Skip to main content

A Folding Model of Concept Genesis and Its Application to Teaching Biology

  • Conference paper
Knowledge Acquisition, Organization, and Use in Biology

Part of the book series: NATO ASI Series ((NATO ASI F,volume 148))

Abstract

A concept is understood here as a tripartite structure in the human mind consisting of a name, a standardized meaning (the logic core) and the associative framework surrounding the core. This concept of a concept is based on the assumption of a linear storage of everyday events in our memory by means of associative links (coincidence in time; Ebbinghaus), and subsequent secondary folding of the ‘chain’ by means of logical relations between similar events. Consequent application of this model to teaching leads to ‘zigzag learning’, which will be explained here as a successful method of concept formation in biology courses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ausubel, D.P., Novak, J.D., Hanesian, H.: Educational Psychology: A cognitive view. New York: Holt, Rinehart and Winston 1978.

    Google Scholar 

  2. Boschhuizen, R., Brinkmann, F.G.: Research methods on pre-instructional ideas in biology education. Proc. 13th Conf. ATEE, Barcelona 1988.

    Google Scholar 

  3. de Bono, E.: Lateral thinking. New York: Penguin Books 1970.

    Google Scholar 

  4. Deese, J.: The structure of associations in language and thought. Baltimore: John Hopkins Press 1965.

    Google Scholar 

  5. Deubner, W., Schaefer, G.: Wenn in die Natur noch alles in Ordnung ist. Köln: Aulis 1985.

    Google Scholar 

  6. Ebbinghaus, H.: Über das Gedächtnis. Untersuchungen zur experimentellen Psychologie 1885. Reprint Wiss. Buchges. 1971.

    Google Scholar 

  7. Fisher, K. M.: Semantic network theory for modeling conceptual change. Unpublished manuscript San Diego (personal communication only) 1992.

    Google Scholar 

  8. Fisher, K.M.: Semantic networking: The new kid on the block. J. Res. Sci. Teaching 27/10, 1001–1018, 1990.

    Article  Google Scholar 

  9. Giordan, A.: An allosteric learning model. From the categorization of learners’ conceptions to an optimal didactic environment. Document LDES, Univ. Genève 1989.

    Google Scholar 

  10. Novak, J.D., (Ed.): Proceedings of the Second International Seminar on Misconceptions and Educational Strategies in Science and Mathematics Education. Vol. II. Ithaca: Cornell Univ. 1987.

    Google Scholar 

  11. Rensch, B. Gedächtnis, Begriffsbildung und Planhandlungen bei Tieren. Berlin: Paul Parey 1973.

    Google Scholar 

  12. Schaefer, G.: Kybernetik und Biologie. Stuttgart: Metzler 1972.

    Google Scholar 

  13. Schaefer, G. Concept formation in biology: The concept ‘growth’. Eur. J. Sci. Educ. (now: Int. J. Sci. Educ.) 1/1, 87–101, 1979.

    Google Scholar 

  14. Schaefer, G. Concept formation in school between scientific and community demands. In: Biological education for community development (P.J. Kelly, G. Schaefer, ed.), pp 127–147. London: Taylor and Francis 1980.

    Google Scholar 

  15. Schaefer, G., Hernandez, D. (Eds.): Health education through biology teaching. IUBS-CBE monograph. Quezon City: Univ. Philippines, ISMED 1985.

    Google Scholar 

  16. Schaefer, G.: Teaching biological principles — a step towards positive health education. ICSU/UNESCO conference on Science and Technology Education and Future Human Needs, Bangalore 1985.

    Google Scholar 

  17. Schaefer, G.: Twelve principles of life as a basis of ethics and education. In: New challenges for biological education (Schaefer, G., Younes, T., eds.). Biology International, Special Issue 11, pp 3–13. Paris: IUBS 1986.

    Google Scholar 

  18. Schaefer, G.: Die Entwicklung von Lehrplänen für den Biologieunterricht auf der Grundlage universeller Lebensprinzipien. MNU 43/8, 471–480, 1990.

    Google Scholar 

  19. Schaefer, G.: Zickzack-Lernen als Methode; oder: Kann aus Wirrwarr Ordnung entstehen? In: Erleben, Beobachten, Untersuchen. Zur Didaktik von Exkursionen (B. Oehmig, ed.), pp 110–131. Berlin: FU, Zentralinst. f. Fachdidaktiken, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Vertag Berlin Heidelberg

About this paper

Cite this paper

Schaefer, G. (1996). A Folding Model of Concept Genesis and Its Application to Teaching Biology. In: Fisher, K.M., Kibby, M.R. (eds) Knowledge Acquisition, Organization, and Use in Biology. NATO ASI Series, vol 148. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61047-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61047-9_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64670-6

  • Online ISBN: 978-3-642-61047-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics