Skip to main content

Structural Analysis of the Bacterial Ribonuclease P RNA

  • Chapter
Catalytic RNA

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 10))

Abstract

Ribonuclease P is the endoribonuclease that specifically cleaves precursor sequences from the 5’-ends of pre-tRNAs, to produce the 5’-termini of mature tRNAs. The enzyme is present and essential in all cells and organelles that produce tRNA. RNase P is remarkable because of its composition: it is composed of RNA and protein subunits. The RNA moiety forms the catalytic center, so RNase P is intrinsically a ribozyme. The enzyme from a broad diversity of organisms has been investigated, including representatives of all the phylogenetic domains: Archaea (formerly archaebacteria), Bacteria (formerly eubacteria) and Eucarya (eucaryotes). The properties of RNase P and its reaction have been extensively and recently reviewed (Pace and Smith 1990; Darr et al. 1992; Altman et al. 1993; Pace and Brown 1995). The purpose of this chapter is to provide an overview of the development of our current understanding of the structure of the RNase P RNA. An important key to understanding the function and specificity of this interesting enzyme is to gain perspective on its structure. A detailed secondary structure model of the bacterial RNA has been derived through phylogenetic comparative analysis, and comparative and cross-linking studies are revealing the packing of the secondary structural elements, the global tertiary structure. The resolution of the current tertiary structure model is sufficient to encourage molecular modeling for much of the RNA, based on known atomic-level structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altman S, Kirsebom L, Talbot S (1993) Recent studies of ribonuclease P. FASEB J 7: 7–14

    PubMed  CAS  Google Scholar 

  • Brown JW, Haas ES, Gilbert DG, Pace NR (1994) The ribonuclease P database. Nucl Acids Res 22: 3660–3662

    Article  PubMed  CAS  Google Scholar 

  • Brown JW, Haas ES, Gilbert DG, Pace NR (1994) The ribonuclease P database. Nucl Acids Res 22: 3660–3662

    Article  PubMed  CAS  Google Scholar 

  • Burgin AB, Pace NR (1990) Mapping the active site of ribonuclease P RNA using a substrate containing a photoaffinity agent. EMBO J 9: 4111–4118

    PubMed  CAS  Google Scholar 

  • Burke JM, Belfort M, Cech TR, Davie RW, Schweyen RJ, Shub DA, Szostak JW, Takak HF (1987) Structural conventions for group I introns. Nucl Acids Res 15: 7212–7221

    Article  Google Scholar 

  • Chanfreau G, Jacquier A (1994) Catalytic site components common to both splicing steps of a group II intron. Science 266: 1384–1387

    Article  Google Scholar 

  • Christian EC, Yarus M (1992) Analysis of the role of phosphate oxygens in the group I intron from Tetrahymena. J Mol Biol 228: 743–758

    Article  PubMed  CAS  Google Scholar 

  • Darr SC, Brown JW, Pace NR (1992) The varieties of ribonuclease P. Trends Biochem Sci 17: 178–182

    Article  PubMed  CAS  Google Scholar 

  • Darr SC, Zito K, Smith D, Pace NR (1992) Contributions of phylogenetically variable structural elements to the function of the ribozyme ribonuclease P. Biochemistry 31: 328–333

    Article  PubMed  CAS  Google Scholar 

  • Frank DN, Harris ME, Pace NR (1994) Remodeling active-site structure in a ribozyme: rational design of self-cleaving pre-tRNA-ribonuclease P conjugates. Biochemistry 33: 10800–10808

    Article  PubMed  CAS  Google Scholar 

  • Gautheret D, Damberger SH, Gutell RR (1995) Identification of base-triples in RNA using comparative sequence analysis. J Mol Biol 248: 27–43

    Article  PubMed  CAS  Google Scholar 

  • Guerrier-Takada C, Lumelsky N, Altman S (1989) Specific interactions in RNA enzyme-substrate complexes. Science 246: 1578–1584

    Article  PubMed  CAS  Google Scholar 

  • Gutell RR, Larsen N, Woese CR (1994) Lessons from an evolving rRNA — 16S and 23S rRNA structures from a comparative perspective. Microbiol Rev 58: 1026

    Google Scholar 

  • Gutell RR, Power A, Hertz GZ, Putz EJ, Stormo GD (1992) Identifying constraints on the higher-order structure of RNA: continued development and application of comparative sequence analysis methods. Nucl Acids Res 20: 5785–5795

    Article  PubMed  CAS  Google Scholar 

  • Haas ES, Brown JW, Pitulle C, Pace NR (1994) Further perspective on the catalytic core and secondary structure of ribonuclease P RNA. Proc Natl Acad Sci USA 91: 2527–2531

    Article  PubMed  CAS  Google Scholar 

  • Hardt WD, Schlegl J, Erdmann VA, Hartmann RK (1993) Role of the D arm and the anticodon arm in tRNA recognition by eubacterial and eukaryotic RNase P enzymes. Biochemistry 32: 13046–13053

    Article  PubMed  CAS  Google Scholar 

  • Hardt WD, Schlegl J, Erdmann VA, Hartmann RK (1995) Kinetics and thermodynamics of the RNase P RNA cleavage reaction: analysis of tRNA 3’-end variants. J Mol Biol 247: 161–172

    Article  PubMed  CAS  Google Scholar 

  • Harris ME, Pace NR (1995) Identification of phosphates involved in catalysis by the ribozyme RNase P RNA. RNA 1: 210–218

    PubMed  CAS  Google Scholar 

  • Harris ME, Nolan JM, Malhotra A, Brown JW, Harvey SC, Pace NR (1994) Use of photoaffinity crosslinking and molecular modeling to analyse the global architecture of ribonucease P RNA. EMBO J 13: 3953–3963

    PubMed  CAS  Google Scholar 

  • Jaeger L, Michel F, Westhof E (1994) Involvement of a GNRA tetraloop in long-range RNA tertiary interactions. J Mol Biol 236: 1271–1276

    Article  PubMed  CAS  Google Scholar 

  • Kahle D, Wehmeyer U, Krupp G (1990) Substrate recognition by RNaseP and by the catalytic Ml RNA: identification of possible contact points in pre-tRNAs. EMBO J 9: 1929–1937

    PubMed  CAS  Google Scholar 

  • Kirsebom LA, Svard SG (1994) Base pairing between Escherichia coli RNase P RNA and its substrate. EMBO J 13: 4870–4876

    PubMed  CAS  Google Scholar 

  • Knap AK, Wesolowski D, Altman S (1990) Protection from chemical modification of nucleotides in complexes of Ml RNA, the catalytic subunit of RNase P from E coli, and tRNA precursors. Biochimie 72: 779–790

    Article  PubMed  CAS  Google Scholar 

  • Komine Y, Kitabatake M, Yokogawa T, Nishikawa K, Inokuchi H (1994) A tRNA-like structure is present in 10Sa RNA, a small stable RNA from Escherichia coli. Proc Natl Acad Sci USA 91: 9223–9227

    Article  PubMed  CAS  Google Scholar 

  • LaGrandeur TE, Hüttenhofer A, Noller HF, Pace NR (1994) Phylogenetic comparative chemical footprint analysis of the interaction between ribonuclease P RNA and tRNA. EMBO J 13: 3945–3952

    PubMed  CAS  Google Scholar 

  • Liu F, Altman S (1994) Differential evolution of substrates for an RNA enzyme in the presence and absence of its protein cofactor. Cell 77: 1093–1100

    Article  PubMed  CAS  Google Scholar 

  • Lumelsky N, Altman S (1988) Selection and characterization of randomly produced mutants in the gene coding for Ml RNA. J Mol Biol 202: 443–454

    Article  PubMed  CAS  Google Scholar 

  • Mattsson JG, Svard SG, Kirsebom LA (1994) Characterization of the Borrelia burgdorferi RNase P RNA gene reveals a novel tertiary interaction. J Mol Biol 241: 1–6

    Article  PubMed  CAS  Google Scholar 

  • McClain WH, Guerrier-Takada C, Altman S (1987) Model substrates for an RNA enzyme. Science 238: 527–530

    Article  PubMed  CAS  Google Scholar 

  • Michel F, Westhof E (1990) Modelling of the three-dimensional architecture of group I catalytic introns based on comparative sequence analysis. J Mol Biol 216: 585–610

    Article  PubMed  CAS  Google Scholar 

  • Moore MJ, Sharp PA (1992) Site-specific modification of pre-mRNA: the 2’-hydroxyl groups at the splice sites. Science 256: 992–997

    Article  PubMed  CAS  Google Scholar 

  • Nolan JM, Burke DH, Pace NR (1993) Circularly permuted tRNAs as specific photoaffinity probes of ribonuclease P RNA structure. Science 261: 762–765

    Article  PubMed  CAS  Google Scholar 

  • Oh B-K, Pace NR (1994) Interaction of the 3’-end of the tRNA with ribonuclease P RNA. Nucl Acids Res 22: 4087–4094

    Article  PubMed  CAS  Google Scholar 

  • Pace NR, Brown JW (1995) Evolutionary perspective on the structure and function of ribonuclease P, a ribozyme. J Bacteriol 177: 1919–1928

    PubMed  CAS  Google Scholar 

  • Pace NR, Smith D (1990) Ribonuclease P: function and variation. J Biol Chem 265: 587–3590

    Google Scholar 

  • Pan T (1995a) Higher-order folding and domain analysis of the ribozyme from Bacillus subtilis Ribonuclease P. Biochemistry 34: 902–909

    Article  PubMed  CAS  Google Scholar 

  • Pan T (1995b) Novel RNA substrates for the ribozyme from Bacillus subtilis ribonuclease P identified by in vitro selection. Biochemistry 38: 8458–8464

    Article  Google Scholar 

  • Peck-Miller KA, Altman S (1991) Kinetics of the processing of the precursor to 4.5S RNA, a naturally occurring substrate for RNase P from Escherichia coli. J Mol Biol 221: 1–5

    Article  PubMed  CAS  Google Scholar 

  • Pley HW, Flaherty KM, McKay DB (1994) Model for an RNA tertiary interaction from the structure of an intermolecular complex between a GAAA tetraloop and an RNA helix. Nature 372: 111–113

    Article  PubMed  CAS  Google Scholar 

  • Quigley GJ, Teeter MM, Rich A (1978) Structural analysis of spermine and magnesium ion binding to yeast phenylalanine transfer RNA. Proc Natl Acad Sci USA 75: 64–68

    Article  PubMed  CAS  Google Scholar 

  • Reich C, Olsen GJ, Pace B, Pace NR (1988) Role of the protein moiety of ribonuclease P, a ribonucleoprotein enzyme. Science 239: 178–181

    Article  PubMed  CAS  Google Scholar 

  • Reich CI (1988) La ribonuclease P de Bacillus. PhD Thesis, Univ Buenos Aires

    Google Scholar 

  • Rivera-Leon R, Green CJ, Vold BS (1995) High-level expression of soluble recombinant RNase P protein from Escherichia coli. J Bacteriol 177: 2564–2566

    PubMed  CAS  Google Scholar 

  • Smith D (1995) Magnesium as the catalytic center of RNA enzymes. In: Cowan JA (ed) The biological chemistry of magnesium. VCH, New York, pp 111–136

    Google Scholar 

  • Smith D, Burgin AB, Haas ES, Pace N (1992) Influence of metal ions on the ribonuclease P reaction. Distinguishing substrate binding from catalysis. J Biol Chem 267: 2429–2436

    PubMed  CAS  Google Scholar 

  • Steitz TA, Steitz JA (1993) A general two-metal-ion mechanism for catalytic RNA. Proc Natl Acad Sci USA 90: 6498–6502

    Article  PubMed  CAS  Google Scholar 

  • Talbot SJ, Altman S (1994a) Kinetic and thermodynamic analysis of RNA-protein interactions in the RNase P holoenzyme from Escherichia coli. Biochemistry 33: 1406–1411

    Article  PubMed  CAS  Google Scholar 

  • Talbot SJ, Altman S (1994b) Gel retardation analysis of the interaction between C5 protein and Ml RNA in the formation of the ribonuclease P holoenzyme from Escherichia coli. Biochemistry 33: 1399–1405

    Article  PubMed  CAS  Google Scholar 

  • Tallsjö A, Svard SG, Kufel J, Kirsebom LA (1993) A novel tertiary interaction in Ml RNA, the catalytic subunit of Escherichia coli RNase P. Nucl Acids Res 21: 3927–3933

    Article  PubMed  Google Scholar 

  • Tanner MA, Cech TR (1995) An important tertiary interaction of group I and group II introns also occurs in Gram-positive RNase P RNAs. RNA 1: 349–350

    PubMed  CAS  Google Scholar 

  • Vioque A, Arnez J, Altman S (1988) Protein-RNA interactions in the RNase Pholoenzyme from Escherichia coli. J Mol Biol 202: 835–848

    Article  PubMed  CAS  Google Scholar 

  • Waring RB (1989) Identification of phosphate groups important to self-splicing of the Tetrahymena rRNA intron as determined by phosphorothioate substitution. Nucl Acids Res 17: 10281–10293

    Article  PubMed  CAS  Google Scholar 

  • Waugh DS, Green CJ, Pace NR (1989) The design and catalytic properties of a simplified ribonuclease P RNA. Science 244: 1569–1570

    Article  PubMed  CAS  Google Scholar 

  • Westhof E, Altman S (1994) Three-dimensional working model of Ml RNA, the catalytic RNA subunit of ribonuclease P from Escherichia coli. Proc Natl Acad Sci USA 91: 5133–5137

    Article  PubMed  CAS  Google Scholar 

  • Woese CR, Pace NR (1993) Probing RNA structure, function, and history by comparative analysis. Cold Spring Harbor Lab Press, Cold Spring Harbor, pp 91–117

    Google Scholar 

  • Yarus M (1993) How many catalytic RNAs? Ions and the Cheshire cat conjecture. FASEB J 7: 31–39

    PubMed  CAS  Google Scholar 

  • Zuker M, Jaeger JA, Turner DH (1991) A comparison of optimal and suboptimal RNA secondary structure predicted by free energy minimization with structures determined by phylogenetic comparison. Nucl Acids Res 19: 2707–2714

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nolan, J.M., Pace, N.R. (1996). Structural Analysis of the Bacterial Ribonuclease P RNA. In: Eckstein, F., Lilley, D.M.J. (eds) Catalytic RNA. Nucleic Acids and Molecular Biology, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61202-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61202-2_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-62679-4

  • Online ISBN: 978-3-642-61202-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics