Skip to main content

Relationship between Functional Diversity and Genetic Diversity in Complex Microbial Communities

  • Conference paper
Microbial Communities

Abstract

The operation of particular biological systems, whether ecosystem or microcosm, depends on the interplay of three general factors — environment, biological community structure (diversity), and biological activity (function). The role of diversity, particularly of micro-organisms, and the relationship between microbial diversity and function is largely unknown. The application of molecular biological techniques has shown that microbial communities, particularly in soil, are very complex (Torsvik et al., 1990; Ritz et al., 1997) and understanding this relationship is not straightforward. We set out in this paper to outline some of the concepts involved in the study of microbial diversity, and to present an overview of the relationship between diversity and function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Atlas. RM, Horowitz A, Krichevsky M, Bej AJ (1994) Response of microbial populations to environmental disturbance. Microb Ecol 22: 249–256.

    Article  Google Scholar 

  • Beare MH, Parmelee RW, Hendrix PF, Cheng W, Coleman DC, Crossley DA Jr (1992) Microbial and faunal interactions and effects on litter nitrogen and decomposition in agroecosystems. Ecol Monogr 62: 569–591.

    Article  Google Scholar 

  • Bongers T (1990) The maturity index: an ecological measure of environmental disturbance based on nematode species composition. Oecologia 83, 14–19.

    Article  Google Scholar 

  • Bongers T, de Goede RGN, Korthals GW, Yeates GW (1995) Proposed changes of c-p classification for nematodes. Russ J Nematol 3: 61–62.

    Google Scholar 

  • Brussaard L, Kools JP, Bouwman LA, de Ruiter PC (1991) Population dynamics and nitrogen mineralization rates in soil as influenced by bacterial grazing nematodes and mites. In: Veeresh GK, Rajagopal D and Viraktamath CA (eds) Advances in management and conservation of soil fauna Oxford and EBH Publishing Co Pvt Ltd, New Dehli, India pp 51–523.

    Google Scholar 

  • Burket JZ and Dick RP (1996) Long-term vegetation management in relation to accumulation and mineralization of nitrogen in soils. In: Cadisch G and Giller KE (eds) Driven by nature: Plant litter quality and decomposition CAB International, Wallingford, UK pp 283–296.

    Google Scholar 

  • de Boer W, Klein Gunnewiek PJA, Parkinson D (1996) Variability of N mineralization and nitrification in a simple, simulated microbial forest soil community. Soil Biol Biochem 28: 203–211.

    Article  Google Scholar 

  • de Ruiter PC, Moore JC, Zwart KB, Bouwman LA, Hassink J, Bloem J, de Vos JA Marinissen JCY, Didden WAM, Lebbink G, Brussaard L (1993) Simulation of nitrogen mineralization in the below-ground food webs of two winter wheat fields. J Appl Ecol 30: 95–106.

    Article  Google Scholar 

  • de Ruiter PC, Neutel A-M, Moore JC (1994) Modelling food webs and nutrient cycling in agro-ecosystems. Trends Ecol Evol 9: 378–383.

    Article  PubMed  Google Scholar 

  • de Goede RGM, Bongers T, Ettema CH (1993) Graphical presentation and interpretation of nematode community structure: C-P triangles. Med Fac Landbouww Univ Gent, 58/2b: 743–750.

    Google Scholar 

  • Fauci MF, Dick RP (1994) Soil microbial dynamics: short- and long-term effects of inorganic and organic nitrogen. Soil Sci Soc Am J 58: 801–806.

    Article  Google Scholar 

  • Fråstegard Å, Tunlid A, Bååth E (1993) Phospholipid fatty acid composition, biomass and activity of microbial communities from two soil types experimentally exposed to different heavy metals. Appl Environ Microbiol 59: 3605–3617.

    Google Scholar 

  • Garland JL, Mills AL (1991) Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole- carbon-source utilization. Appl Environ Microbiol 57: 2351–2359.

    PubMed  CAS  Google Scholar 

  • Griffiths BS, Ritz K, McNicol JW, Ebblewhite NE, Baath E, Diaz-Ravina M (1997) The analysis and interpretation of thermal denaturation profiles from microbial community DNA, with reference to the community hybridization technique and heavy metal pollution in soil. FEMS Microbiol Ecol (submitted)

    Google Scholar 

  • Harris D (1994) Analysis of DNA extracted from microbial communities. In: Ritz K, Dighton J and Giller KE (eds) Beyond the biomass John Wiley & Sons, Chichester, UK, pp 111–118.

    Google Scholar 

  • Ingham ER, Horton KA (1987) Bacterial, fungal and protozoan responses to chloroform fumigation in stored soil. Soil Biol Biochem 19: 54–550.

    Article  Google Scholar 

  • Janzen RA, Dormaar JF, McGill WB (1995) A community-level concept of controls on decomposition processes: decomposition of barley straw by Phanerchaete chrysosporium or Phlebia radiata in pure or mixed culture. Soil Biol Biochem 27: 173–180.

    Article  CAS  Google Scholar 

  • Jenkinson DS (1966) Studies on the decomposition of plant material in soil II Partial sterilization of soil and the soil biomass J Soil Sci 17: 280–302.

    CAS  Google Scholar 

  • Lee S, Fuhrman JA (1990) DNA hybridization to compare species compositions.of natural bacterioplankton assemblages. Appl Environ Microbiol 56: 739–746.

    Google Scholar 

  • Leser TT, Boye M, Hendriksen NB (1995) Survival and activity of Pseudomonas sp Strain B13 (FR1) in a marine microcosm determined by quantitative PCR and an rRNA-targeting probe and its effect on the indigenous bacterioplankton. Appl Environ Microbiol 61: 1201–1207.

    PubMed  CAS  Google Scholar 

  • Malik KA, Kain J, Pettigrew C, Ogram A (1994) Purification and molecular analysis of microbial DNA from compost. J Microbiol Meth 20: 183–196.

    Article  CAS  Google Scholar 

  • McGill WB, Cannon KR, Robertson JA, Cook, FD (1986) Dynamics of soil microbial biomass and water-soluble organic C in Breton L after 50 years of cropping to two rotations. Can J Soil Sci 66: 1–19.

    Article  Google Scholar 

  • Muyzer G, de Wall EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59: 695–700.

    PubMed  CAS  Google Scholar 

  • Ritz K, Griffiths BS (1994) Potential application of a community hybridization technique for assessing changes in the population structure of soil microbial communities Soil Biol Biochem 26: 963–971.

    Google Scholar 

  • Ritz K, Griffiths BS, Torsvik VL, Hendriksen NB (1997) Broad-scale approaches to the determination of microbial community structure: analysis of soil and bacterioplankton community DNA by melting profiles and reassociation kinetics. FEMS Lett (in press).

    Google Scholar 

  • Salonius PO (1981) Metabolic capabilities of forest soil microbial populations with reduced species diversity Soil Biol Biochem 13: 1–10.

    Google Scholar 

  • Shannon CE, Weaver W (1949) The mathematical theory of communication University of Illinois Press, Urbana, Illinois, USA 117pp.

    Google Scholar 

  • Setala H, Tynismaa E, Martikainen E, Huhta V (1991) Mineralization of C, N and P in relation to decomposer community structure in coniferous forest soil. Pedobiologia 35: 285–296.

    Google Scholar 

  • Torsvik VL, Gokøyr J, Daae FL (1990) High diversity in DNA of soil bacteria. Appl Environ Microbiol 56: 782–787.

    PubMed  CAS  Google Scholar 

  • Toyota K, Ritz K, Young IM (1996) Effects of soil matric potential and bulk density on the growth of Fusarium oxysprum f. Sp. raphani. Soil Biol Biochem 28: 1139–1146.

    Article  CAS  Google Scholar 

  • Vedder B, Kampichler C, Bachmann G, Bruckner A, Kandeler E (1996) Impact of faunal complexity on microbial biomass and N turnover in field mesocosms from a spruce forest soil. Biol Fertil Soils 22: 22–30.

    Article  Google Scholar 

  • Wagner M, Amman R, Lemmer H, Schleifer K-H (1993) Probing activated sludge with oligonucleotides specific for proteobacteria: inadequacy of culture- dependent method for describing microbial community structure. Appl Environ Microbiol 59: 1520–1525.

    PubMed  CAS  Google Scholar 

  • Wheatley RE, Millar SE, Griffiths DW (1996) The production of volatile organic compounds during nitrogen transformations in soil. PI Soil 181, 163–167.

    Article  CAS  Google Scholar 

  • Woods LE, Cole CV, Elliott ET, Anderson RV, Coleman DC (1982) Nitrogen transformations in soil as affected by bacterial-microfaunal interactions. Soil Biol Biochem 14: 93–99.

    Article  CAS  Google Scholar 

  • Yeates GW, Bird AF (1994) Some observations on the influence of agricultural practices on the nematode faunae of some South Australian soils. Fundam Appl Nematol 17: 133–145.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Griffiths, B.S., Ritz, K., Wheatley, R.E. (1997). Relationship between Functional Diversity and Genetic Diversity in Complex Microbial Communities. In: Insam, H., Rangger, A. (eds) Microbial Communities. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60694-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60694-6_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64511-2

  • Online ISBN: 978-3-642-60694-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics