Skip to main content

Biotransformation and Renal Processing of Nephrotoxic Agents

  • Conference paper
Toxicology - From Cells to Man

Part of the book series: Archives of Toxicology ((TOXICOLOGY,volume 18))

Abstract

Nephrotoxicity is often observed as an endpoint in animal toxicity studies. In recent years, the mechanisms of biotransformation, which often provide the basis for renal toxicity, have been elucidated for a variety of compounds. These studies showed that nephrotoxicity of chemicals is either due to accumulation of certain metabolites in the kidney and further bioactivation or due to intrarenal bioactivation of the parent xenobiotic. Both types of mechanisms will be discussed using two relevant samples. The polychlorinated olefin hexachlorobutadiene and other haloolefins cause necrosis of the S-3 segment of the proximal tubules; their nephrotoxicity is dependent on bioactivation reactions. In the liver, hexachlorobutadiene is transformed by conjugation with glutathione to (S-pentachlorobutadien-yl)glutathione. This S-conjugate is processed by the enzymes of mercapturic acid formation to give N-acetyl-(S-pentachlorbutadienyl)-L-cysteine, which is accumulated in the proximal tubule cells and deacetylated there to give (S-pentachlorobutadienyl)-L-cysteine. Further bioactivation is catalyzed by renal cysteine conjugate ß-lyase. Both the renal accumulation by the organic anion transporter and the topographical distribution of cysteine conjugate ß-lyase along the nephron are major determinants of organ and cell selectivity. Vinylidene chloride (VDC) is nephrotoxic in mice after inhalation, but not after oral or intraperitoneal administration. The nephrotoxicity of VDC is due to the selective expression of an androgene-dependent cytochrome P450 in the proximal tubules of male mice. This enzyme oxidizes VDC to an electrophile and is not present in female mice, but can be induced be androgene treatment. The observation of nephrotoxicty of VDC after inhalation only is dut to the high blood flow to the kideny and thus high concentrations of VDC delivered to the kidney after inhalation. After oral or intraperitoneal application, hepatic first-pass metabolism efficiently reduces the amount of VDC delivered to the kidney. The results demonstrated here demonstrate that prior to in vitro nephrotoxicity screening, toxicokinetics and biotransformation pathways for a chemical have to be elucidated and metabolites have to be included into the testing program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anders MW (1980) Metabolism of drugs by the kidney. Kidney Int 18:636–647

    Article  PubMed  CAS  Google Scholar 

  • Anders MW (1988) Bioactivation mechanisms and hepatocellular damage. In: Arias IM, Jakoby WB, Popper H, Schachter D, Shafritz DA (eds) The Liver: Biology and Pathology, Second Edition. Raven Press, Ltd., New York, pp 389–400

    Google Scholar 

  • Anderson ME, Bridges RJ, Meister A (1980) Direct evidence for inter-organ transport of glutathione and that the non-filtration renal mechanism for glutathione utilization involves g-glutamyl transpeptidase. Biochem Biophys Res Commun 96:848–853

    Article  PubMed  CAS  Google Scholar 

  • Anderson ME, Naganuma A, Meister A (1990) Protection against cisplatin toxicity by administration of glutathione ester. FASEB J 4:3251–3255

    PubMed  CAS  Google Scholar 

  • Awasthi YC (1990) The interrelationship between p-glycoprotein and glutathione S- conjugate transporter(s). TiPS 15:376–377

    CAS  Google Scholar 

  • Awasthi YC, Singh SV, Ahmad H, Wronski LW, Srivastava SK, Labelle EF (1989) ATP dependent primary active transport of xenobiotic-glutathione conjugates by human erxthrocyte membrane. Cell Biochem 91:131–136

    Article  CAS  Google Scholar 

  • Bell DR, Bars RG, Elcombe CR (1992) Differential tissue-specific expression and induction of cytochrome P450IVA1 and acyl-CoA oxidase. Eur J Biochem 206:979–986

    Article  PubMed  CAS  Google Scholar 

  • Dekant W, Martens G, Vamvakas S, Metzler M, Henschler D (1987) Bioactivation of tetrachloroethylene - role of glutathione S-transferase-catalyzed conjugation versus cytochrome P-450-dependent phospholipid alkylation. Drug Metab Dispos 15:702–709

    PubMed  CAS  Google Scholar 

  • Dekant W, Vamvakas S, Henschler D, Anders MW (1988a) Enzymatic conjugation of hexachloro-1,3-butadiene with glutathione: formation of l-(glutathion-S-yl)-l,2,3,4,4- pentachlorobuta-l,3-diene and l,4-bis(glutathion-S-yl)-l,2,3,4-tetrachlorobuta-l,3- diene. Drug Metab Dispos 16:701–706

    CAS  Google Scholar 

  • Dekant W, Schrenk D, Vamvakas S, Henschler D (1988b) Metabolism of hexachloro-1,3- butadiene in mice: in vivo and in vitro evidence for activation by glutathione conjugation. Xenobiotica 18:803–816

    Article  CAS  Google Scholar 

  • Duffel MW, Jakoby WB (1982) Cysteine S-conjugate N-acetyltransferase from rat kidney microsomes. Mol Pharmacol 21:444–448

    PubMed  CAS  Google Scholar 

  • Green RM, Elce JS (1975) Acetylation of S-substituted cysteines by rat liver and kidney microsomal N-acetyltransferase. Biochem J 147:283–289

    PubMed  CAS  Google Scholar 

  • Guder WG, Ross BD (1984) Enzyme distribution along the nephron. Kidney Int 26:101–111

    Article  PubMed  CAS  Google Scholar 

  • Guder WG, Wirthensohn G (1985) Enzyme distribution and unique biochemical pathways in specific cells along the nephron. In: Bach PH, Lock EA (eds) Renal heterogeneity and target cell toxicity. Wiley and Sons, Chinchester, pp 195–198

    Google Scholar 

  • Guengerich FP, Kim D-H, Iwasai M (1991) Role of human cytochrome P-450 DEI in the oxidation of many low molecular weight cancer suspects. Chem Res Toxicol 4:168–179

    Article  PubMed  CAS  Google Scholar 

  • Henderson CJ, Wolf CR (1991) Evidence that the androgen receptor mediates sexual differentiation of mouse renal cytochrome P450 expression. Biochem J 278:499–503

    PubMed  CAS  Google Scholar 

  • Heuner A, Dekant W, Schwegler JS, Silbernagl S (1991) Localization and capacity of the last step of mercapturic acid biosynthesis and the reabsorption and acetylation of cysteine S-conjugates in the rat kidney. Eur J Physiol 417:523–527

    Article  CAS  Google Scholar 

  • Hinson JA, Roberts DW (1992) Role of covalent and noncovalent interactions in cell toxicity: effects on proteins. Annu Rev Pharmacol Toxicol 32:471–510

    Article  PubMed  CAS  Google Scholar 

  • Hu JJ, Lee M-J, Vapiwala M, Reuhl K, Thomas PE, Yang CS (1993) Sex-related differences in mouse renal metabolism and toxicity of acetaminophen. Toxicol Appl Pharmacol 122:16–26

    Article  PubMed  CAS  Google Scholar 

  • Hughey RP, Rankin BB, Elce JS, Curthoys NP (1978) Specificity of a particulate rat renal peptidase and its localization along with other enzymesof mercapturic acid synthesis. Arch Biochem Biophys 186:211–213

    Article  PubMed  CAS  Google Scholar 

  • Imaoka S, Yamazoe Y, Kato R, Funae Y (1992) Hormonal regulation of rat renal cytochrome P450s by androgen and the pituitary. Arch Biochem Biophys 299:179–184

    Article  PubMed  CAS  Google Scholar 

  • Inoue M, Akerboom TP, Sies H, Kinne R, Thao T, Arias IM (1984a) Biliary transport of glutathione S-conjugate by rat liver canalicular membrane vesicles. J Biol Chem 259:4998–5002

    CAS  Google Scholar 

  • Inoue M, Kinne R, Tran T, Arias IM (1984b) Glutathione transport across hepatocyte plasma membranes. Analysis using isolated rat-liver sinusoidal-membrane vesicles. Eur J Biochem 138:491–495

    Article  CAS  Google Scholar 

  • Inoue M, Kinne R, Tran T, Biempica L, Arias IM (1983) Rat liver canalicular membrane vesicles - isolation and topological characterization. J Biol Chem 258:5183–5188

    PubMed  CAS  Google Scholar 

  • Inoue M, Okajima K, Morino Y (1984) Hepato-renal cooperation in biotransformation, membrane transport, and elimination of cysteine S-conjugates of xenobiotics. J Biochem Tokyo 95:247–254

    PubMed  CAS  Google Scholar 

  • Ishmael J, Pratt I, Lock EA (1982) Necrosis of the pars recta (S3 segment) of the rat kidney produced by hexachloro-l:3-butadiene. J Pathol 138:99–113

    Article  PubMed  CAS  Google Scholar 

  • Jones DP, Moldeus P, Stead AH, Ormstad K, Joernvall H, Orrenius S (1979a) Metabolism of glutathione and a glutathione conjugate by isolated kidney cells. J Biol Chem 254:2787–2792

    CAS  Google Scholar 

  • Jones DP, Sundby G-B, Ormstad K, Orrenius S (1979b) Use of isolated kidney cells for study of drug metabolism. Biochem Pharmacol 28:929–935

    Article  CAS  Google Scholar 

  • Kociba RJ, Keyes DG, Jersey GC, Ballard JJ, Dittenber DA, Quast JF, Wade LE, Humiston CG, Schwetz BA (1977) Results of a two year chronic toxicity study with hexachlorobutadiene in rats. Am Ind Hyg Assoc J 38:589–602

    Article  PubMed  CAS  Google Scholar 

  • Koob M, Dekant W (1990) Metabolism of hexafluoropropene - evidence for bioactivation by glutathione conjugate formation in the kidney. DrugMetab Dispos 18:911–916

    PubMed  CAS  Google Scholar 

  • Lash LH, Jones DP (1983) Transport of glutathione by renal basal-lateral membrane vesicles. Biochem Biophys Res Com 112:55–60

    Article  PubMed  CAS  Google Scholar 

  • Lash LH, Jones DP (1984) Renal glutathione transport. Characteristics of the sodium-dependent system in the basal-lateral membrane. J Biol Chem 259:14508–14514

    PubMed  CAS  Google Scholar 

  • Meister A (1988) Glutathione metabolism and its selective modification. J Biol Chem 263:17205–17208

    PubMed  CAS  Google Scholar 

  • Miller EC, Miller J A (1981) Searches for ultimate chemical carinogenes and their reactions with cellular macromolecules. Cancer 47:2327–2345

    Article  PubMed  CAS  Google Scholar 

  • Moldeus P, Jones DP, Ormstad K, Orrenius S (1978) Formation and metabolism of a ghrtathione-S-conjugate in isolated rat liver and kidney cells. Biochem Biophys Res Commun 83:195–200

    Article  PubMed  CAS  Google Scholar 

  • Monks TJ, Anders MW, Dekant W, Stevens JL, Lau SS, van Bladeren PJ (1990) Glutathione conjugate mediated toxicities. Toxicol Appl Pharmacol 106:1–19

    Article  PubMed  CAS  Google Scholar 

  • Monks TJ, Lau SS (1987) Commentary: renal transport processes and glutathione conjugate-mediated nephrotoxicity. DrugMetab Dispos 15:437–441

    PubMed  CAS  Google Scholar 

  • Monks TJ, Lau SS (1989) Sulphur conjugate-mediated toxicity. Rev Biochem Toxicol 10:41–90

    CAS  Google Scholar 

  • Nash JA, King LJ, Lock EA, Green T (1984) The metabolism and disposition of hexachloro-l:3-butadiene in the rat and its relevance to nephrotoxicity. Toxicol Appl Pharmacol 73:124–137

    Article  PubMed  CAS  Google Scholar 

  • NCI, National Cancer Institute (1986a) Carcinogenesis bioassay of trichloroethylene. National Toxicology Program Technical Report 311

    Google Scholar 

  • NCI, National Cancer Institute (1986b) Carcinogenesis bioassay of tetrachloroethylene. National Toxicology Program Technical Report 232

    Google Scholar 

  • Nelson SD, Pearson PG (1990) Covalent and noncovalent interactions in acute lethal cell injury caused by chemicals. Annu Rev Pharmacol Toxicol 30:169–195

    Article  PubMed  CAS  Google Scholar 

  • Okajima K, Inoue M, Itoh K, Horiuchi S, Morino Y (1983) Interorgan cooperation in enzymic processing. In: Sakamoto Y, Higashi T, Tateishi N (eds) Glutathione: Storage, Transport and Turnover in Mammals. Japan Scientific Societies Press, Tokyo, pp 129–144

    Google Scholar 

  • Potter CL, Gandolfi AJ, Nagle R, Clayton JW (1981) Effects of inhaled chlorotrifluoroethylene and hexafluoropropene on the rat kidney. Toxicol Appl Pharmacol 59:431–440

    Article  PubMed  CAS  Google Scholar 

  • Rankin BB, Curthoys NP (1982) Evidence for the renal paratubular transport of glutathione. FEBS Lett 147:193–196

    Article  PubMed  CAS  Google Scholar 

  • Reichert D, Ewald D, Henschler D (1975) Generation and inhalation toxicity of dichloroacetylene. Fd Cosmet Toxicol 13:511–515

    Article  CAS  Google Scholar 

  • Rush GF, Smith JH, Newton JF, Hook JB (1984) Chemically induced nephrotoxicity: role of metabolic activation. Crit Rev Toxicol 13:99–160

    Article  PubMed  CAS  Google Scholar 

  • Schrenk D, Dekant W, Henschler D (1988) Metabolism and excretion of S-conjugates derived from hexachlorobutadiene in the isolated perfused rat kidney. Mol Pharmacol 34:407–412

    PubMed  CAS  Google Scholar 

  • Schuetz EG, Schuetz JD, Grogan WM, Naray-Fejes-Toth A, Fejes-Toth G, Raucy J, Guzelian P, Gionela K, Watlington CO (1992) Expression of cytochrome P450 3A in amphibian, rat, and human kidney. Arch Biochem Biophys 294:206–214

    Article  PubMed  CAS  Google Scholar 

  • Smith JH, Hewitt WR, Hook JB (1985) Role of intrarenal biotransformation in chloroform-induced nephrotoxicity in rats. Toxicol Appl Pharmacol 79:166–174

    Article  PubMed  CAS  Google Scholar 

  • Smith JH, Maita K, Sleigfat SD, Hook JB (1984) Effect of sex hormone status on chloroform nephrotoxicity and renal mixed function oxidases in mice. Toxicology 30:305–316

    Article  PubMed  CAS  Google Scholar 

  • Speerschneider P, Dekant W (1995) Renal tumorigenicity of 1,1-dichloroethene in mice: the role of male specific expression of cytochrome P450 2E1 in the renal bioactivation of 1,1-dichloroethene. Toxicol Appl Pharmacol 130:48–56

    Article  PubMed  CAS  Google Scholar 

  • Tsao B, Curthoys NP (1980) The absolute asymetry of orientation of g- glutamyltranspeptidase and aminopeptidase on the external surface of the rat renal brush border membrane. J Biol Chem 255:7708–7711

    PubMed  CAS  Google Scholar 

  • Ullrich KJ, Rumrich G (1988) Contraluminal transport systems in the proximal renal tubule involved in secretion of organic anions. Am J Physiol 254:453–462

    Google Scholar 

  • Ullrich KJ, Rumrich G, Kloess S (1988) Contraluminal para-aminohippurate (PAH) transport in the proximal tubule of the rat kidney. Pfluegers Arch 413:134–146

    Article  CAS  Google Scholar 

  • Ullrich KJ, Rumrich G, Klöss S (1989a) Contraluminal organic anion and cation transport in the proximal renal tubule: V. Interaction with sulfamoyl- and phenoxy diuretics, and with B-lactam antibiotics. Kidney Int 36:78–88

    Article  CAS  Google Scholar 

  • Ullrich KJ, Rumrich G, Wieland T, Dekant W (1989b) Contraluminal para- aminohippurate (PAH) transport in the proximal tubule of the rat kidney. Europ J Physiol 415:342–350

    Article  CAS  Google Scholar 

  • Vamvakas S, Herkenhoff M, Dekant W, Henschler D (1989) Mutagenicity of tetrachloroethylene in the Ames-test - metabolic activation by conjugation with glutathione. J Biochem Toxicol 4:21–27

    Article  PubMed  CAS  Google Scholar 

  • Vore M (1993) Canalicular transport: discovery of ATP-dependent mechanisms. Toxicol Appl Pharmacol 118:2–7

    Article  PubMed  CAS  Google Scholar 

  • Vore M (1994) Phase HI elimination: another two-edged sword. Environ Health Perspect 102:422–423

    PubMed  CAS  Google Scholar 

  • Wolf CR (1991) Individuality in cytochrome P450 expression and its association with the nephrotoxic and carcinogenic effects of chemicals. IARC Scientific Publication 115:281–287

    CAS  Google Scholar 

  • Wolf CR, Berry PN, Nash JA, Green T, Lock EA (1984) Role of microsomal and cytosolic glutathione S-transferases in the conjugation of hexachloro-l:3-butadiene and its possible relevance to toxicity. J Pharmacol Exp Ther 228:202–208

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dekant, W. (1996). Biotransformation and Renal Processing of Nephrotoxic Agents. In: Seiler, J.P., Kroftová, O., Eybl, V. (eds) Toxicology - From Cells to Man. Archives of Toxicology, vol 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61105-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61105-6_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64696-6

  • Online ISBN: 978-3-642-61105-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics