Skip to main content

Saccharides

  • Chapter
Soil Components

Abstract

Almost 200 polysaccharides are now known to occur naturally. It is probable that the majority are at some time added to the soil. They do not, however, remain in the soil indefinitely, but are attacked by the soil fauna and flora, which in turn will contribute other saccharides to the soil. The nature of polysaccharides in soils must, therefore, be deduced in part from the known properties of the polysaccharides added to the soil and produced in it and, in part, from a knowledge of the saccharides that can be isolated from the soil itself. As yet, the techniques for the isolation of saccharides and polysaccharides from soils are very inadequate. This isolation is difficult largely because of the strong interaction between the inorganic materials and much of the saccharide fraction of soil organic matter. To date, little more than half of the carbohydrates known to occur in the soil have been separated from the inorganic materials. In this review the major groups of saccharides added to the soil are described first (Table 1), and the factors involved in their decomposition in the soil are discussed. Then the amounts of polysaccharides found in soils, their isolation from soils, and the properties of the isolates are considered. Finally, a brief account of the relationship between saccharides in the soil and other soil properties is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acton, C. J., E. A. Paul, and D. A. Rennie. 1963. Measurement of the polysaccharide content of soils. Can. J. Soil Sci. 43:141–150.

    Google Scholar 

  • Acton, C. J., D. A. Rennie, and E. A. Paul. 1963. The relationship of polysaccharides to soil aggregation. Can. J. Soil Sci. 43:201–209.

    Google Scholar 

  • Adams, G. A., and A. E. Castagne. 1948. Some factors affecting the determination of furfural. Can. J. Res. B26:312–324.

    Google Scholar 

  • Aleksandrova, I. V. 1960. A method of studying the qualitative composition of organic matter in soil solutions. Pochvovedenie 11:85–87.

    Google Scholar 

  • Alexander, M. 1961. Introduction to Soil Microbiology. New York:Wiley.

    Google Scholar 

  • Allison, L. E. 1947. Effect of microorganisms on permeability of soil under prolonged submergence. Soil Sci. 63:439–450.

    Google Scholar 

  • Alvsaker, E. 1948. A modified Waksman procedure and its application to soil samples from western Norway. Univ. Bergen Skr. 23.

    Google Scholar 

  • Alvsaker, E. and K. Michelsen. 1957. Carbohydrates in a cold water extract of a pine forest soil. Acta Chem. Scand. 11:1794–1795.

    Google Scholar 

  • Ashworth, M. R. F. 1942. The fractionation of the organic matter, including nitrogen, of certain soils and its relation to their quality. J. Agric. Sci. Camb. 32:349–359.

    Google Scholar 

  • Aspinall, G. O. 1959. Structural chemistry of the hemicelluloses. Adv. Carbohyd. Chem. 14:429–468.

    Google Scholar 

  • Baily, R. W. 1958. The reaction of pentoses with anthrone. Biochem. J. 68:669–672.

    Google Scholar 

  • Barker, S. A. 1963. Polysaccharides of bacteria, moulds, yeasts and protozoa. In Comprehensive Biochemistry, Vol. 5, M. Florkin and E. H. Stotz, eds. New York:Elsevier.

    Google Scholar 

  • Barker, S. A., P. Finch, M. H. B. Hayes, R. G. Simmonds, and M. Stacey. 1965. Isolation and preliminary characterisation of soil polysaccharides. Nature, Lond. 205:68–69.

    Google Scholar 

  • Bear, F. E. 1964. Chemistry of the Soil, 2d ed. New York:Reinhold.

    Google Scholar 

  • Beres, T., and I. Kiraly. 1959. Untersuchungen über die Reduktionwirkung der Torf-fulvosaüre auf dreiwertiges Eisen und Fulvosaureeisen Verbindungen. Z. Pfl. Ernähr. Düng. Bodenk. 87:16–26.

    Google Scholar 

  • Bernier, B. 1958a. Characterisation of polysaccharides isolated from forest soils. Biochem. J. 70:590–598.

    Google Scholar 

  • Bernier, B. 1958b. The production of polysaccharides by fungi active in the decomposition of wood and forest litter. Can. J. Microbiol. 4:195–204.

    Google Scholar 

  • Black, W. A. P., W. J. Cornhill, and F. N. Woodward. 1955. A preliminary investigation on the chemical composition of sphagnum moss and peat. J. Appl. Chem., Lond. 5:484–492.

    Google Scholar 

  • Bradley, D. B., and D. H. Sieling. 1953. Effect of organic anions and sugars on phosphate precipitation by iron and aluminium as influenced by pH. Soil Sci. 76:175–179.

    Google Scholar 

  • Bremner, J. M. 1949. Studies on soil organic matter. III. The extraction of organic carbon and nitrogen from soil. J. Agric. Sci. Camb. 39:280–282.

    Google Scholar 

  • Bremner, J. M. 1950a. Amino-acids in soil. Nature, Lond. 165:367.

    Google Scholar 

  • Bremner, J. M. 1950b. The amino acid composition of the protein material in soil. Biochem. J. 47:538–542.

    Google Scholar 

  • Bremner, J. M. 1950c. A review of recent work on soil organic matter. I. J. Soil Sci. 2:67–82.

    Google Scholar 

  • Bremner, J. M. 1955. Nitrogen transformations during the biological decomposition of straw composted with inorganic nitrogen. J. Agric. Sci. Camb. 45:469–475.

    Google Scholar 

  • Bremner, J. M. 1958. Amino sugars in soil. J. Sci. Fd. Agric. 9:528–532.

    Google Scholar 

  • Bremner, J. M., and K. Shaw. 1954. Studies on the estimation and decomposition of amino sugars in soil. J. Agric. Sci. Camb. 44:152–159.

    Google Scholar 

  • Brink, R. H., P. Dubach, and D. L. Lynch. 1960. Measurement of carbohydrates in soil hydrolysates with anthrone. Soil Sci. 89:157–166.

    Google Scholar 

  • Cheng, H. H., and L. T. Kurtz. 1963. Chemical distribution of added nitrogen in soils. Proc. Soil Sci. Soc. Am. 27:312–316.

    Google Scholar 

  • Cheshire, M. V., and C. M. Mundie. 1965. The extraction of carbohydrate from soils. Biochem. J. 96:38 P.

    Google Scholar 

  • Cheshire, M. V., and C. M. Mundie. 1966. The hydrolytic extraction of carbohydrates from soil by sulphuric acid. J. Soil Sci. 17:372–381.

    Google Scholar 

  • Chesters, G., O. J. Attoe, and O. N. Allen. 1957. Soil aggregation in relation to various soil constituents. Proe. Soil. Sci. Soe. Am. 21:212–211.

    Google Scholar 

  • Clapp, C. E. 1957. High molecular weight water-soluble muck. Isolation and determination of constituent sugars of a borate complex forming polysaccharide, employing electrophoretic techniques. Ph.D. thesis, Cornell University, New York.

    Google Scholar 

  • Clapp, C. E., R. J. Davis, and S. H. Waugaman. 1962. The effect of rhizobial polysaccharides on aggregate stability. Proe. Soil Sci. Soe. Am. 26:466–469.

    Google Scholar 

  • Clapp, C. E. and W. W. Emerson. 1965. The effect of periodate oxidation on the strength of soil crumbs. I. Qualitative studies. II. Quantitative studies. Proc. Soil. Sci. Soc. Am. 29:127–134.

    Google Scholar 

  • Cormack, R. G. H. 1962. Developments of root hairs in angiosperms. II. Bot. Rev. 28:446–464.

    Google Scholar 

  • Dalgleish, C. E. 1955. Isolation and examination of urinary metabolites containing an aromatic system. J. Clin. Path. 8:73–78.

    Google Scholar 

  • Davies, D. A. L. 1960. Polysaccharides of gram-negative bacteria. Adv. Carbohyd. Chem. 15:271– 340.

    Google Scholar 

  • Dawes, C. J., and E. Bowler. 1959. Light and electron microscope studies on the cell wall structure of the root hairs of Raphanus sativus. Am. J. Bot. 46:561–565.

    Google Scholar 

  • Deriaz, R. E. 1961. Routine analysis of carbohydrates and lignin in herbage.J. Sci. Fd. Agrie. 12:152– 160.

    Google Scholar 

  • Deuel, H., and P. Dubach. 1958a. Dekarboxylierung der organischen substanz des Bodens. III. Extraktion und Fraktionierung decarboxylierbarer Humusstoffe. Helv. Chim. Acta 41:1310–1321.

    Google Scholar 

  • Deuel, H., and P. Dubach. 1958b. Decarboxylation of the organic matter in soils. II. Identification of uronic acids. Z. Pfl. Ernähr. Düng Bodenk. 82:97–106.

    Google Scholar 

  • Deuel, H., P. Dubach, and R. Bach. 1958. Dekarboxylierung der organischen Substanz des Bodens. I. Dekarboxylierung der gesamten Humusstoffe.Z. Pfl. Ernähr. Düng. Bodenk. 81:189–201.

    Google Scholar 

  • Deuel, H., P. Dubach, N. C. Mehta. 1960. Decarboxylation of uronic acids and soil humic substances. Sci. Proc. R. Dubl. Soc. Ser Als:115–121.

    Google Scholar 

  • Deuel, H., and E. Stutz. 1958. Pectic substances and pectic enzymes. Adv. Enzymol. 20:341–382.

    Google Scholar 

  • Dische, Z. 1962. Color reactions of 2-deoxysugars. In “Methods in carbohydrate chemistry. I. Analysis and Preparation of Sugars.” p. 503. New York and London:Academic Press.

    Google Scholar 

  • Dormaar, J. F., and D. L. Lynch. 1962. Amendments to the determination of “uronic acids in soils with carbazole.” Proc. Soil Sci. Soc. Am. 26:251–253.

    Google Scholar 

  • Dubach, P. 1958. Dekarboxylierung der organischen Substanz des Bodens. Thesis Eidg. Techn. Hochschule, Zürich.

    Google Scholar 

  • Dubach, P. and D. L. Lynch. 1959. Comparison of the determination of “uronic acids” in soil extracts with carbazole and by decarboxylation. Soil Sci. 87:273–275.

    Google Scholar 

  • Dubach, P. G. Zweifel, R. Bach, and H. Deuel. 1955. Examination of the fulvic acid fraction of some Swiss soils.Z. Pfl. Ernähr. Düng. Bodenk. 69:97–108.

    Google Scholar 

  • Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith. 1956. Colorimetric method for determination of sugars and related substances. Analyt. Chem. 28:350–356.

    Google Scholar 

  • Duff, R. B. 1952a. The occurrence of L-fucose in soil, peat and in a polysaccharide synthesised by soil bacteria. Chemy. Ind. 1104.

    Google Scholar 

  • Duff, R. B. 1952b, The occurrence of methylated carbohydrates and rhamnose as components of soil polysaccharides. J. Sci. Fd. Agric. 3:140–144.

    Google Scholar 

  • Duff, R. B. 1954. The partial identification of 0-methyl sugars occurring in soil, peat and compost. Chemy. Ind. 1513.

    Google Scholar 

  • Duff, R. B. 1961. Occurrence of 2-0-methylrhamnose and 4-0-methylgalactose in soil and peat. J. Sci. Fd. Agric. 12:826–831.

    Google Scholar 

  • Duff, R. B. and D. M. Webley. 1959. 2-ketogluconic acid as a natural chelator produced by soil bacteria. Chemy. Ind. 1376–1377.

    Google Scholar 

  • Duff, R. B. D. M. Webley, and R. O. Scott. 1963. Solubilisation of minerals and related materials by 2- ketogluconic acid producing bacteria. Soil Sci. 95:105–114.

    Google Scholar 

  • Eastoe, J. E. 1954. Separation and estimation of chitosamine and chondrosamine in complex hydrolysates. Nature, Lond. 173:540–541.

    Google Scholar 

  • Erskine, A. J., and J. K. N. Jones. 1956. Fractionation of polysaccharides. Can. J. Chem. 34:821– 826.

    Google Scholar 

  • Finch, P. 1965. Physico-chemical studies on soil polysaccharides. M.Sc. thesis, University of Birmingham.

    Google Scholar 

  • Folin, O., and H. Wu. 1920. A simplified and improved method for determination of sugar. J. Biol. Chem. 41:367–374.

    Google Scholar 

  • Forsyth, W. G. C. 1947a. Characterisation of the humic complexes of soil organic matter. J. Agric. Sci. Camb. 37:132–138.

    Google Scholar 

  • Forsyth, W. G. C. 1947b. Studies on the more soluble complexes of soil organic matter. I. A method of fractionation. Biochem. J. 41:176–181.

    Google Scholar 

  • Forsyth, W. G. C. 1950. Studies on the more soluble complexes of soil organic matter. 2. The composition of the soluble polysaccharide fraction. Biochem. J. 46:141–146.

    Google Scholar 

  • Forsyth, W. G. C. 1954. Synthesis of polysaccharides by bacteria isolated from soil. Trans. 5th Intern. Congr. Soil Sci. 3:119–122.

    Google Scholar 

  • Forsyth, W. G. C. and D. M. Webley. 1949. The synthesis of polysaccharides by bacteria isolated from the soil. J. Gen. Microbiol. 3:395–399.

    Google Scholar 

  • Foster, A. B., and J. M. Webber. 1960. Chitin. Adv. Carbohyd. Chem. 15:371–393.

    Google Scholar 

  • Fuller, W. H. 1947. Investigations on the separation of uronides from soils. Soil Sci. 64:403–411.

    Google Scholar 

  • Gascoigne, J. A., and M. M. Gascoigne. 1960. Biological Degradation of Cellulose. London:Butter– worths.

    Google Scholar 

  • Geoghegan, M. J., and R. C. Brian. 1946. Influence of bacterial polysaccharides on aggregate formation in soils. Nature, Lond. 158:837.

    Google Scholar 

  • Geoghegan, M. J., and R. C. Brian. 1948. Aggregate formation in soil. 2. Influence of various carbohydrates and proteins in aggregation of soil particles. Biochem. J. 43:14.

    Google Scholar 

  • Graveland, D. N., and D. L. Lynch, 1961. Distribution of uronides and polysaccharides in the profiles of a soil catena. Soil Sci. 91:162–165.

    Google Scholar 

  • Greenland, D. J. 1956. The adsorption of sugars by montmorillonite. II. Chemical studies. J. Soil Sci. 7:329–334.

    Google Scholar 

  • Greenland, D. J. 1965. Interaction between clays and organic compounds in soils. II. Soils Fertil., Harpenden 28:521–532.

    Google Scholar 

  • Greenland, D. J. and G. W. Ford. 1964. Separation of partially humified organic materials from soils by ultrasonic dispersion. Trans. 8th Intern. Congr. Soil Sci., Bucharest 3:137–148.

    Google Scholar 

  • Greenland, D. J. G. R. Lindstrom, and J. P. Quirk. 1961. Role of polysaccharides in stabilization of natural soil aggregates. Nature, Lond. 191:1283–1284.

    Google Scholar 

  • Greenland, D. J. 1962. Organic materials which stabilize natural soil aggregates. Proc. Soil Sci. Soc. Am. 26:366–371.

    Google Scholar 

  • Greenwood, C. T. 1952. The size and shape of some polysaccharide molecules. Adv. Carbohyd. Chem. 7:289–332.

    Google Scholar 

  • Greenwood, C. T. 1956. Aspects of the physical chemistry of starch (addendum). Adv. Carbohyd. Chem. 11:385–393.

    Google Scholar 

  • Grov, A. 1963. Carbohydrates in cold water extracts of a pine forest soil. Acta Chem. Scand. 17:2301–2306.

    Google Scholar 

  • Gupta, U. C., and F. J. Sowden. 1963. Occurrence of free sugars in soil organic matter. Soil Sci. 96:217–218.

    Google Scholar 

  • Gupta, U. C. and F. J. Sowden. 1964. Isolation and characterisation of cellulose from soil organic matter. Soil Sci. 97:328–333.

    Google Scholar 

  • Gupta, U. C. and F. J. Sowden. 1965. Studies on methods for the determination of sugars and uronic acids in soils. Can. J. Soil Sci. 45:237–240.

    Google Scholar 

  • Gupta, U. C. and F. J. Sowden. and P. C. Stobbe. 1963. The characterisation of carbohydrate constituents from different soil profiles. Proc. Soil. Sci. Soc. Am. 27:380–382.

    Google Scholar 

  • Harris, R. F., O. N. Allen, G. Chesters, and O. J. Attoe. 1963. Evaluation of microbial activity in soil aggregate stabilisation and degradation by the use of artificial aggregates. Proc. Soil Sci. Soc. Am. 27:542–545.

    Google Scholar 

  • Harris, R. F., G. Chesters, O. N. Allen, and O. J. Attoe. 1964. Mechanisms involved in soil aggregate stabilisation by fungi and bacteria. Proc. Soil Sci. Soc. Am. 28:529–532.

    Google Scholar 

  • Haworth, W. N., R. W. Pinkard, and M. Stacey. 1946. Function of bacterial polysaccharides in soil. Nature, Lond. 158:836–837.

    Google Scholar 

  • Hermans, P. H. 1949. Physics and Chemistry of Cellulose Fibers. New York:Elsevier.

    Google Scholar 

  • Hewitt, L. F. 1938. The polysaccharide content and reducing power of proteins and of their digest products. Biochem. J. 32:1554–1560.

    Google Scholar 

  • Hodge, J. 1953. Chemistry of browning reactions in model systems. J. Agric. Fd. Chem. 1:928–943.

    Google Scholar 

  • Hoffman, W. S. 1937. A rapid photo-electric determination of glucose in blood and urine. J. Biol. Chem. 120:51–55.

    Google Scholar 

  • Honeyman, J. 1959. Recent Advances in the Chemistry of Cellulose and Starch. London:Hey wood and Co.

    Google Scholar 

  • Horton, D., and M. L. Wolfrom. 1963. Polysaccharides. Chapter 7 of Comprehensive Biochemistry, Vol. 5. M. Florkin and E. H. Stotz, eds. New York:Elsevier.

    Google Scholar 

  • Howes, F. N. 1949. Vegetable Gums and Resins. Massachusetts:Chronica Botanica Co.

    Google Scholar 

  • Ivarson, K. C., and F. J. Sowden. 1962. Methods for the analysis of carbohydrate material in soil. Soil Sci. 94:245–250.

    Google Scholar 

  • Jenny, H., and K. Grossenbacher. 1963. Root-soil boundary zones as seen by the electron microscope. Proc. Soil Sci. Soc. Am. 27:273–277.

    Google Scholar 

  • Keefer, R. F., and J. L. Mortensen. 1963. Biosynthesis of soil polysaccharides. 1. Glucose and alfalfa tissue substrates. Proc. Soil Sci. Soc. Am. 27:156–160.

    Google Scholar 

  • Keeney, D. R., and J. M. Bremner. 1964. Effect of cultivation on the nitrogen distribution in soils. Proc. Soil Sci. Soc. Am. 28:653–656.

    Google Scholar 

  • Kertesz, Z. I. 1951. The Pectic Substances. New York:Interscience.

    Google Scholar 

  • King, K. W. 1961. Microbial degradation of cellulose. Va. Polytech. Inst. Tech. Bull. 154. p. 55.

    Google Scholar 

  • Kononova, M. M. 1966. Soil Organic Matter, 2d ed. Oxford:Pergamon Press.

    Google Scholar 

  • Kosaka, J., and C. Honda. 1957. Uronic acid in humus. Soil PL Fd. Tokyo 2:142–147.

    Google Scholar 

  • Krym, I. Ya. 1962. Use of the method of partition chromatography for determining carbohydrates in soils. Poehvovedenie 6:101–103.

    Google Scholar 

  • Lambina, V. A. 1956. Bacteria decomposing plant protopectin. Mikrobiologiya 25:629–638.

    Google Scholar 

  • Lawson, G. J., and M. Stacey. 1954. Immunopolysaccharides. I. Preliminary studies of a polysaccharide from Azotobacter chroococcum, containing a uronic acid. J. Chem. Soc.:1925–1931.

    Google Scholar 

  • Lefévre, K. V., and B. Tollens. 1907. Investigation of glucuronic acid; its quantitative determination and its colour reactions. Ber. dt. chem. Ges. 40:4513–4523.

    Google Scholar 

  • Lippman, M. 1965. Proposed role for mucopolysaccharides in the initiation and control of cell division. Trans. N.Y. Acad. Sci. 27:342–360.

    Google Scholar 

  • Lynch, D. L., and L. J. Cotnoir, Jr. 1956. The influence of clay minerals on the breakdown of certain organic substances. Proc. Soil Sci. Soc. Am. 20:367–370.

    Google Scholar 

  • Lynch, D. L., E. E. Hearns, and L. J. Cotnoir. 1957. Determination of polyuronides in soils with carbazole. Proc. Soil Sci. Soc. Am. 21:160–162.

    Google Scholar 

  • Lynch, D. L., H. O. Olney, and L. M. Wright. 1958. Some sugars and related carbohydrates found in Delaware soils. J. Sci. Fd. Agric. 9:56–60.

    Google Scholar 

  • Lynch, D. L., L. M. Wright, and L. J. Cotnoir. 1956. The adsorption of carbohydrates and related compounds on clay minerals. Proc. Soil Sci. Soc. Am. 20:6–9.

    Google Scholar 

  • Lynch, D. L., L. M. Wright, and H. O. Olney. 1957. Qualitative and quantitative chromatographic analyses of the carbohydrate constituents of the acid-insoluble fraction of soil organic matter. Soil Sci. 84:405–411.

    Google Scholar 

  • Macaulay Institute for Soil Research Annual Report. 1953/54. p. 26.

    Google Scholar 

  • McCalla, T. M. 1943. Influence of biological products on soil structure, and infiltration. Proc. Soil Sci. Soc. Am. 7:209–214.

    Google Scholar 

  • McCalla, T. M. 1945. Influence of microorganisms and some organic substances on soil structure. Soil Sci. 59:287–297.

    Google Scholar 

  • McCalla, T. M. F. A. Haskins, and E. F. Frolik. 1957. Influence of various factors on aggregation of Peorian loess by microorganisms. Soil Sci. 84:155–161.

    Google Scholar 

  • Maclean, K. D., and W. A. DeLong. 1956. On the carbohydrate component in leaf extracts and in leachates obtained under forest canopy. Can. J. Agric. Sci. 36:267–275.

    Google Scholar 

  • Macura, J., J. Szolnoki, and V. Vancura. 1963. Decomposition of glucose in soil. In Soil Organisms. J. Doeksen and J. Van der Drift, eds. pp. 231–237.

    Google Scholar 

  • Mantell, C. L. 1947. The Water-Soluble Gums, New York:Reinhold.

    Google Scholar 

  • Martin, J. P., 1945a. Microorganisms and soil aggregation. I. Origin and nature of some of the aggregating substances. Soil Sci. 59:163–174.

    Google Scholar 

  • Martin, J. P., 1945b. Some observations on the synthesis of polysaccharides by soil bacteria. J. Bact. 50:349–360.

    Google Scholar 

  • Martin, J. P., 1946. Microorganisms and soil aggregation. II. Influence of bacterial polysaccharides on soil structure. Soil Sci. 61:157–166.

    Google Scholar 

  • Martin, J. P., J. O. Ervin, and R. A. Shepherd. 1965. Decomposition and binding action of polysaccharides from Azotobacter indicus (Beijerinckia) and other bacteria in soil. Proc. Soil Sci. Soc. Am. 29:397–400.

    Google Scholar 

  • Martin, J. P., and S. J. Richards. 1963. Decomposition and binding action of a polysaccharide from Chromobacterium violaceum in soil. J. Bact. 85:1288–1294.

    Google Scholar 

  • Mayaudon, J., and P. Simonart. 1958. A study of the decomposition of organic matter in the soil using radioactive carbon. II. Decomposition of radioactive glucose in the soil. A. Distribution of radioactivity in the humic fractions of the soil. PI. Soil 9:376–380.

    Google Scholar 

  • Mayaudon, J., 1959a. A study of the decomposition of organic matter in the soil using radioactive carbon. III. Decomposition of dialysable substances and of proteins and hemicelluloses. PI. Soil 11:170–175.

    Google Scholar 

  • Mayaudon, J., 1959b. A study of the decomposition of organic matter in the soil using radioactive carbon. V. Decomposition of cellulose and lignin. PI. Soil 11:181–192.

    Google Scholar 

  • Mehta, N. C, and H. Deuel. 1960. Zur pentosanbestimmung in Böden. Z.Pfl. Ernähr. Düng. Bodenk. 90:209–218.

    Google Scholar 

  • Mehta, N. C., P. Dubach, and H. Deuel. 1961. Carbohydrates in the soil. Adv. Carbohyd. Chem. 16:335–355.

    Google Scholar 

  • Mehta, N. C., H. Streuli, M. Müller, and H. Deuel. 1960. Role of polysaccharides in soil aggregation. J. Sci. Ed. Agric. 11:40–47.

    Google Scholar 

  • Meier, H. 1962. Galactan from tension wood of beech (Fagus silvatica L.). Acta Chem. Scand. 16:2275–2283.

    Google Scholar 

  • Miller, G. L. 1960. Microcolumn chromatographic method for analysis of oligosaccharides. Analyt. Biochem. 1:133–140.

    Google Scholar 

  • Montgomery, R. 1961. Further studies of the phenol-sulfuric acid reagent for carbohydrates. Biochim. Biophys. Acta 48:591–593.

    Google Scholar 

  • Moore, S., and W. H. Stein. 1951. Chromatography of amino acids on sulfonated polystyrene resins. J. Biol. Chem. 192:663–681.

    Google Scholar 

  • Mortensen J. L. 1960. Physico-chemical properties of a soil polysaccharide. Trans. 7th Intern. Congr. Soil Sci. 2:98–104.

    Google Scholar 

  • Mortensen J. L. and R. B. Schwendinger. 1963. Electrophoretic and spectroscopic characterization of high molecular components of soil organic matter. Geochim. Cosmochim. Acta 27:201–208.

    Google Scholar 

  • Müller, M., N. C. Mehta, and H. Deuel. 1960. Chromatographic fractionation of soil polysaccharides by means of cellulose ion-exchangers. 14. Report on ion-exchangers.Z. Pfl. Ernähr. Düng. Bodenk. 90:139–145.

    Google Scholar 

  • Nagar, B. R. 1962. Free monosaccharides in soil organic matter. Nature, Lond. 194:896–897.

    Google Scholar 

  • Nelson, N. J. 1944. A photometric adaption of the Somogyi method for the determination of glucose. J. Biol. Chem. 153:375–380.

    Google Scholar 

  • Norman, A. G. 1937. The Biochemistry of Cellulose, the Polyuronides, Lignin, etc. London:Oxford University Press.

    Google Scholar 

  • Norman, A. G. and W. V. Bartholomew. 1943. The chemistry of soil organic matter. I. Distribution of uronic carbon in some soil profiles. Soil Sci. 56:143–150.

    Google Scholar 

  • Oades, J. M. 1967. Carbohydrates in some Australian soils. Aust. J. Soil Res. 5:103–115.

    Google Scholar 

  • Ogston, A. G. 1958. Sedimentation in the ultracentrifuge (addendum to Bernier). Biochem. J. 70:598–599.

    Google Scholar 

  • Ott, E., H. M. Spurlin, and M. W. Grafflin. 1954. Cellulose and Cellulose Derivatives. 2d ed. New York:Interscience.

    Google Scholar 

  • Palmstierna, H., J. E. Scott, and S. Gardell. 1957. The precipitation of neutral polysaccharides by cationic detergents. Acta Chem. Scand. 11:1792–1793.

    Google Scholar 

  • Parsons, J. W., and J. Tinsley. 1961. Chemical studies of polysaccharide material in soils and composts based on extraction with anhydrous formic acid. Soil Sci. 92:46–53.

    Google Scholar 

  • Perry, M. B., and R. K. Hulyalkar. 1965. The analysis of hexuronic acids in biological materials by gas-liquid partition chromatography. Can. J. Biochem. 43:573–584.

    Google Scholar 

  • Philipson, T. 1943. Über die quantitative Bestimmung reduzierender Zucker. Ark. Kemi Miner. Geol. 16A, No. 22.

    Google Scholar 

  • Rennie, D. A., E. Truog, and O. N. Allen. 1954. Soil aggregation as influenced by microbial gums, level of fertility and kind of crop. Proc. Soil Sci. Soc. Am. 18:399–403.

    Google Scholar 

  • Roulet, N., P. Dubach, N. C. Mehta, M. Muller-Vonmoos, and H. Deuel. 1963. Distribution of organic matter and of carbohydrates in the separation of “root free” soil material by flotation sieving.Z. Pfl. Ernähr. Düng. Bodenk. 101:210–214.

    Google Scholar 

  • Roulet, N., N. C. Mehta, P. Dubach, and H. Deuel. 1963. Separation of carbohydrates and nitrogen compounds from humic substances by gel filtration and ion exchange chromatography.Z. Pfl. Ernähr. Düng. Bodenk. 103:1–9.

    Google Scholar 

  • Rovira, A. D. 1965. Plant root exudates and their influence upon soil microorganisms. In Ecology of Soil Borne Plant Pathogens; Prelude to Biological Control. K. F. Baker and W. C. Snyder, eds. International Syrtiposium, Berkeley, April 7–13. 1963.

    Google Scholar 

  • Roulet, N., and E. L. Greacen. 1957. The effect of aggregate disruption on the activity of microorganisms in the soil. Aust. J. Agric. Res. 8:659–673.

    Google Scholar 

  • Russell, E. W. 1961. Soil Conditions and Plant Growth, 9th ed. London:Longmans.

    Google Scholar 

  • Saeman, J. F., W. E. Moore, R. L. Mitchell, and M. A. Millett. 1954. Techniques for the determination of pulp constituents by quantitative paper chromatography. Tech. Pap. Addr. Tech. Pulp. Pap. Ind. 37:336–343.

    Google Scholar 

  • Salomon, M. 1962. Soil aggregation organic matter relationships in red-top potato rotations. Proc. Soil Sci. Soc. Am. 26:51–54.

    Google Scholar 

  • Salomon, M. 1963. Hexosamines in soil aggregates. Nature, Lond. 200:500.

    Google Scholar 

  • Salton, M. R. J. 1960. Microbial Cell Walls. New York:John Wiley.

    Google Scholar 

  • Scheffer, F., and R. Kickuth. 1961. Chemical decomposition experiments on a natural humic acid.Z. Pfl. Ernähr. Düng. Bodenk 94:180–198.

    Google Scholar 

  • Scheffer, F., and B. Ulrich. 1960. Humus und Humusdungung. Stuttgart:Enke.

    Google Scholar 

  • Schlichting, E. 1953. Zur kenntnis der Heidehumus. 11. Die Fulvosaure Fraktion.Z. Pfl. Ernähr. Düng. Bodenk. 61:97–107.

    Google Scholar 

  • Schnitzer, M., and W. A. DeLong. 1955. Investigations on the mobilisation and transport of iron in forested soils. II. The nature of the reaction of leaf extracts and leachates with iron. Proc. Soil Sci. Soc. Am. 19:363–368.

    Google Scholar 

  • Schuerch, C., and N. S. Thompson. 1963. The hemicelluloses. In The Chemistry of Wood, pp. 191–247. B. L. Browning, ed. New York:Interscience.

    Google Scholar 

  • Scott, F. M., B. G. Bystrom, and E. Bowler. 1963. Root hairs, cuticle and pits. Science, N. Y. 140:63–64.

    Google Scholar 

  • Scott, F. M., K. G Hamner, E. Baker, and E. Bowler. 1958. Electronic microscope studies of the epidermis of Allium cepa. Am. J. Bot. 45:449–461.

    Google Scholar 

  • Shewan, J. M. 1938. The proximate analysis of the organic constituents in north-east Scottish soils. J. Agric. Sci. Camb. 28:324–340.

    Google Scholar 

  • Shorey, E. C., and E. C. Lathrop. 1910. Pentosans in soils. J. Am. Chem. Soc. 32:1680–1683.

    Google Scholar 

  • Shorey, E. C., and J. B. Martin. 1930. Presence of uronic acids in soils. J. Am. Chem. Soc. 52:4907–4915.

    Google Scholar 

  • Simonart, P., and J. Mayaudon. 1958. A study of the decomposition of organic matter in the soil using radioactive carbon. II. Decomposition of radioactive glucose in the soil. B. Distribution of the radioactivity in α-humus. Pl. Soil 9:381–384.

    Google Scholar 

  • Singh, S., and G. S. Bhandari. 1963. Investigations on acid stable reducing organic fractions in some soils of Rajasthan. J. Indian Soc. Soil Sci. 11:293–298.

    Google Scholar 

  • Singh, S., and P. H. Singh. 1960. Distribution of hexosamines in some soils of Uttar Pradesh. J. Indian Soc. Soil Sci. 8:125–128.

    Google Scholar 

  • Siu, R. G. H. 1951. Microbial Decomposition of Cellulose. New York:Reinhold.

    Google Scholar 

  • Smith, F., and R. Montgomery. 1959. The Chemistry of Plant Gums and Mucilages. New York:Reinhold.

    Google Scholar 

  • Sorenson, H. 1955. Xylanase in the soil and the rumen. Nature, Lond. 116:14.

    Google Scholar 

  • Sorenson, H. 1963. Studies on the decomposition of 14C-labelled barley straw in soil. Soil Sci. 95:45–51.

    Google Scholar 

  • Sowden, F. J. 1959. Investigations on the amounts of hexosamines found in various soils and methods for their determination. Soil Sci. 88:138–143.

    Google Scholar 

  • Sowden, F. J. and K. C. Ivarson. 1959. Decomposition of forest litters. II. Changes in the nitrogenous constituents. PL Soil 11:249–261.

    Google Scholar 

  • Sowden, F. J. and K. C. Ivarson. 1962a. Methods for the analysis of carbohydrate material in soil. 2. Use of cellulose column and paper chromatography for determination of the constituent sugars. Soil Sci. 94:340–344.

    Google Scholar 

  • Sowden, F. J. and K. C. Ivarson. 1962b. Decomposition of forest litters. III. Changes in the carbohydrate constituents. PL Soil 16:389–400.

    Google Scholar 

  • Stacey, M., and S. A. Barker. 1960. Polysaccharides of Microorganisms. London:Oxford University Press.

    Google Scholar 

  • Stark, S. M. 1950. Determination of pectic substances in cotton — Colorimetric reaction with carbazole. Analyt. Chem. 22:1158–1160.

    Google Scholar 

  • Stevenson, F. J. 1954. Ion exchange chromatography of the amino acids in soil hydrolysates. Proc. Soil Sci. Soc. Am. 18:373–377.

    Google Scholar 

  • Stevenson, F. J. 1956a. Isolation and identification of some amino compounds in soils. Proc. Soil Sci. Soc. Am. 20:201–204.

    Google Scholar 

  • Stevenson, F. J. 1956b. Effect of some long-term rotations on the amino acid composition of the soil. Proc. Soil Sci. Soc. Am. 20:204–208.

    Google Scholar 

  • Stevenson, F. J. 1957a. Investigations of aminopolysaccharides in soils. 1. Colorimetric determination of hexosamines in soil hydrolysates. Soil Sci. 83:113–122.

    Google Scholar 

  • Stevenson, F. J. 1957b. Investigations of amino polysaccharides in soils. 2. Distribution of hexosamines in some soil profiles. Soil Sci. 84:99–106.

    Google Scholar 

  • Stevenson, F. J. 1957c. Distribution of the forms of nitrogen in some soil profiles. Proc. Soil Sci. Soc. Am. 21:283–287.

    Google Scholar 

  • Stevenson, F. J. 1960. Chemical nature of the nitrogen in the fulvic fraction of soil organic matter. Proc. Soil Sci. Soc. Am. 24:472–477.

    Google Scholar 

  • Swaby, R. J. 1949. The relationship between microorganisms and soil aggregation. J. Gen. Microbiol. 3:236–254.

    Google Scholar 

  • Swincer, G. D., J. M. Oades, and D. J. Greenland. 1968. Studies on soil polysaccharides. I. The isolation of polysaccharides from soil. II. The composition and properties of polysaccharides in soils under pasture and under fallow-wheat rotation. Australian J. Soil Res. 6:211–239.

    Google Scholar 

  • Tenney, F. G., and S. A. Waksman. 1929. Composition of natural organic materials and their decomposition in the soil. IV. Nature and rapidity of decomposition of various organic complexes in different plant materials under aerobic conditions. Soil Sci. 28:55–84.

    Google Scholar 

  • Tenney, F. G., and S. A. Waksman. 1930. Composition of natural organic materials and their decomposition in the soil. V. Decomposition of various chemical constituents in plant materials under anaerobic conditions. Soil Sci. 30:143–160.

    Google Scholar 

  • Theander, O. 1954. Studies on sphagnum peat. III. A quantitative study on the carbohydrate constituents of sphagnum mosses and sphagnum peat. Acta Chem. Scand. 8:989–1000.

    Google Scholar 

  • Thomas, R. L. 1963. Fractionation and characterization of the polysaccharides extracted from the Brookston soil. Ph.D. thesis, Ohio State University.

    Google Scholar 

  • Thomas, R. L. and D. L. Lynch. 1961. A method for the quantitative estimation of pentoses in soil. Soil Sci. 91:312–316.

    Google Scholar 

  • Timell, T. E. 1964. Wood hemicelluloses. Part 1. Adv. Carbohyd. Chem. 19:247–302.

    Google Scholar 

  • Toennies, G., and J. J. Kolb. 1964. Carbohydrate analysis of bacterial substances by a new anthrone procedure. Analyt. Bioehem. 8:54–69.

    Google Scholar 

  • Tracey, M. V. 1950. A colorimetric method for the determination of pentoses in the presence of hexoses and uronic acids. Bioehem. J. 47:433–436.

    Google Scholar 

  • Vancura, V. 1964. Root exudates of plants. 1. Analysis of root exudates of barley and wheat in their initial phases of growth. PI. Soil 21:231–248.

    Google Scholar 

  • Waksman, S. A., 1936. Humus. London:Tindall and Cox.

    Google Scholar 

  • Waksman, S. A., and I. J. Hutchings. 1935. Chemical nature of organic matter in different soil types. Soil Sci. 40:347–363.

    Google Scholar 

  • Watson, J. H., and B. J. Stojanovic. 1965. Synthesis and bonding of soil aggregates as affected by microflora and its metabolic products. Soil Sci. 100:57–62.

    Google Scholar 

  • Webber, L. R. 1965. Soil polysaccharides and aggregation in crop sequences. Proc. Soil Sci. Soe. Am. 29:39–42.

    Google Scholar 

  • Webley, D. M., R. B. Duff, J. S. D. Bacon, and V. C. Farmer. 1965. A study of polysaccharide- producing organisms occurring in the root region of certain pasture grasses. J. Soil Sci. 16:149–157.

    Google Scholar 

  • Wen, C. H., and L. L. Chen. 1962. The determination of pentoses in soils by means of aniline. Acta Pedol. Sin. 10:220–226.

    Google Scholar 

  • Whistler, R. L., and K. W. Kirby. 1956. Composition and behaviour of soil polysaccharides. J. Am. Chem. Soe. 78:1755 1759.

    Google Scholar 

  • Whistler, R. L., and G. E. Lauterbach. 1958. Isolation of two further polysaccharides from corn cobs. Arch. Bioehem. Biophys. 77:62–67.

    Google Scholar 

  • Whistler, R. L., and C. L. Smart. 1953. Polysaccharide Chemistry. New York:Academic Press.

    Google Scholar 

  • Whitehead, D. C., and J. Tinsley. 1963. The biochemistry of humus formation. J. Sci. Fd. Agric. 14:849–857.

    Google Scholar 

  • Whitehead, D. C., and J. Tinsley. 1964. Extraction of soil organic matter with dimethylformamide. Soil Sci. 97:34–42.

    Google Scholar 

  • Wilkinson, J. P. 1958. The extracellular polysaccharides of bacteria. Bact. Rev. 22:46–73.

    Google Scholar 

  • Williams, B. G. 1965. Influence of PVAon physical properties of soil aggregates. Ph.D. thesis. University of Adelaide, Australia.

    Google Scholar 

  • Williams, R. T. 1953. Biological Transformations of Starch and Cellulose. Cambridge:Cambridge University Press.

    Google Scholar 

  • Winogradsky, S. 1929. Soil microbiology. IV. Degradation of cellulose in the soil. Annls. Inst. Pasteur, Paris 43:549–633.

    Google Scholar 

  • Young, J. L., and J. L. Mortensen, 1958. Soil nitrogen complexes. 1. Chromatography of amino compounds in soil hydrolysates. Ohio Agric. Exptl. Sta. Res. Circ. 61.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Greenland, D.J., Oades, J.M. (1975). Saccharides. In: Gieseking, J.E. (eds) Soil Components. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-65915-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-65915-7_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-06861-7

  • Online ISBN: 978-3-642-65915-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics