Skip to main content

Allophane

  • Chapter
Soil Components

Abstract

A special approach is needed in considering allophane as an aluminosilicate mineral constituent of soils. Most aluminosilicate minerals can be shown by X-ray diffraction and infrared absorption to consist of orderly arrangements of elements. During chemical weathering, the arrangement of primary aluminosilicate minerals are disturbed by processes that involve hydrolysis, and particularly at early stages of weathering, disordered amorphous hydrous aluminosilicates or mixed aluminous and siliceous gels may be produced.

Deceased

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler, H. H., 1951. Infra-red spectra of reference clay minerals. Am. Petrol. Inst. Res. Proj. 49:1–72 New York: American Petroleum Institute.

    Google Scholar 

  • Aguilera, N. H., and M. L. Jackson, 1953. Iron oxide removal from soils and clays. Proc. Soil Sci. Soc. Amer. 17:359–364.

    Article  Google Scholar 

  • Aomine, S., and I. Kodama, 1958. Clay minerals of some arable soils in Miyazaki Prefecture. J. Fac. Agr. Kyushu Univ. 10:325–344.

    Google Scholar 

  • —, and N. Yoshinaga, 1955. Clay minerals of some well-drained volcanic ash soils in Japan. Soil Sci. 79:349–358.

    Article  Google Scholar 

  • Bates, T. F., 1958. Selected electron micrographs of clays and other fine grained minerals. College Miner. Ind. Expt. Sta., Miner. Ind. Penns. State Univ. Circ. 61. 60 pp.

    Google Scholar 

  • Berkelhamer, L. H., 1944. Differential thermal analysis of quartz. U.S. Bur. Mines Rep. Inv. No. 3763.

    Google Scholar 

  • Besoain, E. M., 1964. Clay formation in some Chilean soils derived from volcanic materials. N.Z. J. Sci. 7:79–86.

    Google Scholar 

  • Beutelspacher, H., and H. W. van der Marel, 1968. Atlas of Electron Microscopy of Clay Minerals and Their Admixtures. Amsterdam: Elsevier. 333 pp.

    Google Scholar 

  • Birrell, K. S., 1961a. The adsorption of cations from solution by allophane in relation to their effective size. J. Soil Sci. 12:307–316.

    Article  Google Scholar 

  • —, 1961b. Ion fixation by allophane. N.Z. J. Sci. 4:393–414.

    Google Scholar 

  • —, 1962. Surface acidity of subsoils derived from volcanic ash deposits. N.Z. J. Sci. 5:453–462.

    Google Scholar 

  • —, 1966. Determination of clay contents in soils containing allophane. Part 1, Subsoils. N.Z. Jl. agric. Res. 9:554–564.

    Google Scholar 

  • —, and M. Fieldes, 1952. Allophane in volcanic ash soils. J. Soil Sci. 3:156–60.

    Article  Google Scholar 

  • —, and M. Fieldes, 1968. Amorphous constituents. In “Soils of New Zealand.” N.Z. Soil Bur. Bull. 26(2):39–49.

    Google Scholar 

  • —, and M. Gradwell, 1956. Ion-exchange phenomena in some soils containing amorphous mineral constituents. J. Soil Sci. 7:130–147.

    Article  Google Scholar 

  • —, and R. Q. Packard, 1958. Low-temperature adsorption of various gases by soils. N.Z. J. Sci. 1:70–82.

    Google Scholar 

  • Bolt, G. H., and B. P. Warkentin, 1956. Influence of the method of sample preparation on the negative adsorption of anions in montmorillonite suspensions. Proc. 6th Int. Congr. Soil Sci. B:33–40.

    Google Scholar 

  • Broadbent, F. E., R. H. Jackman, and J. McNicoll, 1964. Mineralization of carbon and nitrogen in some New Zealand allophanic soils. Soil Sci. 98:118–128.

    Article  Google Scholar 

  • Brunauer, S., P. M. Emmett, and E. Teller, 1938. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60:309–19.

    Article  Google Scholar 

  • Comeforo, J. E., K. B. Fischer, and W. F. Bradley, 1948. Mullitization of kaolin. J. Am. Ceramic Soc. 31:254–259.

    Article  Google Scholar 

  • De Mumbrum, L. E., and G. Chesters, 1964. Isolation and characterization of some soil allophanes. Proc. Soil Sci. Soc. Am. 28:355–359.

    Article  Google Scholar 

  • Dyal, R. S. and S. B. Hendricks, 1950. Total surface of clays in polar liquids as a characteristic index. Soil Sci. 69:421–432.

    Article  Google Scholar 

  • De Vore, G. W., 1957. The surface chemistry of feldspars as an influence on their decomposition products. Proc. 6th U.S. Nat. Conf. Clays Clay Min.: 26–41.

    Google Scholar 

  • Egawa, T., 1961. Infrared absorption spectra of allophane and their changes after dehydration by heating. Adv. Clay Sci. 3:103–110.

    Google Scholar 

  • —, 1964. A study on coordination number of aluminium in allophane. Clay Sci. 2:1–7.

    Google Scholar 

  • —, and A. Sato, 1960. A study of DTA curves of the allophanic clays separated from volcanic ash soils of Japan. Adv. Clay Sci. 2:385–393.

    Google Scholar 

  • —, A. Sato, and T. Nishimura, 1960. Release of hydroxyl ions from clay minerals treated with various anions, with special reference to the structure and chemistry of allophane. Adv. Clay Sci. 2:252–262.

    Google Scholar 

  • —, Y. Watanabe and A. Sato, 1955. Studies on the clay minerals of some upland soils in Japan. Bull. Nat. Inst. Agric. Sci., Tokyo B5: 39–107.

    Google Scholar 

  • —, Y. Watanabe, and A. Sato, 1959. A study on cation-exchange capacity of allophane. Adv. Clay Sci. 1:260–272.

    Google Scholar 

  • Egawa, T., and Y. Watanabe, 1964. Electron micrographs of the clay minerals in Japanese soils. Bull. Nat. Inst. Agric. Sci., Tokyo B14:173–182.

    Google Scholar 

  • Fieldes, M., 1953. The formation of secondary minerals in relation to parent material, silicate structures, and degree of weathering. Proc. 1st Aust. Conf. Soil Sci. 2:6.29.1–6.29.6.

    Google Scholar 

  • —, 1955. Clay mineralogy of New Zealand soils. Part 2. Allophane and related mineral colloids. N.Z. J. Sci. Technol. B37:336–350.

    Google Scholar 

  • —, 1958. The role of clays in soil fertility. Proc. N.Z. Inst. Agric. Sci.: 84–108.

    Google Scholar 

  • —, 1962. The nature of the active fraction of soils. Trans. Jt. Meet. Comm. IV and V. Int. Soc. Soil Sci. (1962): 62–78.

    Google Scholar 

  • —, 1966. The nature of allophane in soils. Part 1. Significance of structural randomness in pedogenesis. N.Z. J. Sci. 9:599–607.

    Google Scholar 

  • —, 1968. Clay mineralogy. In “Soils of New Zealand.” N.Z. Soil Bur. Bull. 26(2):22–39.

    Google Scholar 

  • —, and R. J. Furkert, 1966. The nature of allophane in soils. Part 2. Differences in composition. N.Z.J. Sci. 9:608–622.

    Google Scholar 

  • —, R. J. Furkert, and N. Wells, 1972. Rapid determination of constituents of whole soils using infra-red absorption. N.Z. J. Sci. 15:615–627.

    Google Scholar 

  • —, and K. W. Perrott, 1966. The nature of allophane in soils. Part 3. Rapid field and laboratory test for allophane. N.Z. J. Sci. 9:623–629.

    Google Scholar 

  • —, and R. K. Schofield, 1960. Mechanisms of ion adsorption by inorganic soil colloids. N.Z. J. Sci. 3:563–579.

    Google Scholar 

  • —, I. K. Walker, and P. P. Williams, 1956. Clay mineralogy of New Zealand soils. Part 3. Infrared absorption spectra of soil clays. N.Z. J. Sci. Technol. B38:31–43.

    Google Scholar 

  • —, and K. I. Williamson, 1955. Clay mineralogy of New Zealand soils. Part 1. Electron micrography. N.Z. J. Sci. Technol. B37:314–335.

    Google Scholar 

  • Ford, W. E., 1932. A textbook of mineralogy. By E. S. Dana. Revised edition. New York: Wiley.

    Google Scholar 

  • Fripiat, J. J., A. Leonard, and J. B. Uytterhoeven, 1965. Structure and properties of amorphous silico aluminas. II. Lewis and Bronsted acid sites. J. Phys. Chem. 69:3274–3279.

    Article  Google Scholar 

  • Gradwell, M., and K. S. Birrell, 1954. Physical properties of certain volcanic clays. N.Z. J. Sci. Technol. B36:108–122.

    Google Scholar 

  • Hashimoto, I., and M. L. Jackson, 1958. Rapid dissolution of allophane and kaolinite after dehydration. Proc. 7th U.S. Nat. Conf. Clays Clay Min.:102–113.

    Google Scholar 

  • Henderson, J., and M. Ongley, 1923. The geology of the Mokau subdivision. N.Z. Geol. Surv. Bull. 24 (new series).

    Google Scholar 

  • Hsu, Pa Ho, and T. F. Bates, 1964. Formation of X-ray amorphous and crystalline aluminium hydroxides. Min. Mag. 33:749–768.

    Article  Google Scholar 

  • Huang, P. M., and M. L. Jackson, 1959. Mechanism of reaction of neutral fluoride solution with layer silicates and oxides of soils. Proc. Soil Sci. Soc. Amer. 29:662–665.

    Google Scholar 

  • Iimura, K., 1961a. Acidic property and ion exchange in allophane. Clay Sci. 1:28–32.

    Google Scholar 

  • —, 1961b. Ion adsorption curves in allophane. Clay Sci. 1:40–44.

    Google Scholar 

  • —, 1965. Cation-exchange capacity and total acidity of allophane and volcanic ash soils. Clay Sci. 2:111–120.

    Google Scholar 

  • —, 1969. The chemical bonding of atoms in allophane, the “structural formula” of allophane. Proc. Int. Clay Conf., Tokyo. 1969I:161–172.

    Google Scholar 

  • Inoue, T., and K. Wada, 1968. Adsorption of humified clover extracts by various clays. Trans. 9th Int. Congr. Soil Sci. Adelaide 3:289–298.

    Google Scholar 

  • Insley, H., and R. H. Ewell, 1935. Thermal behavior of the kaolin minerals. J. Res. Nat. Bur. Standards 14:615–627.

    Google Scholar 

  • Ishii, J., and Y. Kondo, 1962. Clay minerals of quaternary volcanic ash and pumice deposits in Hokkaido. Earth Sci., Tokyo. 62:29–45.

    Google Scholar 

  • Jackman, R. H., 1955. Organic phosphorus in New Zealand soils under pasture. II. Relation between organic phosphorus content and some soil characteristics. Soil Sci. 79:293–299.

    Article  Google Scholar 

  • Kanno, I., 1959. Clay minerals from volcanic ash soils and pumices from Japan. Adv. Clay Sci. 1:213–233.

    Google Scholar 

  • —, 1964. In “Volcanic ash soils of Japan.” Ministry of Agriculture and Forestry, Japanese Government.

    Google Scholar 

  • Kanno, I., Y. Kuwano and Y. Honjo, 1960. Clay minerals of gell-like substances in pumice beds. Adv. Clay Sci. 2:355–356.

    Google Scholar 

  • —, Y. Onikura, and T. Higashi, 1968. Weathering and clay mineral characteristics of volcanic ashes and pumices in Japan. Trans. 9th Int. Congr. Soil Sci. Adelaide 3:111–121.

    Google Scholar 

  • Kimpe, C. de, M. C. Gastuche, and G. W. Brindley, 1961. Ionic coordination in alumina-silicic gels in relation to clay mineral formation. Amer. Min. 46:1370–1381.

    Google Scholar 

  • Kitagawa, Y., 1971. The unit particle of allophane. Amer. Min. 56:465–475.

    Google Scholar 

  • Kuwano, Y., and T. Matsui, 1957. Clay mineralogy of pumice beds in the Kanto volcanic ash formation. Miscell. Rept. Res. Inst. Nat. Resources 45:33–42.

    Google Scholar 

  • Kyuma, K., and K. Kawaguchi, 1964. Oxidative changes of polyphenols as influenced by allophane. Proc. Soil Sci. Soc. Amer. 28:371–374.

    Article  Google Scholar 

  • Lambe, T. W., 1951. Soil testing for engineers. New York: Wiley.

    Google Scholar 

  • Leonard, A., J. J. Fripiat, and S. Suzuki, 1964. The fluoresence of X-rays due to changes in the coordination state of aluminum in amorphous aluminum silicate. Kolloid Z. 198:99–100.

    Article  Google Scholar 

  • —, S. Suzuki, J. J. Fripiat, and C. Kimpe, 1964. Structure and properties of amorphous silicoaluminas. II. Structure from X-ray fluorescence and infrared spectroscopy. J. Phys. Chem. 68:2608–2617.

    Article  Google Scholar 

  • MacKenzie, R. C., and A. A. Milne, 1953. The effect of grinding on micas. Clay Min. Bull. 2:57–60.

    Article  Google Scholar 

  • Matsui, T., 1959. Some characteristics of Japanese soil clays. Adv. Clay Sci. 1:244–259.

    Google Scholar 

  • Mitchell, B. D., and V. C. Farmer, 1962. Amorphous clay minerals in some Scottish soil profiles. Clay Min. Bull. 5:128–144.

    Article  Google Scholar 

  • —, V. C. Farmer, and W. J. McHardy, 1964. Amorphous inorganic materials in soils. Adv. Agron. 16:327–383.

    Article  Google Scholar 

  • Miyauchi, N., and S. Aomine, 1964. Does allophane B exist in Japanese volcanic ash soils? Soil Sci. Pl. Nutr., Tokyo 10:199–203.

    Google Scholar 

  • —, and S. Aomine, 1965. Effect of exchangeable cations on the high-temperature exothermic peak of allophane. Soil Sci. Pl. Nutr., Tokyo 12:13–17.

    Google Scholar 

  • Nagelschmidt, G., 1944. X-ray diffraction experiments on illite and bravaisite. Min. Mag. 27:59–61.

    Article  Google Scholar 

  • Ossaka, J., 1963. On the heat transformation of hydrated low crystalline materials from the system SiO2-Al2O3. Adv. Clay Sci. 4:33–47.

    Google Scholar 

  • van Reeuwijk, L. P., 1967. Pedogenetic and clay mineralogical studies. Thesis, University of Natal, Pietermaritzburg.

    Google Scholar 

  • Ross, C. S., and P. F. Kerr, 1934. Halloysite and allophane. U.S. Geol. Sur. Prof. Paper 185–9:135–148.

    Google Scholar 

  • Seki, T., 1913. Zwei vulkanogene Lehms aus Japan. Landw. Versuch. Sta. 79/80:871–890.

    Google Scholar 

  • Stromeyer, F., and J. F. L. Hausmann, 1816. Gottingische Geleherte Anzeigen 2:1251.

    Google Scholar 

  • Sudo, T., and H. Takahashi, 1956. Shape of halloysite particles in Japanese clays. Clays and clay minerals. Proc. 4th Nat. Conf. Clay Minerals. Nat. Acad. of Sci., Washington, B.C. 67–69.

    Google Scholar 

  • Taylor, N. H., 1933. Soil processes in volcanic ash beds. N.Z. J. Sci. Technol. 14:338–352.

    Google Scholar 

  • —, and I. J. Pohlen, 1962. Soil survey method. N.Z. Soil Bur. Bull 25. 252 pp.

    Google Scholar 

  • Thomas, C. L., 1949. Chemistry of cracking catalysts. Ind. Engng. Chem. Inst. 41:2564–2573.

    Article  Google Scholar 

  • Tokudume, S., and I. Kanno, 1967. Nature of the humus of some Japanese soils. Bull. Kyushu Agric. Expt. Sta. 13:187–195.

    Google Scholar 

  • Udagawa, S., and T. Nakada, 1969. Molecular structure of allophane as revealed by its thermal transformation. Proc. Int. Clay Conf., Tokyo. I:151–160.

    Google Scholar 

  • de Villiers, J. M., and M. L. Jackson, 1967. Cation-exchange capacity variations with pH in soil clays. Proc. Soil Sci. Soc. Amer. 31:473–476.

    Article  Google Scholar 

  • Wada, K., 1967. A structural scheme of soil allophane. Amer. Min. 52:690–708.

    Google Scholar 

  • —, and H. Ataka, 1958. The ion uptake mechanisms of allophane. Soil Pl. Fd. Tokyo 4:12–18.

    Google Scholar 

  • Watanabe, Y., 1963. Étude des argiles dans les sols au microscope électronique. II. Allophane et gels de synthèse. Soil Sci. Pl. Nutr., Tokyo 9:137–140.

    Google Scholar 

  • —, and T. Sudo, 1969. Studies on small-angle scattering of some clay minerals. Proc. Int. Clay Conf., Tokyo, 1:173–191.

    Google Scholar 

  • Wells, N., 1956. Soil studies using sweet vernal to assess element availability. Part 2. Molybdate fixation by New Zealand soils. N.Z. J. Sci. Technol. B37:482–503.

    Google Scholar 

  • White, E. W., H. A. McKinstry, and T. F. Bates, 1958. Crystal chemical studies by X-ray fluorescence. Proc. 7th Conf. Ind. App. X-Ray Analysis. University of Denver, pp. 239–245.

    Google Scholar 

  • White, W. A., 1953. Allophanes from Lawrence County, Indiana. Amer. Min. 38:634–642.

    Google Scholar 

  • Wright, A. C. S., and A. J. Metson, 1959. Soils of Raoul Island. N.Z. Soil Bur. Bull. 10. 50 pp.

    Google Scholar 

  • Yamada, H., and S. Kimura, 1962. Coprecipitation of alumina and silica gels and their transformation at higher temperatures. J. Ceram. Assoc. Japan 70:65–71.

    Google Scholar 

  • Yoshida, M., 1957. Studies on adsorptive ability of the soil. Part 3. Classification of the base exchange positions and their determination, J. Sci. Soil Manure, Tokyo 28:195–198.

    Google Scholar 

  • Yoshinaga, M., and S. Aomine, 1962a. Allophane in some Ando soils. Soil Sci. Pl. Nutr. Tokyo 8:6–13.

    Google Scholar 

  • —, and S. Aomine, 1962b. Imogolite in some Ando soils. Soil Sci. Pl. Nutr. Tokyo 8:22–29.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Fieldes, M., Claridge, G.G.C. (1975). Allophane. In: Gieseking, J.E. (eds) Soil Components. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-65917-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-65917-1_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-65919-5

  • Online ISBN: 978-3-642-65917-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics