Skip to main content

Part of the book series: Handbook of Sensory Physiology ((1536,volume 7 / 3 / 3 A))

Abstract

When the eyes or the body are moved so that the retinal image changes, the resulting signals from the retina resemble in some respects those which would have been generated if the eyes had been stationary and part of the visual world had moved. When the image displacement is not due to use of the oculomotor or locomotor system, a strong impression of motion-of-the-visual-scene is created. This is so even when the displacement is produced by the voluntary use of other muscles, for example by tapping the eyelid with a finger. During normal exploratory eye-movement and locomotion, however, no such instability of the visual world is seen. As we visually examine an object or walk towards it, it is perceived as a stationary structure despite the jerky translations, shearing motions or pulsatile expansions that take place in its retinal image. Conversely, if paralysis of extra-ocular muscles (Helmholtz, 1866; Mach, 1906) or the use of optical image-stabilizing apparatus (Ditchbubn and Ginsborg, 1952) prevents the image from changing in the way that would normally match the voluntary movement in question, illusory motion-of-the-visual-world is seen even though the retinal image is stationary. (That this applies not only to stabilization against image translation can easily be verified by looking at a nearby object through high-powered binoculars while walking towards it).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Atkin, A.: Shifting fixation to another pursuit target: selective and anticipatory control of ocular pursuit initiation. Exp. Neurol. 23, 157–173 (1969).

    PubMed  CAS  Google Scholar 

  • Bach-y-Rita, P.: Neurophysiology of eye movements. In: Bach-y-Rita,P., Collins,C.C. ( Eds. ): The Control of Eye Movements. Academic Press 1971.

    Google Scholar 

  • Barlow, H.B., Hill, R.M.: Selective sensitivity to direction of movement in ganglion cells of the rabbit retina. Science 139, 412–414 (1963).

    PubMed  CAS  Google Scholar 

  • Basler, A.: Ãœber das Sehen von Bewegungen. I. Die Wahrnehmung kleinster Bewegungen. Pflügers Arch. ges. Physiol. 115, 582–601 (1906).

    Google Scholar 

  • Baumgartner, G., Brown, J.C., Schultz, A.: Visual motion detection in the cat. Science 146, 1070–1071 (1964).

    PubMed  CAS  Google Scholar 

  • Beeler, J. W., Visual threshold changes resulting from a spontaneous saccadic eye movement. Vision Res. 7, 769–775 (1967).

    PubMed  Google Scholar 

  • Bischof, N., Kramer, E.: Untersuchungen und Ãœberlegungen zur Richtungswahrnehmung bei willkürlichen sakkadischen Augenbewegungen. Psychol. Forsch. 32, 185–218 (1968).

    PubMed  CAS  Google Scholar 

  • Bizzi, E.: Changes in the orthodromic and antidromic response of optic tract during the eye movements of sleep. J. Neurophysiol. 29, 861–870 (1966).

    PubMed  CAS  Google Scholar 

  • Bizzi, E. Discharge of frontal eye field neurones during eye movements in unanaesthetized monkeys. Science 157, 1588 — 1590 (1967).

    PubMed  CAS  Google Scholar 

  • Bizzi, E. Discharge of frontal eye field neurones during saccadic and following eye movements in unanaesthetized monkeys. Exp. Brain Res. 6, 69–80 (1966).

    Google Scholar 

  • Bizzi, E., Schiller, P. H.: Single unit activity in the frontal eye fields of unanaesthetized monkeys during eye and head movement. Exp. Brain Res. 10, 151–158 (1970).

    Google Scholar 

  • Brindley, G.S., Merton, P.A.: The absence of position sense in the human eye. J. Physiol. (Lond.) 153, 127–130 (1960).

    CAS  Google Scholar 

  • Brindley, G.S., Lewin,W.S.: The sensations produced by electrical stimulation of the visual cortex. J. Physiol (Lond.) 196, 479–494 (1968).

    CAS  Google Scholar 

  • Brown, R. H.: Influence of stimulus and luminance upon the upper speed threshold for the visual discrimination of movement. J. Opt. Soc. Amer. 48, 125–128 (1958).

    CAS  Google Scholar 

  • Brucher, J. M.: L’aire Oculogyre Frontale du Singe — ses fonctions et voies afferentes. Bruxelles: Arscia 1964.

    Google Scholar 

  • Christman, E.H., Kupfer, C.: Proprioception in extra-ocular muscles. Arch. Ophthal. 69, 824–829 (1963).

    PubMed  CAS  Google Scholar 

  • Collewijn, H.: Changes in visual evoked responses during the fast phase of optokinetic nystagmus in the rabbit. Vision Res. 9, 803–814 (1969).

    PubMed  CAS  Google Scholar 

  • Cooper, S., Daniel, P.: Muscle spindles in human extrinsic eye muscles. Brain 72, 1–24 (1949).

    PubMed  CAS  Google Scholar 

  • Cooper, S., Daniel, P., Whitteridge, D.: Muscle spindles and other sensory endings in the extrinsic eye muscles: The physiology and anatomy of these receptors and their connections with the brainstem. Brain 78, 564–583 (1955).

    PubMed  CAS  Google Scholar 

  • Diamond, I.T.: Two visual systems in tree shrews (Tupaia glis) and squirrels (Sciurus carolinesis). Proc. Int. Union of Physiological Sciences, XXV International Congress, Munich, 1971. Vol. VIII, 225–226 (1971).

    Google Scholar 

  • Dichgans, J., Jung, R.: Attention, eye movements and motion detection: facilitation and selection in optokinetic nystagmus and railway nystagmus. In: Evans, C.R., Mulholland, T.B. (Eds.): Symposium on Attention, pp. 348–375. London: Butterworths 1970.

    Google Scholar 

  • Dichgans, J., Körner, F., Voigt, K.: Vergleichende Skalierung der afferenten und efferenten Bewegungssehens beim Menschen: Lineare Funktionen mit verschiedener Anstiegssteilheit. Psychol. Forsch. 32, 277–295 (1969).

    PubMed  CAS  Google Scholar 

  • Dichgans, J., Wist, E.R., Schmidt, C. L.: Modulation neuronaler Spontanaktivität im N. vestibularis durch optomotorische Impulse beim Kaninchen. Pflügers Arch. ges. Physiol. 319, 154 (1970).

    Google Scholar 

  • Ditchburn, R.W., Ginsborg, B. L.: Vision with a stabilized retinal image. Nature (Lond.) 170, 36–37 (1952).

    CAS  Google Scholar 

  • Duffy, F.H., Lombroso, C. T.: Electrophysiological evidence for visual suppression prior to the onset of a voluntary saccadic eye movement. Nature (Lond.) 218, 1074–1075 (1968).

    CAS  Google Scholar 

  • Filehne, W.: Ãœber das optische Wahrnehmen von Bewegungen. Z. Sinnesphysiol. 53, 134–145 (1922).

    Google Scholar 

  • Fischer, M.H., Kornmüller, A.E.: Optokinetisch ausgeloste Bewegungswahrnehmungen und optokinetischer Nystagmus. J. Psychol. Neurol. (Lpz). 41, 273–308 (1930).

    Google Scholar 

  • Fuchs, A. F., Kornhuber, H. H.: Extra-ocular muscle afferents to the cerebellum of the cat. J. Physiol. (Lond.) 200, 713–722 (1969).

    CAS  Google Scholar 

  • Gertz, H.: Ãœber die gleitende (langsame) Augenbewegung. Z. Psychol., Physiol., Sinnesorg. Abt. 2: Z. Sinnesphysiol. 49, 29–58 (1916).

    Google Scholar 

  • Gibson, J. J.: The Perception of the Visual World. Boston: Houghton Mifflin 1950.

    Google Scholar 

  • Gibson, J. J. The Senses considered as Perceptual Systems. Boston: Houghton Mifflin 1966.

    Google Scholar 

  • Gregory, R.L., Zangwill,O.L.: The origin of the autokinetic effect. Quart. J. exp. Psychol. XV, 252–261 (1963).

    Google Scholar 

  • Grusser, O.-J., Finkelstein, D., Grtjsser-Cornehls, U.: The effect of stimulus velocity on the response of movement-sensitive neurones of the frog’s retina. Pflügers Arch. ges. Physiol. 300, 49–66 (1968).

    CAS  Google Scholar 

  • Gurevitch, B.K.: Possible role of higher proprioceptive centres in the perception of visual space. Nature (Lond.) 184, 1219–1220 (1959).

    CAS  Google Scholar 

  • Helmholtz, H. von: Handbuch der Physiologischen Optik, Vol. 3, Leipzig: Voss 1866.

    Google Scholar 

  • Holst, E. von: Relations between the central nervous system and the peripheral organs. Animal Behaviour 2, 89–94 (1954).

    Google Scholar 

  • Holst, E. von, Aktive Leistungen der menschlichen Gesichtswahrnehmung. Studium Generale 10, 231–243 (1957).

    Google Scholar 

  • Holst, E. von, Mittelstaedt, H.: Das Reafferenzprinzip (Wechselwirkungen zwischen Zentralnervensystem und Peripherie). Naturwissenschaften 37, 464–476 (1950).

    Google Scholar 

  • Holt, E.B.: Eye movement and central anaesthesia. Harvard Psychol. Studies 1. 3–45 (1903).

    Google Scholar 

  • Horn, G., Hill, R.M.: Modifications of receptive fields of cells in the visual cortex occurring spontaneously and associated with bodily tilt. Nature (Lond.) 221, 186–188 (1969).

    CAS  Google Scholar 

  • Howard, I., Templeton, W.: Human Spatial Orientation. New York: Wiley 1966.

    Google Scholar 

  • Hubel, D.H.: Cortical unit responses to visual stimuli in non-anaesthetized cats. Amer. J. Ophthal. 46, 110–122 (1958).

    PubMed  CAS  Google Scholar 

  • Hubel, D.H., Wiesel, T.N.: Shape and arrangement of columns in cat’s striate cortex. J. Physiol. (Lond.) 165, 559–568 (1963).

    CAS  Google Scholar 

  • Humphrey, N.K.: What the frog’s eye tells the monkey’s brain. Brain, Behav. Evolution 3, 324–337 (1970).

    CAS  Google Scholar 

  • Hyde, J. E.: Some characteristics of voluntary human ocular movements in the horizontal plane. Amer. J. Ophthal. 48, 85–94 (1959).

    PubMed  CAS  Google Scholar 

  • Ingle, D., Schneider, G.E., Trevarthen, C.B., Held, R.: Locating and identifying: Two modes of visual processing. Psychol. Forsch. 31, Numbers 1 and 4, 42–62 and 299–348.

    Google Scholar 

  • Jackson, J. Hughlings, Paton, L.: On some abnormalities of ocular movements. Lancet 176, 900–905 (1909).

    Google Scholar 

  • Jeannerod, M., Putkonen, P.T.S.: Oculomotor influences on lateral geniculate body neurons. Brain Res. 24, 125–129 (1970).

    PubMed  CAS  Google Scholar 

  • Jung, R.: Die Registrierung des postrotatorischen und optokinetischen Nystagmus und die optisch-vestibuläre Integration beim Menschen. Acta oto-laryng. (Stockh.) 36, 199–202 (1947).

    Google Scholar 

  • Jung, R.: Zur Physiologie und Pathologie des optisch-vestibulären Systems beim Menschen. In: Bergmann,G. V., Frey,W., Schwiegk,H. (Eds.): Handbuch der Inneren Medizin. 4. Aufl. Bd. V/1, Neurologie I, 1325–1379. Berlin-Göttingen-Heidelberg: Springer 1953.

    Google Scholar 

  • Jung, R., Optisch-Vestibuläre Regulation der Augenbewegungen, des Bewegungssehens und der Vertikal-Horizontal-Wahrnehmung: ein Beitrag zur Optisch-Vestibulären, Optisch-Oculomotorischen und Optisch-Gravizeptorischen Integration. Brain and Mind Problems, 185–226. II Pensiero Scientifico 1968.

    Google Scholar 

  • Jung, R., Neurophysiological and psychophysical correlates in Vision Research. In: Karczmar, A.G., Eccles,J.C. (Eds.): Brain and Human Behavior. Berlin-Heidelberg-New York: Springer 1971.

    Google Scholar 

  • Kawamura, H., Marchiafava, P. L.: Excitability changes along visual pathways during eye tracking movements. Arch. Ital. Biol. 106, 141–156 (1968).

    PubMed  CAS  Google Scholar 

  • Körner, F., Dichgans, J.: Bewegungswahrnehmung, optokinetischer Nystagmus und retinale Bildwanderung. (Der Einfluß visueller Aufmerksamkeit auf zwei Mechanismen des Bewegungssehens.) Albrecht v. Graefes Arch. klin. exp. Ophthal. 174, 34–48 (1967).

    Google Scholar 

  • Kommerell, G.: Extrafoveal after-images and oculomotor control. In: Bizzi, E., Dichgans, J., (Eds.): Cerebral Control of Eye Movements and Perception of Motion. Basel: S. Karger (in Press) (1972).

    Google Scholar 

  • Latour, P.L.: Visual threshold during eye movements. Vision Res. 2, 261–262 (1962).

    Google Scholar 

  • Levick, W.R., Zacks, A.L.: Responses of cat retinal ganglion cells to brief flashes of light. J. Physiol. (Lond.) 206, 677–700 (1970).

    CAS  Google Scholar 

  • Ludvigh, E.: Possible role of proprioception in the extra-ocular muscles. Arch. Ophthal. 48, 436–441 (1952 a).

    Google Scholar 

  • Ludvigh, E., Control of ocular movements and visual interpretation of environment. Arch. Ophthal. 48, 442–448 (1952 b).

    Google Scholar 

  • Mach, E.: The Analysis of Sensations. Fifth edition. English translation. New York: Dover 1959.

    Google Scholar 

  • Mack, A., Bachant, J.: Perceived movement of the afterimage during eye movements. Percept. and Psychophys. 6 (6A), 379–384 (1969).

    Google Scholar 

  • MacKay, D.M.: Towards an information-flow model of human behaviour. Brit. J. Psychol. 47, 30–43 (1956).

    PubMed  CAS  Google Scholar 

  • MacKay, D.M., The stabilization of perception during voluntary activity. Proc. 15th Int. Congress of Psychology, pp. 284–285. Amsterdam: North-Holland Publishing Co. 1957.

    Google Scholar 

  • MacKay, D.M., Perceptual stability of a stroboscopically lit visual field containing self-luminous objects. Nature (Lond.) 181, 507–508 (1958a).

    CAS  Google Scholar 

  • MacKay, D.M., Moving visual images produced by regular stationary patterns (II). Nature (Lond.) 181, 362–363 (1958b).

    Google Scholar 

  • MacKay, D.M., Modelling of large-scale nervous activity. S.E.B. Symp.: Models and Analogues in Biology, (J. W. L. Beament, ed.), pp. 192–198. Vol. 14. Cambridge University Press 1960.

    Google Scholar 

  • MacKay, D.M., Interactive processes in visual perception. In: Rosenblith, W. A. (Ed.): Sensory Communication, pp. 339–355. Boston-New York: M.I.T. and Wiley 1961 a.

    Google Scholar 

  • MacKay, D.M., The visual effects of non-redundant stimulation. Nature (Lond.) 192, 739–740 (1961b).

    Google Scholar 

  • MacKay, D.M., Theoretical models of space perception. In: Muses,C.A. (Ed.): Aspects of the Theory of Artificial Intelligence, pp. 83–104. New York: Plenum Press 1962.

    Google Scholar 

  • MacKay, D.M., Cerebral organization and the conscious control of action. in: Eccles, J.C. (Ed.): Brain and Conscious Experience, pp. 422–445. Berlin-Heidelberg-New York: Springer 1966.

    Google Scholar 

  • MacKay, D.M., Information, Mechanism and Meaning. Boston: M.I.T. Press 1969.

    Google Scholar 

  • MacKay, D.M., Elevation of visual threshold by displacement of retinal image, Nature (Lond.) 225, 90–92 (1970a).

    CAS  Google Scholar 

  • MacKay, D.M.: Interocular transfer of suppressive effects of retinal image displacement. Nature (Lond.) 225, 872–873 (1970b).

    CAS  Google Scholar 

  • MacKay, D.M, Mislocation of test flashes during saccadic image displacement. Nature (Lond.) 227, 731–733 (1970c).

    CAS  Google Scholar 

  • Matin, L., Pearce, D.: Visual perception of direction for stimuli flashed during voluntary saccadic eye movements. Science 148, 1485–1488 (1965).

    PubMed  CAS  Google Scholar 

  • McIlwain, J.T.: Receptive fields of optic tract axons and lateral geniculate cells: peripheral extent and barbiturate sensitivity. J. Neurophysiol. 27, 1154–1173 (1964).

    PubMed  CAS  Google Scholar 

  • McIlwain, J.T., Buser,P.: Receptive fields of single cells in the cat’s superior colliculus. Exp. Brain Res. 5, 314–325 (1967).

    Google Scholar 

  • Michael, J. A., Stark, L.: Electrophysiological correlates of saccadic suppression. Exp. Neurol. 17, 233–246 (1967).

    PubMed  CAS  Google Scholar 

  • Miller, G.A.: The magical number 7 plus or minus 2. Psychol. Rev. 63, 81–97 (1965).

    Google Scholar 

  • Mitrani, L., Mateev, S., Yakimov, N.: Intensity threshold changes during voluntary saccade of the eyes. Proc. Bulgar. Acad. Sci., 23, 1577–1579 (1970).

    Google Scholar 

  • Mittelstaedt, H.: Control systems of orientation in insects. Ann. Rev. Entomol. 7, 177–198 (1962).

    Google Scholar 

  • Mitrani, L., Grundprobleme der Analyse von Orientierungs-Leistungen. Jahrbuch 1966 der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. 121–151, 1966.

    Google Scholar 

  • Oyster, C.W., Barlow, H.B.: Direction-selective units in rabbit retina. Science 155, 841–842 (1967).

    PubMed  CAS  Google Scholar 

  • Palka, J.: Discrimination between movements of eye and object by visual interneurones of crickets. J. Exp. Biol. 50, 723–732 (1969).

    PubMed  CAS  Google Scholar 

  • Potthofe, P. C., Richter, H. P., Burandt, H.-R.: Multisensorische Konvergenzen an Hirnstammneuronen der Katze. Arch. Psychiat. Z. ges. Neurologie 210, 36–60 (1967).

    Google Scholar 

  • Pritchard, R.M.: Physiological nystagmus and vision. In: Bender, M.B. (Ed.): The Oculomotor System. New York: Harper and Row 1964.

    Google Scholar 

  • Rashbass, C.: The relationship between saccadic and smooth tracking eye movements. J. Physiol. (Lond.) 159, 326–338 (1961).

    CAS  Google Scholar 

  • Richards, W.A.: Visual suppression during passive eye movement. J. Opt. Soc. Amer. 58. 1159–1160 (1968).

    CAS  Google Scholar 

  • Robinson, D.A.: Eye movement control in primates. Science 161, 1219–1224 (1968).

    PubMed  CAS  Google Scholar 

  • Rashbass, C., Fuchs, A. F.: Eye movements evoked by stimulation of frontal eye fields. J. Neurophysiol. 32, 637–649 (1969).

    Google Scholar 

  • Rock, I., Ebenholtz, S.: Stroboscopic movement based on changes of phenomenal rather than retinal location. Amer. J. Psychol. 75, 193–207 (1962).

    PubMed  CAS  Google Scholar 

  • Schilder, P., Pasik, P., Pasik,T.: Some evidence for brightness, form and color discrimination by monkeys lacking striate cortex. Proc. Int. Union of Physiological Sciences, XXV International Congress, Munich 1971, Vol. IX, 498.

    Google Scholar 

  • Schmidt, C.L., Wist,E.R., Dichgans,J.: Alternierender Spontannystagmus, optokinetischer und vestibulärer Nystagmus und ihre Beziehungen zu rhythmischen Modulationen der Spontanaktivität im N. vestibularis beim Goldfisch. Pflügers Arch. 319, R 155 (1970).

    Google Scholar 

  • Schneider, G.E.: Two visual systems. Science 163, 895–902 (1969).

    PubMed  CAS  Google Scholar 

  • Sekuler, R., Ganz, L.: Aftereffect of seen motion with a stabilized retinal image. Science 139, 419–420 (1963).

    PubMed  CAS  Google Scholar 

  • Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J., 27, 379–423; 623–656 (1948).

    Google Scholar 

  • Sherrington, C.S.: Further note on the sensory nerves of the eye muscles. Proc. Roy. Soc. 64, 120–121 (1898).

    Google Scholar 

  • Sherrington, C.S., Observations on the sensual role of the proprioceptive nerve supply of the extrinsic eye muscles. Brain. 41, 332–343 (1918).

    Google Scholar 

  • Sperling, G., Speelman, R.: Visual spatial localization during object motion, apparent object motion and image motion produced by eye movements. Paper presented at the convention of Optical Society of Am., Oct. 7, 1965. Abstracted in J. Opt. Soc. 55, 1576 (1965).

    Google Scholar 

  • Sperry, R.W.: Neural basis of the spontaneous optokinetic response produced by visual inversion. J. Comp. Physiol. Psychol. 43, 482–489 (1950).

    PubMed  CAS  Google Scholar 

  • Sprague, J.M., Meikle, T.H., JR.: The role of the superior colliculus in visually guided behaviour. Exp. Neurol. 11, 115–146 (1965).

    PubMed  CAS  Google Scholar 

  • Sprague, J.M., Berlucchi, G.: Role of the pretectum-superior colliculus in form discrimination in the cat. Proc. Int. Union of Physiological Sciences. XXV International Congress, Munich 1971. Vol. VIII, 223–224 (1971).

    Google Scholar 

  • Starr, A.: Localization of objects in visual space with abnormal saccadic eye movements. Brain. 90, 541–545 (1967a).

    PubMed  CAS  Google Scholar 

  • Starr, A., A disorder of rapid eye movements in Huntington’s chorea. Brain. 90, 545–564 (1967 b).

    Google Scholar 

  • Steinbach. M, J.: Eye tracking of self-moved targets: The role of afference. J. Exp. Psychol. 82, 366–376 (1969).

    PubMed  CAS  Google Scholar 

  • Stoper, A.W.: Vision during Pursuit Movement: The role of oculomotor information. Ph. D. Thesis, Department of Psychology, Brandeis University, 1967.

    Google Scholar 

  • Sutherland, S.: Figural after-effects and apparent size. Quart. J. Exp. Psychol. XIII, 222–228 (1961).

    Google Scholar 

  • Teuber, H.-L. Perception. In: Field, J. (Ed.): Handbook of Physiology — Neurophysiology III, pp. 1595–1668. Baltimore: Williams and Wilkins 1960.

    Google Scholar 

  • Volkmann, F.: Vision during voluntary saccadic eye movement. J. opt. Soc. Amer. 52, 571–578 (1962).

    CAS  Google Scholar 

  • Volkmann, F., Schick, A. M.L., Riggs, L.A.: Time course of visual inhibition during voluntary saccades. J. opt. Soc. Amer. 58, 562–569 (1968).

    CAS  Google Scholar 

  • Wallach, H., Lewis, C.: The effect of abnormal displacements of the retinal image during eye movements. Percep. and Psychophys. 1, 25–29 (1965).

    Google Scholar 

  • Weiskrantz, L., Cowey, A.: Filling in the scotoma: A study of residual vision after striate cortex lesions in monkeys. Prog. Physiol. Psychol. 3, 237–260 (1970).

    Google Scholar 

  • Westheimer, G.: Eye movement responses to a horizontally moving stimulus. Arch. Ophthal. 52, 940–941 (1954).

    Google Scholar 

  • Whitteridge, D.: Central control of eye movements. In: Field, J. (Ed.): Handbook of Physiology: Section 1., Neurophysiology, Vol. 2, pp. 1089–1109. Washington, D. C.: American Physiological Society 1959.

    Google Scholar 

  • Wiersma, C.A.G., Yamaguchi, T.: Integration of visual stimuli by the crayfish central nervous system. J. exp. Biol. 47, 409–431 (1967).

    PubMed  CAS  Google Scholar 

  • Wurtz, R.H.: Response of striate cortex neurons to stimuli during rapid eye movements in the monkey. J. Neurophysiol. 32, 975–986 (1969a).

    PubMed  CAS  Google Scholar 

  • Wurtz, R.H., Comparison of effects of eye movements and stimulus movements on striate cortex neurons of the monkey. J. Neurophysiol. 32, 987–994 (1969b).

    PubMed  CAS  Google Scholar 

  • Wurtz, R.H., Goldberg, M.E.: Superior Colliculus cell responses related to eye movements in awake monkeys. Science 171, 82–84 (1971).

    PubMed  CAS  Google Scholar 

  • Yarbus, A.L.: A new method of studying the activity of various parts of the retina. Biophysics 2, 165–167 (1957).

    Google Scholar 

  • Yarbus, A.L., Eye Movements and Vision. New York: Plenum Press 1967.

    Google Scholar 

  • Young, L.R.: A Sampled Data Model for Eye Tracking Movements. Sc. D. Thesis, Dept of Aeronautics and Astronautics, M.I.T. 1962.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Richard Jung

Rights and permissions

Reprints and permissions

Copyright information

© 1973 Springer-Verlag, Berlin · Heidelberg

About this chapter

Cite this chapter

MacKay, D.M. (1973). Visual Stability and Voluntary Eye Movements. In: Jung, R. (eds) Central Processing of Visual Information A: Integrative Functions and Comparative Data. Handbook of Sensory Physiology, vol 7 / 3 / 3 A. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-65352-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-65352-0_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-65354-4

  • Online ISBN: 978-3-642-65352-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics