Skip to main content

Integrated Polytrees: A Generalized Model for the Integration of Spatial Decomposition and Boundary Representation

  • Conference paper
Theory and Practice of Geometric Modeling

Abstract

We present a new and more efficient way to store polygonal and polyhedral data. Generalizing the splitting rule of the polytree, we obtain a storage requirement that is much lower and more stable, and actually has an upper bound for any given object. Using polytrees as a spatial directory in combination with the boundary representation (which stores geometric and topological data), we obtain an integrated data structure that permits the execution of a broad variety of algorithms for a wide range of applications in reasonable time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ayala, D., Brunet, P., Juan, R., and Navazo, I., Object Representation by Means of Nonminimal Division Quadtrees and Octrees, ACM Trans, on Graphics 4 (1985), 41–59.

    Article  Google Scholar 

  2. Blinn, J.F., Jim Blinn’s Corner: Platonic Solids, IEEE Comp. Graphics and Appl. 7 (1987), No. 11, 62–66.

    Article  Google Scholar 

  3. Brunet, P., and Navazo, L, Geometric Modelling Using Exact Octree Representation of Polyhedral Objects, in: Vandoni, C.E. (ed.), Eurographics’ 85, Elsevier Science Publishers, North-Holland, 1985, 159–169.

    Google Scholar 

  4. Brunet, P., and Ayala, D., Extended Octtree Representation of Free Form Surfaces, Computer Aided Geometric Design 4 (1987), 141–154.

    Article  MathSciNet  MATH  Google Scholar 

  5. Carlbom L, Chakravarty, L, and Vanderschel, D., A Hierarchical Data Structure for Representing the Spatial Decomposition of 3-D Objects, IEEE Comp. Graphics and Appl. 5 (1985), No. 4, 24–31.

    Article  Google Scholar 

  6. Carlbom, I., An Algorithm for Geometric Set Operations Using Cellular Subdivision Techniques, IEEE Comp. Graphics and Appl. 7 (1987), No. 5, 44–55.

    Article  Google Scholar 

  7. Doctor, L.J. and Torborg, J.G., Display Techniques for Octree-Encoded Objects, IEEE Comp. Graphics and Appl. 1 (1981), No. 3, 29–38.

    Google Scholar 

  8. Esterling, D.M. and Van Rosendale, J., An Intersection Algorithm for Moving Parts, NASA Conference Publication 2272, Computer-Aided Geometry Modeling, NASA Langley Research Center, Hampton, 1983, 129–133.

    Google Scholar 

  9. Fujimura, K., Toriya, H., Yamaguchi, K. and Kunii, T.L., Oct-Tree Algorithms for Solid Modelling, in: Kunii, T.L. (ed.), Computer Graphics: Theory and Applications, Proc. InterGraphics’ 83, Springer-Verlag, Tokyo, 1983, 96–110 (shorter version: [36]).

    Google Scholar 

  10. Fujimura, K. and Kunii, T.L., A Hierarchical Space Indexing Method, in: Kunii, T.L. (ed.),Computer Graphics: Visual Technology and Art, Proc. Computer Graphics Tokyo’ 85, Springer-Verlag, Tokyo, 1985, 21–34.

    Google Scholar 

  11. Fujimoto, A., Tanaka, T. and Iwata, K., ARTS: Accelerated Ray-Tracing System, IEEE Comp. Graphics and Appl. 6 (1986), No. 4, 16–26.

    Article  Google Scholar 

  12. Glassner, A.S., Space Subdivision for Fast Ray Tracing, IEEE Comp. Graphics and Appl. 4 (1984), No. 10, 15–22.

    Google Scholar 

  13. Glassner, A.S., Spacetime Ray Tracing for Animation, IEEE Comp. Graphics and Appl. 8 (1988), No. 3, 60–70.

    Article  Google Scholar 

  14. Grant, Ch.W., Integrated Analytic Spatial and Temporal Anti-Aliasing for Polyhedra in 4-Space, Computer Graphics (Proc. SIGGRAPH) 19 (1985), 79–84.

    Article  MathSciNet  Google Scholar 

  15. Grosky, W.I. and Jain, R., Optimal Quadtrees for Image Segments, IEEE Trans. Pattern Anal. Machine Intell. PAMI-5 (1983), 77–83.

    Google Scholar 

  16. Hunter, G.M. and Steiglitz, K., Operations on Images Using Quad Trees, IEEE Trans. Pattern Anal. Machine Intell. PAMI-1 (1979), 145–153.

    Article  Google Scholar 

  17. Jackins, Ch.L. and Tanimoto, St.L., Quad-Trees, Oct-Trees, and K-Trees: A Generalized Approach to Recursive Decomposition of Euclidean Space, IEEE Trans. Pattern Anal. Machine Intell. PAMI-5 (1983), 533–539.

    Article  Google Scholar 

  18. Mäntylä, M. and Tamminen, M., Localized Set Operations for Solid Modeling, Computer Graphics (Proc. SIGGRAPH) 17 (1983), 279–288.

    Article  Google Scholar 

  19. Meagher, D., Geometric Modeling Using Octree Encoding, Computer Graphics and Image Processing 19 (1982), 129–147.

    Google Scholar 

  20. Navazo, I., Ayala, D. and Brunet, P., A Geometric Modeller Based on the Exact Octtree Representation of Polyhedra, Computer Graphics Forum 5 (1986), 91–104.

    Article  Google Scholar 

  21. Navazo, I., Fontdecaba, J. and Brunet, P., Extended Octtrees, between CSG Trees and Boundary Representations, in: Maréchal, G. (ed.), Eurographics’ 87, Elsevier Science Publishers, North-Holland, 1987, 239–247.

    Google Scholar 

  22. Nelson, R.C. and Samet, H., A Consistent Hierarchical Representation for Vector Data, Computer Graphics (Proc. SIGGRAPH) 20 (1986), 197–206.

    Article  Google Scholar 

  23. Requicha, A.A.G., Representations for Rigid Solids: Theory, Methods, and Systems, ACM Computing Surveys 12 (1980), 437–464.

    Article  Google Scholar 

  24. Requicha, A.A.G. and Voelcker, H.B., Solid Modeling: Current Status and Research Directions, IEEE Comp. Graphics and Appl. 3 (1983), No. 7, 25–37.

    Article  Google Scholar 

  25. Samet, H., The Quadtree and Related Hierarchical Data Structures, ACM Computing Surveys 16 (1984), 187–260.

    Article  MathSciNet  Google Scholar 

  26. Samet, H. and Webber, R.E., Storing a Collection of Polygons Using Quadtrees, ACM Trans, on Graphics 4 (1985), 182–222.

    Article  Google Scholar 

  27. Samet, H. and Tamminen, M., Bintrees, CSG Trees, and Time, Computer Graphics (Proc. SIGGRAPH) 19 (1985), 121–130.

    Article  Google Scholar 

  28. Samet, H. and Webber, R.E., Hierarchical Data Structures and Algorithms for Computer Graphics, Part I: Fundamentals, and Part II: Applications, IEEE Comp. Graphics and Appl. 8 (1988), No. 3, 48–68, and No. 4, 59–75.

    Article  Google Scholar 

  29. Tamminen, M., Performance Analysis of Cell Based Geometric File Organisations, Computer Vision, Graphics, and Image Processing 24 (1983), 160–181.

    Article  Google Scholar 

  30. Thibault, W.C. and Naylor, R.F., Set Operations on Polyhedra Using Binary Space Partitioning Trees, Computer Graphics (Proc. SIGGRAPH) 21 (1987), 153–162.

    Article  MathSciNet  Google Scholar 

  31. Weng, J. and Ahuja, N., Octrees of Objects in Arbitrary Motion: Representation and Efficiency, Computer Vision, Graphics, and Image Processing 39 (1987), 167–185.

    Article  Google Scholar 

  32. Woo, T.C, A Combinatorial Analysis of Boundary Data Structure Schemata, IEEE Comp. Graphics and Appl. 5 (1985), No. 3, 19–27.

    Article  MathSciNet  Google Scholar 

  33. Woodwark, J.R. and Bowyer, A., Better and faster pictures from solid models, Computer-Aided Engineering Journal, Feb. 1986, 17–24.

    Google Scholar 

  34. Woodwark J.R., Eliminating Redundant Primitives from Set Theoretic Solid Models by a Consideration of Constituents, IEEE Comp. Graphics and Appl. 8 (1988), No. 3, 38–47.

    Article  Google Scholar 

  35. Wyvill, G. and Kunii, T.L., A Functional Model for Constructive Solid Geometry, The Visual Computer 1 (1985), 3–14. (cf. [35])

    Google Scholar 

  36. Wyvill, G. and Kunii, T.L., Space Division for Ray Tracing in CSG, IEEE Comp. Graphics and Appl. 6 (1986), No. 4, 28–34. (revised version of [34])

    Article  Google Scholar 

  37. Yamaguchi, K., Kunii, T.L., Fujimura, K., and Toriya, H., Octree-Related Data Structures and Algorithms, IEEE Comp. Graphics and Appl. 4 (1984), No. 1, 53–59. (cf. [9])

    Article  Google Scholar 

  38. Earle, J.H., Engineering Design Graphics, Addison-Wesley, Reading, MA, 5th edition, 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dürst, M.J., Kunii, T.L. (1989). Integrated Polytrees: A Generalized Model for the Integration of Spatial Decomposition and Boundary Representation. In: Straßer, W., Seidel, HP. (eds) Theory and Practice of Geometric Modeling. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61542-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61542-9_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64866-3

  • Online ISBN: 978-3-642-61542-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics