Skip to main content

Cell Wall Porosity and Its Determination

  • Chapter
Plant Cell Wall Analysis

Part of the book series: Modern Methods of Plant Analysis ((MOLMETHPLANT,volume 17))

Abstract

Cells must communicate with each other and their environment in order to survive. All higher plant cells are encased in a wall that provides mechanical support to the plant and resists the outward force of turgor pressure exerted by the protoplast. The physicochemical properties of the wall also cause it to act as a molecular and ionic filter, and walls allow passage of some components diffusing from adjacent cells and restrict movement of others. In this review we will present the different methods and approaches that have been used to determine wall porosity, indicate the assumptions inherent in each, and attempt to relate our understanding of wall porosity to the microscopic properties of plant cell walls.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aist JR (1983) Structural responses as resistance mechanisms. In: Bailey JA, Deverall BJ (eds) The dynamics of host defence. Academic Press, Sydney, pp 33–70

    Google Scholar 

  • Ashford AE, Jacobsen JV (1974) Cytochemical localization of phosphatase in barley aleurone cells: the pathway of gibberellic-acid-induced enzyme release. Planta 120: 81–105

    Article  CAS  Google Scholar 

  • Bacic A, Harris PJ, Stone BA (1988) Structure and function of plant cell walls. In: Preiss J (ed) The biochemistry of plants, vol 14. Academic Press, London, pp 297–371

    Google Scholar 

  • Baron-Epel O, Gharyal PK, Schindler M (1988) Pectins as mediators of wall porosity in soybean cells. Planta 175: 389–395

    Article  CAS  Google Scholar 

  • Bradley DJ, Kjellbom P, Lamb CJ (1992) Elicitor-and wound-induced oxidative cross-linking of a proline-rich plant cell wall protein: a novel, rapid defense response. Cell 70: 21–30

    Article  PubMed  CAS  Google Scholar 

  • Canny MJ (1988) Water pathways in wheat leaves. IV. The interpretation of images of a fluorescent apoplastic tracer. Aust J Plant Physiol 15: 541–555

    Article  Google Scholar 

  • Canny MJ (1990) What becomes of the transpiration stream? New Phytol 114: 341–368

    Article  Google Scholar 

  • Carpita NC (1982) Limiting diameters of pores and the surface structure of plant cell walls. Science 218: 813–814

    Article  PubMed  CAS  Google Scholar 

  • Carpita NC, Gibeaut DM (1993) Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J 3: 1–30

    Article  PubMed  CAS  Google Scholar 

  • Carpita NC, Sabularse D, Montezinos D, Delmer DP (1979) Determination of the pore size of cell walls of living plant cells. Science 205: 1144–1147

    Article  PubMed  CAS  Google Scholar 

  • Chang PLY, Trevithick JR (1974) How important is secretion of exoenzymes through apical cell walls of fungi? Arch Microbiol 101: 281–293

    Article  PubMed  CAS  Google Scholar 

  • Clarke AE, Abbot A, Mandel TE, Pettitt JM (1980) Organization of the wall layers of the stigmatic papillae of Gladiolus gandavensis: a freeze-fracture study. J Ultrastruct Res 73: 269–281

    Article  PubMed  CAS  Google Scholar 

  • Clarkson DT, Robards AW (1975) The endodermis, its structural development and physiological role. In: Torrey JJ, Clarkson DT (eds) The development and function of roots. Academic Press, London, pp 415–436

    Google Scholar 

  • Cole L, Coleman J, Evans D, Hawes C (1990) Internalisation of fluorescein isothiocyanate and fluorescein isothiocyanate-dextran by suspension-cultured plant cells. J Cell Sci 96: 721730

    Google Scholar 

  • Currier H (1957) Callose substances in plant cells. Am J Bot 44: 478–488

    Article  Google Scholar 

  • Ehwald R, Heese P, Klein U (1991) Determination of size limits of membrane separation in vesicle chromatography by fractionation of polydisperse dextran. J Chromatogr 542: 239–245

    Article  CAS  Google Scholar 

  • Ehwald R, Woehlecke H, Titel C (1992) Cell wall microcapsules with different porosity from suspension cultured Chenopodium album. Phytochemistry 31: 3033–3038

    Article  CAS  Google Scholar 

  • Evert RF, Derr W (1964) Callose substance in sieve elements. Am J Bot 51: 552–559

    Article  CAS  Google Scholar 

  • Fahn A (1988) Secretory tissues in plants. New Phytol 108: 229–257

    Article  Google Scholar 

  • Fincher GB (1989) Molecular and cellular biology associated with endosperm mobilization in germinating cereal grains. Annu Rev Plant Physiol Plant Mol Biol 40: 305–346

    Article  CAS  Google Scholar 

  • Fry SC (1988) The growing plant cell wall: chemical and metabolic analysis. Longman,Harlow

    Google Scholar 

  • Gogarten JP (1988) Physical properties of the cell wall of photoautotrophic suspension cells from Chenopodium rubrumL. Planta 174: 333–339

    Article  Google Scholar 

  • Gubler F, Ashford AE, Jacobsen JV (1987) The release of a-amylase through gibberellin-treated barley aleurone cell walls. Planta 172: 155–161

    Article  CAS  Google Scholar 

  • Handa AK, Bressan RA, Handa S, Hasegawa PM (1982) Characteristics of cultured tomato cells after prolonged exposure to medium containing polyethylene glycol. Plant Physiol 69: 514–521

    Article  PubMed  CAS  Google Scholar 

  • Harris N, Chaffey NJ (1986) Plasmatubules–real modifications of the plasmalemma. Nord J Bot 6: 599–607

    Article  Google Scholar 

  • Heslop-Harrison J, MacKenzie A (1967) Autoradiography of soluble [2–14C]thymidine derivatives during meiosis and microsporogenesis in Liliumanthers. J Cell Sci 2: 387–400

    PubMed  CAS  Google Scholar 

  • Hoggart RM, Clarke AE (1984) Porosity of Gladiolusstigmatic papillae and pollen tube walls. Ann Bot 53: 271–277

    Google Scholar 

  • Horn MA, Heinstein PF, Low PS (1992) Characterization of parameters influencing receptor-mediated endocytosis in cultured soybean cells. Plant Physiol 98: 673–679

    Article  PubMed  CAS  Google Scholar 

  • Hoson T, Nevins DJ (1989) (3-o-Glucan antibodies inhibit auxin-induced cell elongation and changes in the cell wall of Zea coleoptile segments. Plant Physiol 90:1353–1358

    Google Scholar 

  • Inouhe M, Nevins DJ (1991) Inhibition of auxin-induced cell elongation of maize coleoptiles by antibodies specific for cell wall glucanases. Plant Physiol 96: 426–431

    Article  PubMed  CAS  Google Scholar 

  • Iraki NM, Bressan RA, Carpita NC (1989) Extracellular polysaccharides and proteins of tobacco cell cultures and changes in composition associated with growth-limiting adaptation to water and saline stress. Plant Physiol 91: 54–61

    Article  PubMed  CAS  Google Scholar 

  • Knox RB, Heslop-Harrison JH (1970) Direct demonstration of the low permeability of the angiosperm meiotic tetrad using a fluorogenic ester. Z Pflanzenphysiol 62: 451–459

    Google Scholar 

  • Lamport DTA, Catt JW (1981) Glycoproteins and enzymes of the cell wall. In: Tanner W, Loewus FA (eds) Encyclopedia of plant physiology, vol 13B. Plant carbohydrates. II. Extracellular carbohydrates. Springer, Berlin, Heidelberg New York, pp 133–165

    Google Scholar 

  • Mascarenhas JP (1975) The biochemistry of angiosperm pollen development. Bot Rev 41: 259–314

    Article  CAS  Google Scholar 

  • McCann MC, Wells B, Roberts K (1990) Direct visualization of cross-links in the primary plant cell wall. J Cell Sci 96: 323–334

    Google Scholar 

  • Meiners S, Gharyal PK, Schindler M (1991) Permeabilization of the plasmalemma and wall of soybean root cells to macromolecules. Planta 184: 443–447

    Article  Google Scholar 

  • Meredith SC, Nathans GR (1982) Gel-permeation chromatography of asymmetric proteins. Anal Biochem 121: 234–243

    Article  PubMed  CAS  Google Scholar 

  • Mexal J, Fisher JT, Osteryoung J, Reid CPP (1975) Oxygen availability in polyethylene glycol solutions and its implications in plant-water relations. Plant Physiol 55: 20–24

    Article  PubMed  CAS  Google Scholar 

  • Mexal J, Reid CPP (1972) The growth of selected mycorrhizal fungi in response to induced water stress. Can J Bot 51: 1579–1588

    Article  Google Scholar 

  • Michel BE, Kaufmann MR (1973) The osmotic potential of polyethylene glycol 6000. Plant Physiol 51: 914–916

    Article  PubMed  CAS  Google Scholar 

  • Money NP (1990) Measurement of pore size in the hyphal cell wall of Achlya bisexualis. Exp Mycology 14: 234–242

    Article  Google Scholar 

  • O’Brien TP, Carr DJ (1970) A suberized layer in the cell walls of the bundle sheath of grasses. Aust J Biol Sci 23: 275–287

    Google Scholar 

  • O’Driscoll D, Read SM, Steer MW (1993) Determination of cell-wall porosity by microscopy: walls of cultured cells and pollen tubes. Acta Bot Neerl 42: 237–244

    Google Scholar 

  • Owen TP Jr, Thomson WW (1991) Structure and function of a specialized cell wall in the trichomes of the carnivorous bromeliad Brocchinia reducta. Can J Bot 69: 1700–1706

    Article  Google Scholar 

  • Paull RE, Jones RL (1976) Studies on the secretion of maize root cap slime. V. The cell wall as a barrier to secretion. Z Pflanzenphysiol 79: 154–164

    CAS  Google Scholar 

  • Paull RE, Jones RL (1978) Regulation of synthesis and secretion of fucose-containing polysaccharides in cultured sycamore cells. Aust J Plant Physiol 5: 457–467

    CAS  Google Scholar 

  • Peters R (1986) Fluorescence microphotolysis to measure nucleocytoplasmic transport and intracellular mobility. Biochim Biophys Acta 864: 305–359

    PubMed  CAS  Google Scholar 

  • Peterson CA, Emanuel ME, Humphreys GB (1981) Pathway of movement of apoplastic fluorescent dye tracers through the endodermis at the site of secondary root formation in corn (Zea mays)and broad bean (Vicia faba). Can J Bot 59: 618–625

    Article  Google Scholar 

  • Preston RA, Murphy RF, Jones EW (1987) Apparent endocytosis of fluorescein isothiocyanateconjugated dextran by Saccharomyces cerevisiaereflects uptake of low molecular weight impurities and not dextran. J Cell Biol 105: 1981–1987

    Article  PubMed  CAS  Google Scholar 

  • Richter E, Ehwald R (1983) Apoplastic mobility of sucrose in storage parenchyma of sugar beet. Physiol Plant 58: 263–268

    Article  CAS  Google Scholar 

  • Robards AW, Lucas WJ (1990) Plasmodesmata. Annu Rev Plant Physiol Plant Mol Biol 41: 369–419

    Article  Google Scholar 

  • Robinson DG, Hillmer S (1990) Endocytosis in plants. Physiol Plant 79: 96–104

    Article  Google Scholar 

  • Rodriguez-Garcia MI, Majewska-Sawka A (1992) Is the special callose wall of microsporocytes an impermeable barrier? J Exp Bot 43: 1659–1663

    Article  Google Scholar 

  • Rougier M (1981) Secretory activity of the root cap. In: Tanner W, Loewus FA (eds) Encyclopedia of plant physiology, vol 13B. Plant carbohydrates. II. Extracellular carbohydrates. Springer, Berlin, Heidelberg New York, pp 542–574

    Google Scholar 

  • Rowley JR, Dunbar A (1970) Transfer of colloidal iron from sporophyte to gametophyte. Pollen Spores 12: 305–328

    Google Scholar 

  • Sauter JJ, Marquardt H (1970) Cytochemical investigations on cytochrome oxidase and succinic dehydrogenase activity in pollen tetrads. Z Pflanzenphysiol 63: 15–18

    CAS  Google Scholar 

  • Shedletzky E, Shmuel M, Trainin T, Kalman S, Delmer D (1992) Cell wall structure in cells adapted to growth on the cellulose-synthesis inhibitor 2,6-dichlorobenzonitrile. Plant Physiol 100: 120–130

    Article  PubMed  CAS  Google Scholar 

  • Squire PG (1981) Calculation of hydrodynamic parameters of random coil polymers from size exclusion chromatography and comparison with parameters by conventional methods. J Chromatogr 210: 433–442

    Article  CAS  Google Scholar 

  • Stevenson TT, McNeil M, Darvill AG, Albersheim P (1986) Structure of plant cell walls. XVIII. An analysis of the extracellular polysaccharides of suspension-cultured sycamore cells. Plant Physiol 80: 1012–1019

    Article  PubMed  CAS  Google Scholar 

  • Taylor IEP, Wallace JC, MacKay AL, Volke F (1990) Use of chemical fractionation and proton nuclear magnetic resonance to probe the physical structure of the primary plant cell wall. Plant Physiol 94: 174–178

    Article  PubMed  CAS  Google Scholar 

  • Tepfer M, Taylor IEP (1981) The permeability of plant cell walls as measured by gel filtration chromatography. Science 312: 761–763

    Article  Google Scholar 

  • Wallace JC, MacKay AL, Sasaki K, Taylor IEP (1993) A proton nuclear magnetic resonance study of the physical changes in growing plant cell walls. Planta 190: 227–230

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Read, S.M., Bacic, A. (1996). Cell Wall Porosity and Its Determination. In: Linskens, H.F., Jackson, J.F. (eds) Plant Cell Wall Analysis. Modern Methods of Plant Analysis, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60989-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60989-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64644-7

  • Online ISBN: 978-3-642-60989-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics