Skip to main content

Carbon storage and climate change in Swedish forests: a comparison of static and dynamic modelling approaches

  • Conference paper
Forest Ecosystems, Forest Management and the Global Carbon Cycle

Part of the book series: NATO ASI Series ((ASII,volume 40))

Abstract

Changes in the global carbon (C) cycle caused by human activities have focused the attention of environmental scientists on where and how C is distributed through the terrestrial biosphere. Forests are the largest land reservoir for C (e.g., see Kellomäki and Karjalainen, Chapter 5). They also have the potential to be a C sink in the future. However, their future role in this respect depends not only on present and future management practices, but also on how the vegetation responds to climate changes that may already be underway.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Botkin DB, Simpson LG (1990) Biomass of the North American boreal forest. A step towards accurate global measures. Biogeochem. 9: 161–174.

    Google Scholar 

  • Botkin DB, Janak, JF, Wallis JR (1972) Some consequences of a computer model of forest growth. J. Ecol. 60: 849–873.

    Article  Google Scholar 

  • Desanker and Prentice (1995) MIOMBO—a vegetation dynamics model for the Miombo woodlands of Zambesian Africa. For. Ecol. Manage. 69: 87–95.

    Google Scholar 

  • Hansen J, Fung I, Lacis A, Rind D, Russell G, Lebedeff S, Ruedy R (1988) Global climate changes as forecast by the GISS-3-D model. J. Geophys. Res. 93: 9341–9364.

    Article  CAS  Google Scholar 

  • Jarvis PG, Leverenz JW (1983) Productivity of temperate, deciduous and evergreen forests. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Physiological Plant Ecology IV, Ecosystem Processes: Mineral Cycling, Productivity and Man’s Influence, Springer-Verlag, Berlin, pp 233–261.

    Google Scholar 

  • Leemans R, Cramer W (1991) The IIASA Climate Database for Monthly Mean Values of Temperature, Precipitation and Cloudiness on a Terrestrial Grid. RR-91-18, IIASA, Laxenbuig, Austria, 62 pp.

    Google Scholar 

  • Kellomäki S, Karjalainen T (1995) Sequestration of carbon in the Finnish boreal forest ecosystem managed for timber production. (Chapter 5, this volume).

    Google Scholar 

  • Kellomäki S, Kolstrom M (1992) Simulation of tree species composition and organic matter accumulation in Finnish boreal forests under changing climatic conditions. Vegetatio 102: 47–68.

    Article  Google Scholar 

  • Manabe S, Wetherald RT (1987) Large scale changes in soil wetness induced by an increase in carbon dioxide. J. Atmos. Sci. 44: 1211–1235.

    Article  Google Scholar 

  • Mitchell JFB (1983) The seasonal response of a general circulation model to changes in C02 and sea temperature. Quart. J. Roy. Met. Soc. B109: 113–152.

    Google Scholar 

  • Olson JS, Watts J A, Allison LJ (1983) Carbon in live vegetation of major world ecosystems. ORNL-5682, Oak Ridge National Laboratory, Oak Ridge, TN, 152 pp.

    Google Scholar 

  • Prentice IC, Leemans R (1990) Pattern and process and the dynamics of forest structure: a simulation approach. J. Ecol. 78: 340–355.

    Article  Google Scholar 

  • Prentice IC, Sykes MT, Cramer W (1991) The possible dynamic response of northern forests to global warming. Global Ecol. Biogeogr. Lett. 1: 129–135.

    Article  Google Scholar 

  • Prentice IC, Cramer W, Harrison SP, Leemans R, Monserud R, Solomon AM (1992) A global biome model based on plant physiology and dominance, soil properties and climate. J. Biogeog. 19: 117–134.

    Article  Google Scholar 

  • Prentice IC, Sykes MT, Cramer W (1993a) A simulation model for the transient effects of climatic change on forest landscapes. Ecol. Modelling 65: 51–70.

    Article  Google Scholar 

  • Prentice IC, Sykes MT, Lautenschlager M, Harrison SP, Denissenko O, Bartlein PJ (1993b) Modelling global vegetation patterns and terrestrial carbon storage at the last glacial maximum. Global Ecol. Biogeogr. Lett. 3: 67–76.

    Article  Google Scholar 

  • Prentice IC, Sykes MT (1995a) Climatic Change (In press).

    Google Scholar 

  • Prentice IC, Sykes MT (1995b) Vegetation geography and global carbon storage changes. In: Woodwell GM, Mackenzie FT (eds) Biotic Feedbacks in the Global Climate System: Will the warming speed the warming? Oxford University Press, New York, pp 304–312.

    Google Scholar 

  • Price DT, Apps MJ, Kurz WA, Prentice IC, Sykes MT (1993) Simulating the carbon budget of the Canadian Boreal forest using an integrated suite of process-based models. In: Huor-Ung C (ed) Forest Growth Models and their Uses. Canadian Forest Service, Québec, pp 251–264.

    Google Scholar 

  • Schlesinger ME, Zhao ZC (1989) Seasonal climatic changes induced by doubled CO2 as simulated by the OSU atmospheric GCM/mixed-layer ocean model. J. Clint. 2: 459–495.

    CAS  Google Scholar 

  • Sjörs H (1967) Nordisk Växtgeografi. Svenska Bokförlaget, Bonniers, Stockholm, 239 pp.

    Google Scholar 

  • Shugart HH (1984) A Theory of Forest Dynamics. Springer, New York, 278 pp.

    Book  Google Scholar 

  • Skogsdata (1990) Aktuella uppgifter om de svenska skogarna frÃ¥n riksskogstaxeringen, taxering 89/90. Institutionen för skogstaxering, Sveriges lantbruksuniversitet, UmeÃ¥, Sweden, 70 pp.

    Google Scholar 

  • Sykes MT (1994) Modelling the effects of climate change on forest diversity. Biolog. 2-3: 17–24. Oslo Norway.

    Google Scholar 

  • Sykes MT, Prentice IC (1995a) Boreal forest futures: Modelling the controls on tree species range limits and transient responses to climate change. Water, Air, Soil Pollut. 82: 415–428.

    Article  CAS  Google Scholar 

  • Sykes MT, Prentice IC (1995b) Climate change, tree species distributions and forest dynamics: a case study in the mixed conifers/northern hardwoods zone of northern Europe. (Unpublished manuscript).

    Google Scholar 

  • Sykes MT, Prentice IC, Cramer W (1995) A bioclimatic model for the potential distribution of northern European tree species under present and future climates. J Biogeogr. (In press).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sykes, M.T., Prentice, I.C. (1996). Carbon storage and climate change in Swedish forests: a comparison of static and dynamic modelling approaches. In: Apps, M.J., Price, D.T. (eds) Forest Ecosystems, Forest Management and the Global Carbon Cycle. NATO ASI Series, vol 40. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61111-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61111-7_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64699-7

  • Online ISBN: 978-3-642-61111-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics