Skip to main content

Foundations of shell theory

  • Conference paper
Theoretical and Applied Mechanics

Part of the book series: IUTAM Symposia ((IUTAM))

Abstract

Shell theory attempts the impossible: to provide a two-dimensional representation of an intrinsically three-dimensional phenomenon. A shell occupies a volume in space; indeed its relative thickness is the crucial parameter governing its response to external loads. Yet any theory of shells, virtually by definition, deals with variables defined only on a reference surface, normally the middle surface. The expectation, based on intuition and experience, is of course that the thinner the shell, the more accurately the actual three-dimensional stress and displacement fields can be inferred from a two-dimensional solution (except possibly near edges or regions of highly concentrated loading). The need of a two-dimensional theory is obvious because, even in the present computer age, such a theory is from the mathematical point of view immensely more tractable than a three-dimensional one.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aron, H.: J. Reine u. Angew. Math. 78 (1874) 136–173.

    Article  Google Scholar 

  2. Ho, C. L., Knowles, J. K.: Z. A. M. P. 21 (1970) 352–377.

    Article  MathSciNet  MATH  Google Scholar 

  3. John, F.: Comm. Pure and Appi. Math. 18 (1965) 235–267.

    Google Scholar 

  4. John, F.: Proc. 2nd IUTAM Symp. Theory of Thin Shells, Copenhagen 1967. Berlin/Heidelberg/New York: Springer 1969, 1 — 14.

    Google Scholar 

  5. John, F.: Comm. Pure and Appi. Math. 24 (1971) 583–615.

    MATH  Google Scholar 

  6. Morgenstern, D.: Arch. Rat. Mech. and Anal. 4 (1959) 145–152.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Morgenstern, D., Szabo, I.: Vorlesungen über Theoretische Mechanik, § 9.5, Berlin/Göttingen/ Heidelberg: Springer 1961.

    MATH  Google Scholar 

  8. Nordgren, R. P.: Quart. Appi. Math. 28 (1971) 587–595.

    MathSciNet  MATH  Google Scholar 

  9. Danielson, D. A.: Proc. Kon. Ned. Ak. Wet. B 74 (1971) 294–300.

    MathSciNet  MATH  Google Scholar 

  10. Koiter, W. T.: Proc. Kon. Ned. Ak. Wet B 73 (1970) 169–195.

    MathSciNet  Google Scholar 

  11. Koiter, W. T.: Proc. Int. Congr. Math. Nice 1970. Paris: Gauthier-Villars, vol. 3 (1971) 123–130.

    Google Scholar 

  12. Simmonds, J. G.: Quart. Appi. Math. 29 (1971) 439–447.

    MATH  Google Scholar 

  13. Sensenig, C. B.: Int. J. Engng. Sci. 6 (1968) 435–464.

    Article  MATH  Google Scholar 

  14. Green, A. E.: Proc. Roy. Soc. London A 269 (1963) 481–491.

    ADS  Google Scholar 

  15. Gol’denweizer, A. L.: Prikl. Mat. Mekh. 26 (1962) 668–686. English translation 1000–1025.

    Google Scholar 

  16. Gol’denweizer, A. L.: Prikl. Mat. Mekh. 27 (1963) 593–608. English translation 903–924.

    Google Scholar 

  17. Gol’denweizer, A. L.: Proc. 11th Int. Congr. Appl. Mech. München 1964. Berlin/Heidelberg/ New York: Springer 1966, 306–311.

    Google Scholar 

  18. Kolos, A. V.: Prikl. Mat. Mekh. 28 (1964) 582–589. English translation 718–726.

    Google Scholar 

  19. Kolos, A. V.: Prikl. Mat. Mekh. 29 (1965) 771–781. English translation 914–925.

    Google Scholar 

  20. Gol’denweizer, A. L., Kolos, A. V.: Prikl. Mat. Mekh. 29 (1965) 141–155. English translation 151–166.

    Google Scholar 

  21. Gol’denweizer, A. L.: Prikl. Mat. Mekh. 32 684–695. English translation 704–718.

    Google Scholar 

  22. Gol’denweizer, A. L.: Prikl. Mat. Mekh. 33 996–1028. English translation 971–1001.

    Google Scholar 

  23. Gol’denweizer, A. L.: Proc. 2nd IUTAM Symp. Theory of Thin Shells, Copenhagen 1967. Berlin/ Heidelberg/New York: Springer 1969, 31–38.

    Google Scholar 

  24. Gol’denweizer, A. L.: On two-dimensional equations of the general linear theory of thin elastic shells. Problems of Hydrodynamics and Continuum Mechanics (L. I. Sedov anniversary volume), Soc. Ind. Appl. Math., Philadelphia (1969) 334–352.

    Google Scholar 

  25. Rutten, H. S.: Proc. 2nd IUTAM Symp. on the Theory of Thin Shells, Copenhagen 1967. Berlin/ Heidelberg/New York: Springer 1969, 115–134.

    Google Scholar 

  26. Rutten, H. S.: Asymptotic approximation in the three-dimensional theory of thin and thick elastic shells. Thesis Delft 1971, published by Netherlandse Boekdruk Industrie N.V., ’s Hertogenbosch.

    Google Scholar 

  27. Cosserat, E., Cosserat, F.: Théorie des corps déformables. Paris: Herrmann 1909.

    Google Scholar 

  28. Naghdi, P. M.: The theory of shells and plates. Flügge’s Handbuch der Physik, 2nd edition, vol. VI-2. Berlin/Heidelberg/New York: Springer 1972.

    Google Scholar 

  29. Niordson, F. I.: Int. J. Solids and Structures 7 (1971) 1573–1579.

    Article  MathSciNet  MATH  Google Scholar 

  30. Flügge, W.: Statik und Dynamik der Schalen. Berlin: Springer 1934.

    MATH  Google Scholar 

  31. Flügge, W.: Stresses in shells. Berlin/Göttingen/ Heidelberg: Springer 1960.

    MATH  Google Scholar 

  32. Wlassow, W. S.: Allgemeine Schalentheorie und ihre Anwendung in der Technik. Deutsche Ausgabe der russischen Auflage (1949) unter Redaktion von A. Kromm. Akademie-Verlag, Berlin (1958).

    Google Scholar 

  33. Novozhilov, V. V.: The theory of thin shells. Translated from the Russsian edition (1951) by P. G. Lowe. Groningen: Noordhoff 1959.

    Google Scholar 

  34. Gol’denweizer, A. L.: Theory of elastic thin shells. Translation from the Russian edition (1953) ed. G. Herrmann, Oxford: Pergamon Press (1961).

    Google Scholar 

  35. Girkmann, K.: Flächentrag werke, 4. Aufl. Oxford: Springer 1956.

    Google Scholar 

  36. Mushtari, Kh. M., Galimov, K. Z.: Nonlinear theory of thin elastic shells. Translated from the Russian edition (1957) by J. Morgenstern and J. J. Schorr-Kon. NASA-TT-F62 (1961).

    Google Scholar 

  37. Kraus, H.: Thin elastic shells. New York: Wiley 1967.

    MATH  Google Scholar 

  38. Naghdi, P. M.: Foundations of elastic shell theory. Progress in Solid Mechanics, ed. I. N. Sneddon and R. Hill. Amsterdam: North-Hcl-land 1963, 1–90.

    Google Scholar 

  39. Koiter, W. T.: Proc. 2nd IUTAM Symp. on the Theory of Thin Shells, Copenhagen 1967. Berlin/ Heidelberg/New York: Springer 1969, 93–105.

    Google Scholar 

  40. Love, A. E. H.: Mathematical theory of elasticity , 4th edition. Cambridge Universitv Press 1927.

    MATH  Google Scholar 

  41. Reissner, E.: J. Math, and Phys. 42 (1963) 263–277.

    Google Scholar 

  42. Reissner, E.: Proc. 11th Int. Congr. Appl. Mech., München 1964. Berlin/Heidelberg/New York: Springer 1966, 20–30.

    Google Scholar 

  43. Koiter, W. T.: Proc. IUTAM Symp. on the Theory of Thin Elastic Shells, Delft 1959. Amsterdam: North-Holland 1960, 12–33.

    MATH  Google Scholar 

  44. Budiansky, B., Sanders, J. L.: On the “best” first-order linear shell theory. Progress in Applied Mechanics (Prager Anniversary Volume), New York: Macmillan 1963, 129–140.

    Google Scholar 

  45. Leonard, R. W.: Nonlinear first approximation thin shell and membrane theory. Thesis Virginia Polytechnic Institute 1961.

    Google Scholar 

  46. Sanders, J. L.: Quart. Appl. Math. 21 (1963) 21–36.

    MathSciNet  Google Scholar 

  47. Koiter, W. T.: Proc. Kon. Ned. Ak. Wet. B 69 (1966) 1–54.

    MathSciNet  Google Scholar 

  48. Budiansky, B.: J. Appl. Mech. 35 (1968) 393–401.

    Article  Google Scholar 

  49. Danielson, D. A.: Int. J. Engng. Sci. 8 (1970) 251–259.

    Article  MATH  Google Scholar 

  50. Simmonds, J. G., Danielson, D. A.: Proc. Kon. Ned. Ak. Wet. B 73 (1970) 460–478.

    MathSciNet  MATH  Google Scholar 

  51. Simmonds, J. G., Danielson, D. A.: J. Appl. Mech. 39 (1972) 1085–1090.

    Article  ADS  MATH  Google Scholar 

  52. Reissner, E.: Proc. 3rd Symp. Appl. Math., Ann Arbor 1949. New York: McGraw-Hill 1950, 27–52.

    Google Scholar 

  53. Koiter, W. T.: ZAMP 21 (1970) 534–538.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  54. Simmonds, J. G.: ZAMP 22 (1971) 339–345.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  55. Simmonds, J. G.: To appear in ZAMP 23 (1972).

    Google Scholar 

  56. Leibenson, L. S.: Matematishkii Svornik 40 (1933) 429–442.

    MATH  Google Scholar 

  57. Neut, A. van der: De elastische stabiliteit van den dun wandigen bol. Thesis Delft, published by H. J. Paris, Amsterdam 1932.

    Google Scholar 

  58. Koiter, W. T.: Proc. Kon. Ned. Ak. Wet. B 72 (1969) 40–123.

    Google Scholar 

  59. Newman, J. B.: To appear in J. Appl. Mech. 39 (1972).

    Google Scholar 

  60. Friedrichs, K. O.: Proc. 3rd Symp. Appl. Math., Ann Arbor 1949. New York: McGraw-Hill 1950, 117–124.

    Google Scholar 

  61. Koiter, W. T., Heijden, A. van der: Modified boundary conditions at a free edge of a thin plate or shell. To be published in Proc. Kon. Ned. Ak. Wet.

    Google Scholar 

  62. Heijden, A. van der: Benaderingstheorie voor het bepalen van spanningen längs de vrije schaalrand. Report 456, Laboratory of Engineering Mechanics, Dept. of Mechanical Engineering, University of Technology, Delft 1971.

    Google Scholar 

  63. Alblas, J. B.: Theorie van de driedimensionale spanningstoestand in een doorboorde plaat. Thesis Delft, published by H. J. Paris, Amsterdam 1957.

    Google Scholar 

  64. Lur’e, A. I.: Prikl. Mat. Mekh. 4, Nr. 2 (1940).

    Google Scholar 

  65. Gol’denweizer, A. L.: Prikl. Mat. Mekh. 4, Nr. 2 (1940).

    Google Scholar 

  66. Koiter, W. T.: Proc. Kon. Ned. Ak. Wet. B 64 (1961) 612–619.

    MATH  Google Scholar 

  67. Koiter, W. T.: Proc. Kon. Ned. Ak. Wet. B 67 (1964) 117–126.

    MathSciNet  MATH  Google Scholar 

  68. Koiter, W. T.: ZAMP 20 (1969) 642–653.

    Article  ADS  MATH  Google Scholar 

  69. Mikhlin, S. G.: The problem of the minimum of a quadratic functional. Translated from the Russian edition (1952) by A. Feinstein. San Francisco: Holden-Day 1965.

    Google Scholar 

  70. Prager, W., Synge, J. L.: Quart. Appl. Math. 5 (1947) 241–269. Cf. also J. L. Synge: The hypercircle in mathematical physics. Cambridge University Press 1957.

    Google Scholar 

  71. Trefftz, E.: Z. angew. Math, und Mech. 15 (1935) 101–108.

    Article  MATH  Google Scholar 

  72. Sokolnikoff, I. S.: Mathematical theory of elasticity, 2nd edition, New York: McGraw Hill 1956.

    MATH  Google Scholar 

  73. Goodier, J. N.: Trans. Roy. Soc. Canada 32 (1938) 65–88.

    MATH  Google Scholar 

  74. Reissner, E.: J. Appl. Mech. 12 (1945) 69–77.

    MathSciNet  Google Scholar 

  75. Naghdi, P.M.: Quart. Appl. Math. 14 (1957) 369–380.

    MathSciNet  MATH  Google Scholar 

  76. Reissner, E.: Small bending and stretching of sandwich-type shells. NACA Report 975 (1950).

    Google Scholar 

  77. Plantema, F. J.: Sandwich construction. New York: Wiley 1966.

    Google Scholar 

  78. Lamb, H.: Proc. Lond. Math. Soc. 21 (1891) 119.

    Article  Google Scholar 

  79. Grigoliouk, E. I., Chulkov, P. P.: On the theory of multilayer shells. Contributions to the Theory of Aircraft Structures, Delft University Press 1972, 171–183.

    Google Scholar 

  80. Green, A. E., Adkins, J. E.: Large elastic deformations. Oxford: Clarendon Press 1970.

    MATH  Google Scholar 

  81. Stoker, J. J.: Nonlinear elasticity. New York: Gordon and Breach 1968.

    MATH  Google Scholar 

  82. Sensenig, C. B.: Plate estimates involving two strain parameters. Report IMM 388. Courant Institute of Mathematical Sciences, New York University 1971.

    Google Scholar 

  83. Lur’e, A. I.: Räumliche Probleme der Elastizitätstheorie. Deutsche Augsabe der russischen Auflage (1955) von G. Landgraf. Berlin: x4ka-demie-Verlag 1963.

    Google Scholar 

  84. Chernykh, K. F.: Linear theory of shells, Parts I and II, NASA TT-F 11, 562. Translated from the Russian edition, Leningrad Univ. Publ. House, Part I (1962), Part II (1964).

    Google Scholar 

  85. Cicala, P.: Systematic approximation approach to linear shell theory. Torino: Levrotto and Bella (1965).

    Google Scholar 

  86. Danielson, D. A., Simmonds, J. G.: Int. J. Engng. Sci. 7 (1969) 459–468.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1973 Springer-Verlag, Berlin · Heidelberg

About this paper

Cite this paper

Koiter, W.T., Simmonds, J.G. (1973). Foundations of shell theory. In: Becker, E., Mikhailov, G.K. (eds) Theoretical and Applied Mechanics. IUTAM Symposia. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-65590-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-65590-6_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-65592-0

  • Online ISBN: 978-3-642-65590-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics