Skip to main content

Linearization of Random Dynamical Systems

  • Chapter
Dynamics Reported

Part of the book series: Dynamics Reported ((DYNAMICS,volume 4))

Abstract

At the end of the last century the French mathematician Henri Poincaré laid the foundation for what we call nowadays the qualitative theory of ordinary differential equations. Roughly speaking, this theory is devoted to studying how the qualitative behavior (e.g. the asymptotic behavior) of solutions to certain initial value problems changes as the initial condition is varied. In order to make this more explicit, consider the autonomous differential equation

$$ x = f(x), $$
(1.1)

where f : ℝd → ℝd is a C1-mapping with f (x 0) = 0 for some x 0 ∈ ℝd. Obviously, the point x 0 is a constant solution of (1.1). But what can be said about the behavior of solutions of (1.1) starting in some small neighborhood of this point? Of course one is tempted to first study the linearized equation

$$ x = Df(x_0 )x $$
(1.2)

near the origin, since it may be hoped that the nonlinear behavior of (1.1) near x 0 will be “basically” the same.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Amann, Ordinary Differential Equations. De Gruyter, Berlin-New York (1990).

    Book  MATH  Google Scholar 

  2. L. Arnold, Random Dynamical Systems. In preparation.

    Google Scholar 

  3. L. Arnold, Generation of random dynamical systems. Report Nr. 280, Institut für Dynamische Systeme, Universität Bremen (1993).

    Google Scholar 

  4. L. Arnold, H. Crauel, Random dynamical systems, in L. Arnold, H. Crauel, J.- P. Eckmann (eds.), Lyapunov Exponents. Lecture Notes in Mathematics 1486, Springer, Berlin – Heidelberg (1991).

    Chapter  Google Scholar 

  5. L. Arnold, P. Imkeller, Anticipative problems in multiplicative ergodic theory. Preprint, Universität Bremen (1993).

    Google Scholar 

  6. B. Aulbach, A reduction principle for nonautonomous differential equations. Archiv der Mathematik 39 (1982), 217–232.

    Article  MathSciNet  MATH  Google Scholar 

  7. B. Aulbach, Hierarchies of invariant manifolds. Journal of the Nigerian Mathematical Society 6 (1987), 71–89.

    Google Scholar 

  8. B. Aulbach, Th. Wanner, Invariant Fiber Bundles and Topological Equivalence in Dynamical Processes. In preparation.

    Google Scholar 

  9. P. Boxler, A stochastic version of center manifold theory. Probability Theory and Related Fields 83 (1989), 509–545.

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Carverhill, Flows of stochastic dynamical systems: ergodic theory. Stochastics 14 (1985), 273–317.

    Article  MathSciNet  MATH  Google Scholar 

  11. S. Dahlke, Invariante Mannigfaltigkeiten für Produkte zufälliger Diffeomorphismen. Dissertation, Universität Bremen (1989).

    Google Scholar 

  12. D. M. Grobman, Homeomorphisms of systems of differential equations. Doklady Akademii Nauk SSSR 128 (1959), 880.

    MathSciNet  MATH  Google Scholar 

  13. D. M. Grobman, The topological classification of the vicinity of a singular point in n–dimensional space. Mathematics of the USSR - Sbornik 56 (1962), 77–94.

    MathSciNet  Google Scholar 

  14. P. Hartman, A lemma in the theory of structural stability of differential equations. Proceedings of the American Mathematical Society 11 (1960), 610–620.

    Article  MathSciNet  MATH  Google Scholar 

  15. P. Hartman, On the local linearization of differential equations. Proceedings of the American Mathematical Society 14 (1963), 568–573.

    Article  MathSciNet  MATH  Google Scholar 

  16. P. Hartman, Ordinary Differential Equations. Birkhäuser, Boston – Basel – Stuttgart (1982).

    MATH  Google Scholar 

  17. S. Hilger, Ein Maßkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten. Dissertation, Universität Würzburg (1988).

    MATH  Google Scholar 

  18. S. Hilger, Generalized theorem of Hartman–Grobman on measure chains. Preprint (1992).

    Google Scholar 

  19. M. W. Hirsch, C. C. Pugh, M. Shub, Invariant Manifolds. Lecture Notes in Mathematics 583, Springer, Berlin - Heidelberg - New York (1977).

    MATH  Google Scholar 

  20. M. C. Irwin, Smooth Dynamical Systems. Academic Press, London (1980).

    MATH  Google Scholar 

  21. A. Kelley, The stable, cent er-stable, center, center-unstable, unstable manifolds. Journal of Differential Equation (1967), 546–570.

    Article  MathSciNet  MATH  Google Scholar 

  22. A. Kelley, Stability of the center-stable manifold. Journal of Mathematical Analysis and Applications 18 (1967), 336–344.

    Article  MathSciNet  MATH  Google Scholar 

  23. U. Kirchgraber, K. J. Palmer, Geometry in the Neighborhood of Invariant Manifolds of Maps and Flows and Linearization. Longman Scientific and Technical, London (1990).

    MATH  Google Scholar 

  24. V. I. Oseledets, A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems. Transactions of the Moscow Mathematical Society 19 (1968), 197–231.

    MATH  Google Scholar 

  25. K. J. Palmer, A generalization of Hartmans linearization theorem. Journal of Mathematical Analysis and Applications 41 (1973), 753–758.

    Article  MathSciNet  MATH  Google Scholar 

  26. K. J. Palmer, Linearization near an integral manifold. Journal of Mathematical Analysis and Applications 51 (1975), 243–255.

    Article  MathSciNet  MATH  Google Scholar 

  27. V. A. Pliss, Principal reduction in the theory of stability of motion. Izvestiya Akademii Nauk SSSR, Seriya Matematika 28 (1964), 1297–1324 (Russian).

    MathSciNet  MATH  Google Scholar 

  28. A. N. Shoshitaishvili, Bifurcations of topological type at singular points of parametrized vector fields. Functional Analysis and its Applications 6 (1972), 169–170.

    Article  MATH  Google Scholar 

  29. A. N. Shoshitaishvili, Bifurcations of topological type at singular points of parametrized vector fields. Tr. Semin. I. G. Petrovskii 1 (1975), 279–309 (Russian).

    Google Scholar 

  30. Th. Wanner, Zur Linearisierung zufälliger dynamischer Systemen. Dissertation, Universität Augsburg (1993).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wanner, T. (1995). Linearization of Random Dynamical Systems. In: Jones, C.K.R.T., Kirchgraber, U., Walther, H.O. (eds) Dynamics Reported. Dynamics Reported, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61215-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61215-2_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64748-2

  • Online ISBN: 978-3-642-61215-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics