Skip to main content

The Epidemiology of Parasitic Diseases in Daphnia

  • Chapter
Vertical Food Web Interactions

Part of the book series: Ecological Studies ((ECOLSTUD,volume 130))

Abstract

Parasites and pathogens may be directly or indirectly involved in the ecology and evolution of a broad range of phenomena: population dynamics and extinctions, maintenance of genetic diversity and sexual selection, to name just a few. Certainly parasites — here broadly defined to include viruses, bacteria, protozoa and helminths — possess features which make them very attractive as explanatory factors in the evolution and ecology of their host. These features include their typically narrow host range, the adverse effects parasites have on host fecundity and survival, and the density dependence of transmission (Hassell and May 1973; Anderson and May 1979, 1991; May and Anderson 1979). However, the bulk of available information stems from theoretical and laboratory studies, while studies in natural populations are scarce. For example, experimental approaches give clear support for density dependence of transmission (Blower and Roughgarden 1989; Ebert 1995; D’Amico et al. 1996; Knell et al. 1996), but there exists very little data showing density-dependent transmission in natural populations (Dobson and Hudson 1986; Scott and Dobson 1989). Similarly, although laboratory studies have demonstrated a clear effect of parasites on host density (Sait et al. 1994; Mangin et al. 1995), reports of parasite-mediated reduction of host density in the field are rare (Dobson and Hudson 1986; Scott and Dobson 1989). It is essential for our understanding of host-parasite interactions to compliment the results of laboratory work with data from natural populations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen YC, De Stasio BT, Ramcharan CW (1993) Individual and population level consequences of an algal epibiont onDaphnia. Limnol Oceanogr 38: 592–601

    Article  Google Scholar 

  • Anderson RM, May RM (1979) Population biology of infectious diseases: part I. Nature 280: 361–367

    Article  PubMed  CAS  Google Scholar 

  • Anderson RM, May RM (1991) Infectious diseases of humans. Oxford University, Oxford

    Google Scholar 

  • Blower SM, Roughgarden J (1989) Parasites detect host spatial pattern and density: a field experimental analysis. Oecologia (Beri) 78: 138–141

    Article  Google Scholar 

  • Brambilla DJ (1983) Microsporidiosis in aDaphnia pulexpopulation. Hydrobiologia 99: 175–188

    Article  Google Scholar 

  • Brunner DU (1996) The population structure ofDaphnia magna: genetics, parasites, competitors and environmental variables. Diploma Thesis, University of Basel, Basel, Switzerland

    Google Scholar 

  • Canter HM, Lund JWG (1951) Studies on plankton parasites III. Examples of the interaction between parasitism and other factors determining the growth of diatoms. Ann Bot 15: 359–372

    Google Scholar 

  • Canter HM, Lund JWG (1953) Studies on plankton parasites II. The parasitism of diatoms with special reference to lakes in the English Lake District. Transact Br Mycol Soc 36: 13–37

    Article  Google Scholar 

  • Chatton E (1925)Pansporella perplexa amoebien a spores protegees parasite des daphnies. Ann Sci Nat Zool Biol Anim 8:5–85

    Google Scholar 

  • Chiavelli DA, Mills EL, Threlkeld ST (1993) Host preference, seasonality, and community interactions of zooplankton epibionts. Limnol Oceanogr 38: 574–583

    Article  Google Scholar 

  • Dai JY, Yu L, Wang B, Luo XX, Yu ZN, Lecadet MM (1996)Bacillus thuringiensis subspecieshuazhongensisy serotype H40, isolated from soils in the People’s Republic of China. Lett Appi Microbiol 22:42–45

    Article  CAS  Google Scholar 

  • D’Amico V, Elkinton JS, Dwyer G, Burand JP (1996) Virus transmission in gypsy moth is not a simple mass action process. Ecology 77: 201–206

    Article  Google Scholar 

  • DeAngelis DL (1992) Dynamics of nutrient cycling and food webs. Chapman and Hall, London

    Book  Google Scholar 

  • Dobson AP, Hudson PJ (1986) Parasites: disease and the structure of ecological communities. TREE 1: 11–15

    PubMed  CAS  Google Scholar 

  • Ebert D (1994a) Genetic differences in the interactions of a microsporidian parasite and four clones of its cyclically parthenogenetic host. Parasitology 108: 11–16

    Article  Google Scholar 

  • Ebert D (1994b) Virulence and local adaptation of a horizontally transmitted parasite. Science 265: 1084–1086

    Article  CAS  Google Scholar 

  • Ebert D (1995) The ecological interactions between a microsporidian parasite and its hostDaphnia magna. J Anim Ecol 64: 361–369

    Article  Google Scholar 

  • Ebert D, Mangin K (1995) The evolution of virulence: when familiarity breeds death. Biologist 42: 154–156

    Google Scholar 

  • Ebert D, Rainey P, Embley TM, Scholz D (1996) Development, life cycle, ultrastructure and phylogenetic position ofPastemia ramosaMetchnikoff 1888: rediscovery of an obligate endoparasite ofDaphnia magnaStraus. Philos Trans R Soc B 351: 1689–1701

    Article  Google Scholar 

  • Fleming SB, Kalmakoff J, Archibald RD, Stewart KM (1986) Density-dependent virus mortality in populations ofWisecana(Lepidoptera: Hepialidae). J Invert Pathol 48: 193–198

    Article  Google Scholar 

  • France RL, Graham L (1985) Increased microsporidian parasitism of the crayfishOr conectes virilisin an experimentally acidified lake. Water Air Soil Pollut 26: 129–136

    Article  Google Scholar 

  • Freyer G (1991) Functional morphology and the adaptive radiation of the Daphniidae (Branchiopoda: Anomopoda). Philos Trans R Soc B 331: 1–99

    Article  Google Scholar 

  • Green J (1974) Parasites and epibionts of Cladocera. Trans Zool Soc Lond 32: 417–515

    Article  Google Scholar 

  • Hassell MP, May RM (1973) Stability in insect host-parasite models. J Anim Ecol 42: 693–726

    Article  Google Scholar 

  • Horton PA, Rowan M, Webster KE, Peters RH (1979) Browsing and grazing by cladoceran filter feeders. Can J Zool 57: 206–212

    Article  Google Scholar 

  • Kellen WR, Hoffmann DF (1987) Laboratory studies on the dissemination of a granulosis virus by healthy adults of the Indian meal mothPlodia interpunctella(Lepidoptera: Pyralidae). Environ Entomol 16: 1231–1234

    Google Scholar 

  • Knell RJ, Begon M, Thompson DJ (1996) Transmission dynamics ofBacillus thuringiensisinfectingPlodia interpunctella: a test of the mass action assumption with an insect pathogen. Proc R Soc Lond B 263: 75–81

    Article  CAS  Google Scholar 

  • Lampert W (1987) Feeding and nutrition inDaphnia. Mem 1st Ital Idrobiol 45: 143–192

    Google Scholar 

  • Lee VA (1994) Parasitically-induced behavioural changes in zooplankton(Daphnia magna). Master Thesis, University of Oxford, Oxford

    Google Scholar 

  • Mangin KL, Lipsitch M, Ebert D (1995) Virulence and transmission modes of two microsporidia inDaphnia magna. Parasitology 111: 133–142

    Article  Google Scholar 

  • May RM, Anderson RM (1979) Population biology of infectious diseases: part II. Nature 280: 455–461

    Article  PubMed  CAS  Google Scholar 

  • McCauley E (1993) Internal versus external causes of dynamics in a freshwater plant-herbivore system. Am Nat 141: 428–439

    Article  Google Scholar 

  • McCauley E, Murdoch WW (1987) Cyclic and stable populations: plankton as paradigm. Am Nat 129: 97–121

    Article  Google Scholar 

  • McCauley E, Murdoch WW, Watson S (1988) Simple models and variation in plankton densities among lakes. Am Nat 132: 383–403

    Article  Google Scholar 

  • Miracle MR (1977) Epidemiology in rotifers. Arch Hydrobiol Beih Ergeb Limnol 8: 138–141

    Google Scholar 

  • Murdoch WW, McCauley E (1985) Three distinct types of dynamic behaviour shown by a single planktonic system. Nature 316: 628–630

    Article  Google Scholar 

  • Redfield GW, Vincent WF (1979) Stages of infection and ecological effects of a fungal epidemic on the eggs of a limnetic copepod. Freshwater Biol 9: 503–510

    Article  Google Scholar 

  • Rosenzweig ML (1971) Paradox of enrichment: destabilization of exploitation ecosystems in ecological time. Science 171: 385–387

    Article  PubMed  CAS  Google Scholar 

  • Ruttner-Kolisko A (1977) The effect of the microsporidPlistophora asperosporaonConochilus unicornisin Lunzer Untersee (LUS). Arch Hydrobiol Beih Ergeb Limnol 8: 135–137

    Google Scholar 

  • Sait SM, Begon M, Thompson DJ (1994) Long-term population dynamics of the Indian meal mothPlodia interpunctellaand its granulosis virus, J Anim Ecol 63: 861–870

    Article  Google Scholar 

  • Sayre RM, Adams JR, Wergin WP (1979) Bacterial parasite of a cladoceran: morphology, development in vivo and taxonomie relationship withR astemia ramosaMetchnikoff 1888. Int J Syst Bacteriol 29: 252–262

    Article  Google Scholar 

  • Scott ME, Dobson A (1989) The role of parasites in regulating host abundance. Para Today 5: 176–183

    Article  CAS  Google Scholar 

  • Seymour R, Cowgill UM, Klecka GM, Gersich FM, Mayes MA (1984) Occurrence ofAphanomyces daphniaeinfection in laboratory cultures of Daphnia magna. J Invertebr Pathol 43: 109–113

    Article  Google Scholar 

  • Stazi AV, Mantovani A, Fuglieni F, Dojmi di Delupis GL (1994) Observations on fungal infection of the ovary of laboratory-culturedDaphnia magna. Bull Environ Contam Toxicol 53: 699–703

    Article  PubMed  CAS  Google Scholar 

  • Stirnadel HA (1994) The ecology of threeDaphniaspecies–their microparasites and epibionts. Diploma Thesis, University of Basel, Busel, Switzerland

    Google Scholar 

  • Stirnadel HA, Ebert D (1997) Prevalence, host specificity and impact on host fecundity of microparasites and epibionts in three sympatricDaphniaspecies. 66: 212–222

    Google Scholar 

  • Threlkeld ST, Willey RL (1993) Colonization, interaction, and organization of cladoceran epibiont communities. Limnol Oceanogr 38: 584–591

    Article  Google Scholar 

  • Threlkeld ST, Chiavelli DA, Willey RL (1993) The organisation of zooplankton epibiont communities. TREE 8: 317–321

    PubMed  CAS  Google Scholar 

  • Vidtmann S (1993) The peculiarities of prevalence of microsporidiumLarssonia daphniaein the naturalDaphnia pulexpopulation. Ekologija 1: 61–69

    Google Scholar 

  • Willey RL, Cantrell RL, Threlkeld ST (1990) Epibiotic euglenoid flagellates increase the susceptibility of some zooplankton to fish predation. Limnol Oceanogr 35: 952–959

    Article  Google Scholar 

  • Woods SA, Elkington JS, Murray KD, Liebhold AM, Gould JR, Podgwaite JD (1991) Transmission dynamics of a nuclear polyhedrosis virus and predicting mortality in gypsy moth (Lepidoptera: Lymantriidae) populations. J Econ Entomol 84: 423–430

    Google Scholar 

  • Yan ND, Larsson JIR (1988) Prevalence and inferred effects of microsporidia ofHolopedium gibberum(Crustacea: Cladocera) in a Canadian Shield lake. J Plankton Res 10: 875–886

    Article  Google Scholar 

  • Young SY (1990) Effects of nuclear polyhedrosis virus infections inSpodoptera ornithogallilarvae on post larval stages and dissemination by adults. J Invertebr Pathol 55: 69–75

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ebert, D., Payne, R.J.H., Weisser, W.W. (1997). The Epidemiology of Parasitic Diseases in Daphnia . In: Dettner, K., Bauer, G., Völkl, W. (eds) Vertical Food Web Interactions. Ecological Studies, vol 130. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60725-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60725-7_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64528-0

  • Online ISBN: 978-3-642-60725-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics