, 67-74 (1960).

    Google Scholar 

  • Westheimer,G.: Line spread function of the living cat eye. J. opt. Soc. Amer. 52, 1326 (1962). Westheimer, G.: Optical and motor factors in the formation of the retinal image. J. opt. Soc. Amer. 53, 86-93 (1963).

    Google Scholar 

  • Westheimer, G.: Visual acuity and spatial modulation thresholds. In: Handbook of Sensory Physiology, VII/4, Jameson,D., and Hurvich,L.M. (eds.). Berlin: Springer-Verlag 1972 a.

    Google Scholar 

  • Westheimer, G.: Optical properties of vertebrate eyes. In: Handbook of Sensory Physiology VII/2. Fuortes, M. G. F. (ed.) Berlin: Springer-Verlag 1972b.

    Google Scholar 

  • Westheimer, G.: Visual acuity and hyperacuity. Invest. Ophth. 14, 570–572 (1975).

    Google Scholar 

  • Westheimer, G.: Diffraction theory and visual hyperacuity. Am. J. Optom. Phys. Opt. 53, 362–364 (1976).

    Google Scholar 

  • Westheimer, G.: Spatial frequency and light-spread descriptions of visual acuity and hyperacuity. J. opt. Soc. Amer. 67, 207–212 (1977).

    Google Scholar 

  • Westheimer, G., Blair, S. M.: Accommodation of the eye during sleep and anaesthesia. Vision Res. 13, 1035–1040 (1973).

    Google Scholar 

  • Westheimer, G., Campbell, F. W.: Light distribution in the image formed by the living human eye. J. opt. Soc. Amer. 52, 1040–1044 (1962).

    Google Scholar 

  • Weymouth, F. W.: Visual sensory units and the minimal angle of resolution. Amer. J. Ophthal. 46, 102–113 (1958).

    Google Scholar 

  • Whitteridge, D.: Geometrical relations between the retina and the visual cortex. In: Mathematics and Computer Science in Biology and Medicine. London: M.R.C. 1965, pp. 269–276.

    Google Scholar 

  • Whitteridge, D.: Projection of optic pathways to the visual cortex. In: Handbook of Sensory Physiology, VII/3 B, Jung, R. (ed.). Berlin: Springer-Verlag 1973, pp. 247–268.

    Google Scholar 

  • Wilcox, J. G., Barlow, H. B.: The size and shape of the pupil in lightly anaesthetized cats as a function of luminance. Vision Res. 15, 1363–1365 (1975).

    Google Scholar 

  • Wilson, M. E., Toyne, M. J.: Retino-tectal and cortico-tectal projections in Macaca mulatta. Brain Res. 24, 395–406 (1970).

    Google Scholar 

  • Wilson, P. D., Stone, J.: Evidence of W-cell input to that cat’s visual cortex via the C laminae of the lateral geniculate nucleus. Brain Res. 92, 472–478 (1975).

    Google Scholar 

  • Winthrop, J. T.: Propagation of structural information in optical wave fields. J. opt. Soc. Amer. 61, 15–30 (1971).

    Google Scholar 

  • Winterson, B. J., Robsinson, D. A.: Fixation by the alert but solitary cat. Vision Res. 15, 1349–1352 (1975).

    Google Scholar 

  • Wolff, E.: The Anatomy of the Eye and its Orbit. London: Lewis & Co. 1940.

    Google Scholar 

  • Wolin, L. R., Massopust, L. C.: Characteristics of the ocular fundus in primates. J. Anat. 101, 693–699 (1967).

    Google Scholar 

  • Wood, C. A.: The Fundus Oculi in Birds. Chicago 1917.

    Google Scholar 

  • Wood, R. W.: Physical Optics. New York: Macmillan 1911.

    Google Scholar 

  • Woodhouse, J. M.: The effect of pupil size on grating detection at various contrast levels. Vision Res. 15, 645–648 (1975).

    Google Scholar 

  • Woodhouse, J. M., Campbell, F. W.: The role of the pupil light reflex in aiding adaptation to the dark. Vision Res. 15, 649–653(1975).

    Google Scholar 

  • Wood Jones, F.: Arboreal Man. London: Edward Arnold 1926.

    Google Scholar 

  • Woolf, D.: A comparative cytological study of the ciliary muscle. Anat. Rec. 124, 145–163 (1956).

    Google Scholar 

  • Woollard, H. H.: Notes on the retina and lateral geniculate body in Tupaia, Tarsius, Nycticebus and Hapale. Brain, 49, 77–104 (1926).

    Google Scholar 

  • Worfold, R. L.: Canine optics. Aust. J. Optom. 48, 164–174 (1965).

    Google Scholar 

  • Xenophon. Xenophon’s Minor Works: Cynegeticus. (Trans. J.S. Watson). London: G. Bell & Sons 1905.

    Google Scholar 

  • Yen, J.L.: On nonuniform sampling of band-width limited signals. I.R.E. Trans. on Circuit Theory, 3, 251–257 (1956).

    Google Scholar 

  • Young, F. A.: The effect of restricted visual space on the primate eye. Amer. J. Ophthal. 52, 799–806 (1961).

    Google Scholar 

  • Young, F. A.: The effect of restricted visual space on the refractive error of the young monkey. Invest. Ophthal. 2, 571–577 (1963).

    Google Scholar 

  • Young, F. A., Farrer, D. N.: Refractive characteristics of chimpanzees. Amer. J. Optom. 41, 81–91 (1964).

    Google Scholar 

  • Young, F. A., Leary, G. A.: Visual-optical characteristics of caged and semi-free ranging monkeys. Amer. J. Phys. Anthrop. 38, 377–382 (1973).

    Google Scholar 

  • Young, T.: On the mechanism of the eye. Phil. Trans. 91, 23–88 (1801).

    Google Scholar 

  • Zurn, J.: Vergleichend histologische Untersuchungen uber die Retina and die Area centralis retinae der Haussaugethiere. Arch. Anat. Physiol. Anat. Abtheil. 102, 99–146(1902).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hughes, A. (1977). The Topography of Vision in Mammals of Contrasting Life Style: Comparative Optics and Retinal Organisation. In: Crescitelli, F. (eds) The Visual System in Vertebrates. Handbook of Sensory Physiology, vol 7 / 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-66468-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-66468-7_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-66470-0

  • Online ISBN: 978-3-642-66468-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics